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Abstract

In various online/offline multi-agent networked environments, it is very popu-
lar that the system can benefit from coordinating actions of two interacting agents
at some cost of coordination. In this paper, we first formulate an optimization
problem that captures the amount of coordination gain at the cost of node activa-
tion over networks. This problem is challenging to solve in a distributed manner,
since the target gain is a function of the long-term time portion of the inter-coupled
activations of two adjacent nodes, and thus a standard Lagrange duality theory is
hard to apply to obtain a distributed decomposition as in the standard Network
Utility Maximization. In this paper, we propose three simulation-based distributed
algorithms, each having different update rules, all of which require only one-hop
message passing and locally-observed information. The key idea for being dis-
tributedness is due to a stochastic approximation method that runs a Markov chain
simulation incompletely over time, but provably guarantees its convergence to the
optimal solution. Next, we provide a game-theoretic framework to interpret our
proposed algorithms from a different perspective. We artificially select the pay-
off function, where the game’s Nash equilibrium is asymptotically equal to the
socially optimal point, i.e., no Price-of-Anarchy. We show that two stochastically-
approximated variants of standard game-learning dynamics overlap with two al-
gorithms developed from the optimization perspective. Finally, we demonstrate
our theoretical findings on convergence, optimality, and further features such as a
trade-off between efficiency and convergence speed through extensive simulations.

1 Introduction
In many online/offline networking environments, a variety of gains among nodes (or
agents) are generated when they make efforts to adjust their states (or actions) with
those of others. Two examples include the ones in wireless and social networks. First,
in wireless sensor networks with duty cycled node activations for energy saving, each
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sensor node decides to be awake or not over time, which further depends on its neigh-
bors’ wake-up state and distance to the node. When two nearby nodes communicate,
they are equipped with a robust wireless channel for mutual communication, and thus
their coordination (e.g., message exchange) can become more powerful at the cost of
energy consumption while they are awake [2,3]. Thus, to achieve the desired coordina-
tion gain while turning off redundant sensors, each sensor node should smartly decide
to wake up or not, which should often be done in a distributed manner. Second, in on-
line/offline social networks, social relationships and interactions are of critical interest,
since the strength of such interactions often determines how the network evolves, e.g.,
adoption of a new technology or spread of information. For example, when a new tech-
nology becomes available, using the social relationships, more coordination gain due
to the compatibility of the technology between two individuals is generated, whereas a
certain cost due to the adoption of the new technology is incurred, e.g., buying a new
software [4–6].

In this paper, we formulate an optimization problem, called Coordination Gain
Maximization that suitably captures the gain due to peer-to-peer coordinations of con-
nected node pairs and the cost due to individual node activations, as in the following
form:

max
λi,λij

∑
connected node pair (i,j)

Uij(λij)−
∑

node i

Ci(λi), (1)

where Uij(·) and Ci(·) are the coordination utility and the node activation cost func-
tions, respectively. Intuitively, λij is the long-term time portion when both nodes i and
j are simultaneously activated and thus coordinated, and λi is the long-term time por-
tion when node i is activated. This optimization seems a simple variant of a standard
NUM (Network Utility Maximization) [7–9], where it is allowed to easily develop
a node-wise distributed algorithm converging to the optimal solution. However, the
problem in (1) significantly differs from a standard NUM problem, thus developing
a distributed algorithm is far from being trivial. The main challenge of solving this
optimization problem lies in the fact that the standard Lagrange duality theory for a
distributed decomposition is not possible since the objective function includes the term
which is a function of the long-term inter-coupling of the states of a pair of connected
nodes, and thus, a separability is not permitted.

In many engineering systems, we often observe the trade-off between efficiency
and complexity, where optimal algorithms require extensive message passing or heavy
computations, but light-weight approximate algorithms incur suboptimality. Stochastic
simulation-based algorithms [10, 11] have been investigated in various areas to handle
expensive computations in efficient way by using random experimental simulations, in
spite of some challenges such as slow convergence time and/or suboptimality of the
resulting solution. Our primary goal is to develop a simulation-based distributed co-
ordination decision algorithm that is “efficient”, i.e., hopefully achieving the optimal
solution of (1) using random samples of configurations produced by locally-limited
message passing. In this work, we formulate an optimization problem of coordina-
tion gain maximization over networks by taking a framework of the binary pairwise
undirected graphical model, i.e., Ising model [12, 13], to capture pairwise coordina-
tions and nodewise activations of the network, and then propose distributed dynamic
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mechanisms which produce the optimal solution of (1). Our main contributions are
summarized in what follows:
C1. We first introduce a distributed mechanism, called CDM(θ) (Configuration Deci-
sion Mechanism), where, by each node’s local state changes based on one-hop message
passing, a node activation state of the network is randomly determined in a decentral-
ized manner. This mechanism is governed by a given parameter vector θ that represents
the strength of inter-node coordinations and the preference for activation of each node.
We illustrate how CDM aids in the design of distributed, efficient coordination decision
algorithm.
C2. We then propose three simulation-based algorithms, called Coord-dual, Coord-
steep, and Coord-ind that provide how to update the parameter vector θ of CDM
in a distributed manner. We prove that all of three algorithms provably converge to
the optimal solution of (1), yet the rationale behind each scheme contains different
perspectives of approximation and optimization mechanisms. The key technique to-
wards a distributed operation is to run CDM(θ) incompletely over time and exploit
locally-observed information from random samples to update the parameter θ, which
can guarantee the convergence to the optimal solution of (1) on the strength of stochas-
tic approximation theory.
C3. Finally, we take a different angle to understand two algorithms Coord-steep and
Coord-ind using game theory. A game-theoretic framework is one of the powerful
tools in the design and analyze the behavior of multi-agent systems, providing valuable
insights into various local control rules for agents’ behaviors [14]. In this paper, we
design a non-cooperative game with artificially-selected payoffs, and show that it has
a unique Nash equilibrium which is (asymptotically) equivalent to the socially optimal
point, i.e., the optimal solution of (1). We consider popular game dynamics, which
we modify with the stochastic approximation technique, and find that those two game
dynamics exactly correspond to Coord-steep and Coord-ind, respectively. We conduct
extensive simulations to verify our theoretical findings.
Organization. The rest of the paper is organized as follows. In Section 2, we present
a large array of related works. In Section 3, we formulate the coordination gain max-
imization problem, followed by the analysis of distributed coordination algorithms in
Section 4. In Section 5, we provide interpretations from a game-theoretic framework,
demonstrate the performance of our algorithms through numerical results in Section 6,
and finally conclude in Section 7. All the mathematical proofs are presented in Ap-
pendix.

2 Related Work
A variety of benefits from coordinating actions of wireless terminals or users have been
widely studied in wireless networks. In the area of wireless sensor networks, various
distributed, energy-efficient coordination schemes have been proposed recently, where
sensors adaptively select to be coordinators or not, i.e., stay awake and forward sensing
data or not, while turning off redundant sensors for energy efficiency. The main interest
of this area is scalable, localized, and robust coordination in large-scale environments,
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and thus most works have been studied to (i) preserve capacity and connectivity [3], (ii)
improve the lifetime of the system and communication latency by using a geo-location
information of sensors [15], or (iii) build a self-configuring localization system [2].

In online/offline social networks, coordinating actions, e.g., diffusion /adoption of
information, of two (socially) interacting individuals is of importance, since the power
of interactions often determines how the network evolves. An importance of a coor-
dination mechanism, e.g., a social structure, for efficient knowledge sharing has been
stressed in [16]. There has been a surge of studies about the dynamics of diffusion (i.e.,
a status of agents) by adopting Ising model in statistical physics [5], epidemic-based
models [17], or game-theoretic models [4]. Recently, researchers have studied how
coordinated behavior might spread in a network, i.e., game-theoretic diffusion models,
and the impact of network structure and/or seeding set on convergence speed [18–21].
Especially, the authors in [18] studied that the noisy best response dynamics converges
to the equilibrium, which maximizes the spreading efficiency by choosing an appropri-
ate seed set as in [21].

A large array of work about network utility maximization (NUM) problem have
been studied, see [7–9] for surveys. The objective of NUM problem is to maximize a
sum of all nodes’ utilities, while not considering any pairwise status, thus separability
in the problem often provides a useful dual-based decomposition for an easy develop-
ment of distributed algorithms. In recent years, the researches on achieving optimality
in both throughput and utility in wireless scheduling (in a decentralized manner) have
been studied from an optimization perspective [22, 23] as well as from game-theoretic
perspective [24–26] for various base-line medium access control protocols. The intu-
itive idea of these works is that wireless links adaptively adjust access intensities by
using local information, e.g., queue-length or empirical service rate, so as to achieve
the desired performance.

Our work is based on the importance of the pairwise coordination impacts among
individuals, where our main interest is how to find a sequence of node activations
(and thus coordinations) in a decentralized manner whose long-term status leads to the
solution of the problem in (1) that maximizes the network-wide coordination gain at the
cost of node activation. Moreover, our work provides new interpretations behind the
results obtained from a game-theoretic perspective in the sense that (i) we start from a
non-cooperative (ordinal potential) game, followed by the resulting Nash equilibriums’
efficiency (i.e., no Price-of-Anarchy), and (ii) we provide how game-inspired learning
dynamics of the game can be connected to the results from an optimization approach.

3 Model and Objective

3.1 System Model
Network model. In this paper, we consider a network G = (V,E) consisting of a set
V of nodes and a set E ⊂ V × V of edges. With this graphical representation, each
node corresponds to an agent in social networks or a sensor node in wireless sensor
networks, and each edge corresponds to a physical connectivity or a social relationship
between nodes, i.e., (i, j) ∈ E means that node i and node j are connected and have an
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interaction. Note that we study undirected networks where interaction requires mutual
consent, i.e., (i, j) is equivalent to (j, i). Let N (i) = {j ∈ V : (i, j) ∈ E} denote the
neighbors of node i.
Configuration and coordination scheduling. We consider a continuous time frame-
work. Let σi(τ) ∈ {0, 1} indicate whether node i is active at time τ or not, i.e.,
σi(τ) = 1 means that node i is active at time τ , and 0 otherwise. We say that nodes
i and j are (or edge (i, j) is) coordinated when σi(τ)σj(τ) = 1. We also denote by
σ(τ) = [σi(τ)]i∈V a node configuration at time τ , and it is clear that a set of possible
configurations of the graph G is defined as I(G) := {0, 1}|V |. To formally discuss a
coordination gain, which we will introduce later, we define a coordination configura-
tion as follows:

φ(σ) := ([σi]i∈V , [σiσj ](i,j)∈E), (2)

which is an augmented configuration vector capturing both the activation status of
nodes and the coordination status of edges. Then, every coordination configuration
belongs to Φ(G) := {0, 1}|V |+|E|. Now, a coordination scheduling (or simply schedul-
ing) algorithm is a mechanism that selects σ(τ) ∈ I(G) (thus a coordination configu-
ration φ(σ(τ)) ∈ Φ(G) is also determined) over time τ ∈ R+.
Coordination region. We now define the maximum achievable coordination region
(also called coordination capacity region) Λ ⊂ [0, 1]|V |+|E| of the network, which is
the convex hull of the feasible coordination configuration set Φ(G), i.e.,

Λ = Λ(G) :=

{ ∑
σ∈I(G)

µσφ(σ) :
∑

σ∈I(G)

µσ = 1, µ(·) ≥ 0

}
.

The intuition of the notion of coordination capacity region comes from the fact that any
coordination scheduling algorithm has to choose a node configuration from I(G) over
time (thus a coordination φ(σ) is determined), and wσ denotes the fraction of time
selecting a node configuration σ (and thus a coordination φ(σ)). Hence, the long-
term (average) time portion of node activation and edge coordination induced by any
scheduling algorithm must belong to Λ.

3.2 Problem Description: Coordination Gain Maximization
Objective. We require nodes and edges to control the long-term time portion (or fre-
quency) of activation and coordination close to some boundary of Λ. Specifically, we
aim at designing a coordination scheduling algorithm that decides σ(τ) ∈ I(G) over
time τ so that the long-term time portion of node activation and edge coordination
converges to a solution of the following optimization problem:

(CG-OPT) max
λ∈Λ

∑
(i,j)∈E

Uij(λij)−
∑
i∈V

Ci(λi). (3)
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1 2 3
(2, 3)(1, 2)

Figure 1: An example line network with 3 nodes and 2 edges, where there are 8 feasible
node configurations σ ∈ {0, 1}3.

This problem, which we call coordination gain maximization problem, captures
inter-dependencies among nodes and a trade-off between (edge) coordination utility
and (node) activation cost, where Uij : [0, 1] → R is a strictly concave and con-
tinuously twice-differentiable coordination utility function of edge (i, j) ∈ E, and
Ci : [0, 1] → R is a strictly convex, continuously twice-differentiable activation cost
function of node i ∈ V . Then, it is obvious that CG-OPT has the unique solution
λ? := ([λ?i ]i∈V , [λ

?
ij ](i,j)∈E). The network coordination gain is defined as a total

coordination utility subtracted by a total incurring cost. More coordination utility is
generated as nodes i and j are coordinated more often, but it also incurs more cost of
nodes i and j to be activated.
Example. To illustrate, we provide an example of CG-OPT and its solution structure,
where we use a line topology with 3 nodes and 2 edges, as depicted in Fig. 1. Now,
CG-OPT in this example is expressed by:

max
λ

[
U12(λ12) + U23(λ23)−

(
C1(λ1) + C2(λ2) + C3(λ3)

)]
.

Let the long-term time portion of activation and coordination be characterized by the
distribution {πσ}σ∈{0,1}3 , i.e.,

λ1 = π(1,0,0) + π(1,0,1) + π(1,1,0) + π(1,1,1),
λ2 = π(0,1,0) + π(0,1,1) + π(1,1,0) + π(1,1,1),
λ3 = π(0,0,1) + π(0,1,1) + π(1,0,1) + π(1,1,1),
λ12 = π(1,1,0) + π(1,1,1), λ23 = π(0,1,1) + π(1,1,1). (4)

Note that the total coordination gain is generated according to the long-term coor-
dination time portion of two edges, i.e., λ12, λ23, and the total incurring cost is due to
the long-time activation of three nodes, i.e., λ1, λ2, λ3.

A smart scheduling is required since each node’s activation should be coordinated
with its neighboring nodes in order to produce enough gain at the cost of activation.
For expositional convenience, let us choose the following utility and cost functions:
U12(x) = U23(x) = log(x), C1(x) = C2(x) = x2, and C3(x) = 3x2, i.e., more cost
is incurred for node 3. Now a simple algebra gives the following distributions and the
resulting optimal solution:

π?(0,0,0) = 0.5, π?(1,1,0) = 0.0915, π?(1,1,1) = 0.4085,

(λ?1, λ
?
2, λ

?
3, λ

?
12, λ

?
23) = (0.5, 0.5, 0.4085, 0.5, 0.4085),

where the optimal solution is attained by assigning some probability to the configura-
tion (1, 1, 0) rather than giving a high priority only to (1, 1, 1), with some cost balanc-
ing by avoiding the activation of any node, i.e., scheduling (0, 0, 0).
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In this work, our goal is to design a distributed coordination scheduling algorithm
{σ(τ)}∞τ=0 which relies only on local information with one-hop message passing, but
converges to the optimal solution of CG-OPT, i.e., limT→∞

1
T

∫ T
0
φ(σ(τ))dτ = λ?.

A lot of challenges may arise, because the developed algorithm should work in an
independent manner of the underlying topology and the shape of utility/cost functions,
and more importantly the solution should be found in a distributed way, which may
entail heavy computations to characterize the long-term time portion of activation and
coordination. To overcome these challenges in efficient way, we propose distributed
simulation-based algorithms in next section.

4 Distributed Coordination: Algorithm and Analysis

4.1 Configuration Decision Mechanism
We first introduce a parameter θ ∈ R|V |+|E| as:

θ = ([θi]i∈V , [θij ](i,j)∈E). (5)

Intuitively, θij and θi can be interpreted as the strength of coordination interaction of
edge (i, j) ∈ E and the preference for activation of node i ∈ V , respectively. To
capture pairwise interaction of the system, the parameter includes singleton as well as
pairwise element, and this parameter will be used as a parameter of algorithms we will
design in Section 4.2.

Note that a coordination gain and activation cost of the system would be a function
of the long-term time portion of edge coordinations and node activations (i.e., a sta-
tionary distribution, say π, of configurations, see the example in (4)), as hinted in CG-
OPT. This means that it is necessary to develop a time-by-time dynamic mechanism,
which, if run for a sufficient amount of time, leads to a certain stationary distribution
of configurations for a given θ. In this section, we illustrate how a simple Monte Carlo
Markov Chain method may be used as such a time-by-time dynamic mechanism, called
CDM (Configuration Decision Mechanism). We then identify the optimal distribution
over the feasible configurations that maximizes the network-wide coordination gain by
producing random samples of configurations via CDM. Each algorithm we propose in
Section 4.2 produces a sequence of configurations {σ(τ)}∞τ=0 by updating a parameter
θ over time so that the resulting long-term activation/coordination rate converges to the
optimal solution of CG-OPT.

We now describe CDM(θ) for a given parameter θ, where every node has a Poisson
clock with unit rate and nodes decide a new configuration σ′ from a current configu-
ration σ by the procedures as in two steps S1 and S2. Note that Poisson clock of each
node leads to the uniform node selection, and for a given graph G, CDM decides a
configuration over time in a distributed manner with only one-hop message passing. In
particular, when node i’s clock ticks, it requires to know (i) configuration status of its
neighboring nodes, i.e., {σj}j∈N (i), and (ii) parameter of its neighboring edges, i.e.,
{θij}j∈N (i), to decide its new configuration σ′i in S1. Then, in S2, node i broadcasts
its updated configuration σ′i to all of its neighboring nodes j ∈ N (i) for further config-
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Configuration Decision Mechanism: CDM(θ)

Input: Parameter θ, current configuration σ = [σi].
Output: New configuration σ′ = [σ′i].

Each node, say i, when its Poisson clock ticks, performs the following:
S1. Node i changes its configuration from σi to σ′i

σ′i =

1, with probability
exp(θi+

∑
j∈N(i) σjθij)

1+exp(θi+
∑
j∈N(i) θijσj)

0, with probability 1
1+exp(θi+

∑
j∈N(i) θijσj)

(6)

S2. Node i broadcasts its updated σ′i to all of neighbors in N (i).

uration decision process. Simply, CDM(θ) decides a new configuration mainly based
on the status of neighbors with large interaction strength.

One important feature is that CDM for a given parameter θ leads to a continuous-
time Markov chain {σ(τ)}∞τ=0 achieving the following stationary distribution pθ =
[pθ,σ]σ∈I(G):

pθ,σ ∝ exp(〈θ,φ(σ)〉), for σ ∈ I(G), (7)

where 〈a, b〉 is the inner product of two vectors a and b, i.e., pθ,σ ∝ exp(
∑
i∈V θiσi+∑

(i,j)∈E θijσiσj). Moreover, {σ(τ)}∞τ=0 is an irreducible, aperiodic, and reversible
Markov process [27]. Given the parameter θ, the ergodicity and reversibility of the
Markov process imply that the marginal probability of nodes and edges under the sta-
tionary distribution pθ, denoted by s(θ) = ([si(θ)]i∈V , [sij(θ)](i,j)∈E), becomes the
long-term time portion of node activation and edge coordination, simply called activa-
tion/coordination rate, characterized as1: for i ∈ V and (i, j) ∈ E,

si(θ) = Epθ [σi] =
∑

σ∈I(G)

pθ,σσi,

sij(θ) = Epθ [σiσj ] =
∑

σ∈I(G)

pθ,σσiσj . (8)

We remark that a graphical model representing the distribution in (7) corresponds to
Ising model in statistic physics, with Ising parameter θ [12], and CDM(θ) is a Glauber
dynamics over an Ising model under continuous-time setting.

1We interchangeably use a notation of Epθ [·] and Eθ [·] for the expectation over the distribution pθ .
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4.2 Simulation-based Parameter Update Algorithms
In CG-OPT, our goal is to find a distribution µ over configurations such that the re-
sulting rate Eµ[φ(σ)] becomes the optimal solution of CG-OPT. To that end, using
CDM(θ), we develop three distributed simulation-based algorithms that adaptively up-
date the parameter θ over time, which we call Coord-algorithms, whose empirical acti-
vation/coordination rates from samples generated by CDM(θ) asymptotically converge
to the optimal solution of CG-OPT.

Coord-algorithms: At the start of each frame t ∈ Z≥0

Input: Efficiency parameter β > 0, smoothing parameter α ∈ (0, 1], boundary
values θmin, θmax.
Output: θ[t+ 1].
Initialize: Set θ[0] arbitrarily, and a[0] = 0.

S1. Each node i sends θij [t] to its neighbor j for all j ∈ N (i).

S2. CDM(θ[t]) is run by each node in a distributed manner, and each node i records
the number of its activations ŝi[t] and its coordinations {ŝij [t]}j∈N (i) over frame t,
and compute the cumulative rate s̄i[t], {s̄ij [t]}j∈N (i), as in (12).

S3. Each node i updates θi[t+ 1] and {θij [t+ 1]}j∈N (i) as:

(a) Coord-dual:

θi[t+ 1] =

[
θi[t] + a[t]

(
C ′−1
i

(
−θi[t]
β

)
− ŝi[t]

)]θmax

θmin

,

θij [t+ 1] =

[
θij [t] + a[t]

(
U ′−1
ij

(
θij [t]

β

)
− ŝij [t]

)]θmax

θmin

. (9)

(b) Coord-steep:

θi[t+ 1] =

[
θi[t] + α

(
− βC ′i

(
s̄i[t]

)
− θi[t]

)]θmax

θmin

,

θij [t+ 1] =

[
θij [t] + α

(
βU ′ij

(
s̄ij [t]

)
− θij [t]

)]θmax

θmin

. (10)

(c) Coord-ind:

θi[t+ 1] =

[
θi[t] +

α

β

∂si(θ[t])

∂θi

(
− βC ′i

(
s̄i[t]

)
− θi[t]

)]θmax

θmin

,

θij [t+ 1] =

[
θij [t] +

α

β

∂sij(θ[t])

∂θij

(
βU ′ij

(
s̄ij [t]

)
− θij [t]

)]θmax

θmin

. (11)
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We now describe Coord-algorithms, where β > 0, α ∈ (0, 1], θmin, θmax are the
given constants; [·]yx := max(y,min(x, ·)); and a : Z≥0 → R+ is a positive step-
size function. In Coord-algorithms, time is divided into frames t = 0, 1, · · · of fixed
durations T , and each node i updates the parameter θi and {θij}j∈N (i)

2 following
one of three schemes: (a) Coord-dual, (b) Coord-steep and (c) Coord-ind. In S1, at
the beginning of each frame t, node i sends each of {θij [t]}j∈N (i) to each j of its
neighbors3. Then in S2, CDM(θ[t]) runs in a distributed manner, leading to the local
computation of instant and cumulative activation/coordination rates at and until the
frame t, denoted by ŝ[t] and s̄[t], respectively, i.e.,

ŝ[t] =
1

T

∫ (t+1)T

tT

φ(σ(τ))dτ, s̄[t] =
1

t

t∑
m=0

ŝ[m], (12)

where both empirical rates are locally-computed. In S3, each scheme utilizes either of
the computed empirical rates: ŝ[t] for Coord-dual and s̄[t] for Coord-steep, Coord-
ind. Note that ∇s(θ[t]) is also locally obtained (see Appendix for a detailed form of
∇s(·)), thus all of Coord-algorithms are run in a distributed manner.

4.3 Rationale behind Coord-algorithms
We now explain the rationale behind each scheme of Coord-algorithms that contains
different perspectives of approximation and optimization mechanisms.
(a) Coord-dual: Note that CG-OPT in (3) can be written as:

max
µ∈M

F(µ) :=
∑

(i,j)∈E

Uij(Eµ[σiσj ])−
∑
i∈V

Ci(Eµ[σi]), (13)

where M is a set of all probability measures over the feasible configurations I(G).
From this, we consider the following variant A-CG-OPT (parameterized by β > 0) of
CG-OPT:

(A-CG-OPT)
max

∑
(i,j)∈E

Uij(λij)−
∑
i∈V

Ci(λi) +
1

β
H(µ)

over µ ∈M, λ ∈ [0, 1]|V |+|E|

subject to λi = Eµ[σi], ∀i ∈ V,
λij = Eµ[σiσj ], ∀(i, j) ∈ E, (14)

where H(µ) = −
∑
σ∈I(G) µσ logµσ is the entropy of µ.

2In practice, each node i may have additional independent controllers for its neighboring edges (i, j) of
j ∈ N (i). Either node i or j may have the control authority of edge (i, j) following some arbitrary rule.

3We implicitly assume that information exchange in S1 of Coord-algorithms and S2 in CDM(θ) can be
done by out-of-band signaling, i.e., a separate control channel.
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Note that, compared to CG-OPT, A-CG-OPT has additional term 1
βH(µ) in its

objective function. Since the entropy is bounded, i.e., |H(µ)| ≤ log |I(G)|, a solu-
tion of A-CG-OPT, say (µ◦,λ◦), becomes arbitrarily closer to that of CG-OPT for
large β, which we call an efficiency parameter. Moreover, the entropy term leads to a
distributed algorithm achieving the solution of A-CG-OPT in following way.

Regarding the parameter θ as a dual variable of the Lagrangian of A-CG-OPT, its
dual problem is simply represented as minθ D(θ) (see for a detailed form of D(·)).
Then, the steepest descent method to solve this dual problem with the direction d[t] =
−∇D(θ[t]) and step-size a[t] is given by θ[t+ 1] = θ[t] + a[t] · d[t], i.e.,

θi[t+ 1] = θi[t] + a[t]
(
C ′−1
i

(−θi[t]
β

)
− si(θ[t])

)
,

θij [t+ 1] = θij [t] + a[t]
(
U ′−1
ij

(θij [t]
β

)
− sij(θ[t])

)
. (15)

We highlight that Coord-dual in (9) is a distributed implementation of (15), where
the key idea is to use (i) the instant rate ŝi[t], ŝij [t] from the current samples with (ii)
diminishing step-size a[t] (i.e., satisfying (24)), instead of computing the exact rate
si(θ[t]), sij(θ[t]). Recall that computing the service rate directly requires information
of all other nodes and edges, and measuring the service rate (i.e., the marginal proba-
bility in the Markov chain induced by CDM(θ[t])) requires a mixing time to reach the
stationary distribution from a large number of samples. The proof of convergence and
optimality of Coord-dual using ŝ[t] with a[t] is due to the stochastic approximation
technique [28–30], as presented in Section 4.4.
(b) Coord-steep: Taking the different perspective of CG-OPT, at any time, we sample
the configuration via CDM, offering the steepest ascent direction for F(µ) in (13).
Among feasible coordinates (i.e., elements) of µ = [µσ]σ∈I(G), the steepest coordi-
nate ascent method to solve (13) deduces to select a configuration σ? according to the
rule4:

σ? = arg max
σ∈I(G)

∇σF(µ),

where from (13),

∂F(µ)

∂µσ
=

∑
(i,j)∈E

σiσjU
′
ij(Eµ[σiσj ])−

∑
i∈V

σiC
′
i(Eµ[σi]). (16)

Then, sampling configurations from the distribution that concentrates on σ?, e.g., a
distribution (parameterized by β), say µ̄, such that µ̄σ ∝ exp(β · ∇σF(µ̄)), approxi-
mates what the perfect steepest ascent method would do. Therefore, from (7) and (16),
the steepest ascent method solving (13) is approximated via CDM(θ) by setting θ as
follows:

θi = −β · C ′i(Eθ[σi]), θij = β · U ′ij(Eθ[σiσj ]). (17)

4A partial derivative of a function f at the point x with respect to the i-th variable xi is denoted by
∂f(x)
∂xi

, or simply∇if(x).
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Note that the target parameter θ is a fixed point of (17), and its distribution pθ
depends on the marginal probability Eθ[φ(σ)], which may evolve over time. Now, a
fixed point iteration method of (17) is given by

θi[t+ 1] = −βC ′i(Eθ[t][σi]), θij [t+ 1] = βU ′ij(Eθ[t][σiσj ]).

To smooth out the effect of random movements of the marginal probability in (17) and
take a fixed point in a limit, we consider an exponential moving average (EMA) with a
constant smoothing parameter α ∈ (0, 1] as follows:

θi[t+ 1] = α
(
− βC ′i(Eθ[t][σi])

)
+ (1− α)θi[t],

θij [t+ 1] = α
(
βU ′ij(Eθ[t][σiσj ])

)
+ (1− α)θij [t]. (18)

The key rationale of Coord-steep in (10) towards a distributed operation of (18) is
to use the cumulative rate s̄[t] instead of Eθ[t][φ(σ)], which can guarantee the con-
vergence to the optimal point (for large β), again, due to the stochastic approximation
technique. In particular, from (12), we have

s̄[t] = s̄[t− 1]− 1

t
(s̄[t− 1]− ŝ[t]), t ∈ Z≥0, (19)

thus the use of cumulative rate s̄[t] has a similar effect of exploiting instant rate ŝ[t]
with 1

t step-size (i.e., satisfying (24)), as in Coord-dual.
(c) Coord-ind: A simple, myopic approach for a distributed operation to solve CG-
OPT would be to decompose its objective into node/edge-wise local optimization prob-
lems, i.e., node i minimizes its cost and edge (i, j) maximizes its utility. Considering
long-term activation/coordination rates under the stationary distribution pθ, we asso-
ciate each component of the parameter θ with each local problem, i.e., minθi Ci(si(θ))
and maxθij Uij(sij(θ)). However, such a myopic approach does not guarantee to
achieve the optimal solution of CG-OPT due to the inter-coupling from θ in the ob-
jective functions. To reflect this inter-coupling among nodes and edges, we design the
following problem A-IND-OPT5 with new objective function, denoted by Ψi(θi) for
node i and Ψij(θij) for edge (i, j), where the key part lies in including artificially-
designed penalty terms in Ψi(θi) and Ψij(θij).

(A-IND-OPT) max
θi∈R

Ψi(θi), i ∈ V,

max
θij∈R

Ψij(θij), (i, j) ∈ E,

where Ψi(θi) =− Ci(si(θ))− 1

β

∫ θi

−∞
xs′i(x, θ−i)dx,

Ψij(θij) = Uij(sij(θ))− 1

β

∫ θij

−∞
xs′ij(x, θ−ij)dx. (20)

5We denote the parameter vector for all other components except node i by θ−i, i.e., θ = (θi, θ−i),
and similarly θ−ij for edge (i, j).
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The basic rationale of A-IND-OPT is that each node and edge chooses its own
parameter by considering only its own cost or utility, yet it might lead to the network-
wide optimal status when imposing an appropriate amount of penalty, i.e., the second
term of (20). The form of penalty (parameterized by β) is of critical importance to
achieve the global optimal solution. This individually strategic form is well understood
by a game-theoretic perspective, as presented in Section 5.1.

Now, the steepest ascent method to solve A-IND-OPT with the direction di[t] =
∇Ψi(θi[t]), dij [t] = ∇Ψij(θij [t]) (see Appendix for the full derivation) and the step-
size a[t] is given by θ[t+ 1] = θ[t] + a[t] · d[t], i.e.,

θi[t+ 1] = θi[t] +
a[t]

β

∂si(θ[t])

∂θi

(
− βC ′i(si(θ[t]))− θi[t]

)
,

θij [t+ 1] = θij [t] +
a[t]

β

∂sij(θ[t])

∂θij

(
βU ′ij(sij(θ[t]))− θij [t]

)
. (21)

Similarly to two earlier schemes, the key technique of Coord-ind is a stochastic ap-
proximation, i.e., exploiting the cumulative rate s̄[t] from samples, instead of comput-
ing the exact s(θ[t]),∇s(θ[t]). The role of adopting the cumulative rate s̄[t] towards
convergence to optimality can be clearly seen by introducing the following alternative
sequence, say {η[t]}t∈Z≥0

, which will be shown to track the sequence {θ[t]}t∈Z≥0
of

(21) using s̄[t] with a constant step-size a[t] = α ∈ (0, 1] (see Appendix for details),
defined as:

ηi[t+ 1] = −βC ′i(s̄i[t]), ηij [t+ 1] = βU ′ij(s̄ij [t]). (22)

From (19), the iterative update rule of the alternative sequence is represented as fol-
lows: for large t,

ηi[t+ 1] = ηi[t] +
1

t
gi(ηi[t])

(
C ′−1
i

(−ηi[t]
β

)
− ŝi[t]

)
,

ηij [t+ 1] = ηij [t] +
1

t
gij(ηij [t])

(
U ′−1
ij

(ηij [t]
β

)
− ŝi[t]

)
,

where

gi(x) = βC ′′i

(
C ′−1
i

(−x
β

))
, gij(x) = −βU ′′ij

(
U ′−1
ij

(x
β

))
. (23)

Note that the alternative process (22) has an effect of exploiting ŝ[t] with diminishing
step-size 1

t , as in Coord-dual.

4.4 Convergence and Optimality Analysis
For provable convergence analysis, we first make the following assumption, implying
that we choose θmin and θmax, such that the interval [θmin, θmax] is large enough to
include the optimal solution of A-CG-OPT6.

6The explicit values of θmin and θmax can be also computable as in [31].
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(A1) If θ0 ∈ R|V |+|E| solves for all i ∈ V and (i, j) ∈ E,

θ0
i = −βC ′i

(
Eθ0 [σi]

)
, θ0

ij = βU ′ij

(
Eθ0 [σiσj ]

)
,

then θmin ≤ θ0
i ≤ θmax and θmin ≤ θ0

ij ≤ θmax. Note that, for example, if U ′ij(0) <∞,
then (A1) for θ0

ij is satisfied when θmin ≤ βU ′ij(1) and θmax ≥ βU ′ij(0).
Now, the next theorem is our main result, which states the convergence of Coord-

algorithms to a point arbitrarily close to the optimal solution of CG-OPT, under some
mild conditions.

Theorem 1 (Convergence/Optimality of Coord-algorithms).

(i) Convergence. Under (A1), for strictly concave/convex, continuously twice-differentiable
utility/cost functions, choose a step-size function a[·] in Coord-dual satisfying∑

t

a[t] =∞,
∑
t

a[t]2 <∞. (24)

Then, for any initial condition θ[0], under all Coord-algorithms, θ[t] and corre-
sponding s̄[t] (from (12)) converges to (θ◦,λ◦), i.e.,

lim
t→∞

θ[t] = θ◦ and lim
t→∞

s̄[t] = λ◦, almost surely,

where (θ◦,λ◦) is such that (pθ◦ ,λ
◦) attains the (unique) solution of A-CG-OPT

in (14) (over µ and λ).
(ii) Optimality. Furthermore, Coord-algorithms approximately solve CG-OPT in the

following sense: ∑
(i,j)∈E

Uij(λ
◦
ij)−

∑
i∈V

Ci(λ
◦
i ) ≥

∑
(i,j)∈E

Uij(λ
?
ij)−

∑
i∈V

Ci(λ
?
i )−

log |I(G)|
β

, (25)

where λ? is the optimal solution of CG-OPT in (3).

The proof of Theorem 1 is presented in Appendix, but we briefly provide the proof
sketch for readers’ convenience. Each scheme of Coord-algorithms is interpreted as a
stochastic approximation procedure with controlled Markov noise, and a main tech-
nical challenge lies in handling a non-trivial coupling between Markov process of
CDM(θ) and parameter θ updates. Simply, a provable convergence is guaranteed
on the strength of stochastic approximation theory, in that we intuitively expect that
by exploiting (i) instant rate ŝ[·] with diminishing step-size in (24) or (ii) cumulative
rate s̄[·] which has an effect of 1

t step-size (i.e., satisfying (24)), the speed of variations
of the parameter θ tends to zero after sufficiently long time. Thus, its limiting behav-
ior can be understood by ordinary differential equations (ODE). We highlight that we
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adopt diminishing step-size in (24), following the standard ODE approaches in stochas-
tic approximation theory as in [28, 32, 33] and references therein, to provide provable
convergence. The additional challenge dealing with Coord-steep and Coord-ind (not
existing for Coord-dual) is that they have higher-order temporal dependencies in their
updating rules, i.e., use the current parameter θ[t] directly when obtaining the next pa-
rameter θ[t+ 1]. To handle this issue, we define ‘alternative’ process (see {ρ[t]}t∈Z≥0

and {η[t]}t∈Z≥0
in Appendix) and argue its convergence under the relation to that of

the original process {θ[t]}t∈Z≥0
.

5 New Interpretations via Game Theory
In Section 4, we develop three simulation-based algorithms that adaptively update the
parameter θ in a distributed manner, but result in the optimal solution of CG-OPT.
The rationale behind each scheme follows the framework of distributed optimization.
In this section, we take a different angle to reverse engineer two algorithms Coord-steep
and Coord-ind in other framework, which is the game-theoretic one. As a background,
game theory has been emerged as a powerful tool not only to analyze the rational
behavior of competitive multi-agent systems (i.e., just optimizing a local objective),
but also to control the local behavior of each agent, see e.g., [14]. In such a framework,
it is aimed that a game is designed with an artificially-selected payoff function so that
local decisions of agents result in a system-wide desirable solution such as an unique,
fair or socially-optimal point. Moreover, a game-theoretic approach provides valuable
insights into the design of various robust local control rules through (distributed) game
dynamics, whereas the standard centralized optimization framework can not directly
consider the interactions among agents. In this section, inheriting such a philosophy of
the game-theoretic framework for distributed optimization, we establish the desirable
properties of equilibrium from a well-designed non-cooperative game and present that
Coord-steep and Coord-ind correspond to the stochastically-approximated variants of
two popular game-learning dynamics.

5.1 CoordGain(β) Game
We first design a non-cooperative game, denoted by CoordGain(β) with β > 0.

CoordGain(β)

(i) Players. Each node i ∈ V and each edge (i, j) ∈ E acts as a player. Let
N = V ∪E denote the set of players, and thus n ∈ N can be either a node i ∈ V
or an edge (i, j) ∈ E7.

(ii) Strategy. Each player n has a parameter θn ∈ R as its own strategy. We denote
the strategy profile of entire players by θ = [θn]n∈N = ([θi]i∈V , [θij ](i,j)∈E) ∈
R|N |.

7We interchangeably use a notation of ij and (i, j) for an edge player.
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(iii) Payoff. The payoff function of player n ∈ N , denoted by Ψn(θn, θ−n) : R|N | 7→
R, is designed to be a net-coordination utility (or net-activation cost) with incur-
ring penalty function Vn(·) resulting from coordination:

Ψi(θi, θ−i) = −Ci(si(θ))− 1

β
Vi(θi, θ−i),

Ψij(θij , θ−ij) = Uij(sij(θ))− 1

β
Vij(θij , θ−ij), (26)

where Vi(θi, θ−i) =

∫ θi

−∞
xs′i(x, θ−i)dx,

Vij(θij , θ−ij) =

∫ θij

−∞
xs′ij(x, θ−ij)dx. (27)

Note that a player n’s payoff Ψn(·)8 is determined by how aggressively other play-
ers are activated/coordinated as well as how itself does. The parameter β quantifies
penalty level in the players’ payoffs, and we realize that it balances the trade-off be-
tween the quality of equilibria and the convergence speed to the equilibria under game
dynamics (see Theorem 2).

To achieve our goal of obtaining good equilibria and a provable transfer to dis-
tributed game dynamics converging to an equilibrium, the choice of penalty function
Vn(·) is of crucial importance. Our choice of penalty function (27) captures following
two features.

First, it appropriately measures each player’s impact of excessive strategy on other
players. One naı̈ve choice of penalty to be imposed by a player nmay be Vn(θ) = θn×
sn(θn, θ−n), which is proportional to the current strategy θn multiplied by its achieved
long-term gain sn(θ), yet it is unclear that this penalty provides a provable framework
of equilibrium analysis. On the other hand, our design of penalty function considers
the expected strategy value E[Θn] which depends on the relative increasing speed of
one’s rate in the interval (−∞, θn), by letting Θn ∈ [−∞, θn] denote a continuous
random variable with the density function fΘn(x) = 1

sn(θn,θ−n)
∂sn(x,θ−n)

∂x so that the
penalty function is represented as Vn(θ) = E[Θn]× sn(θn, θ−n).

Second, the penalty function (27) is a function of self-strategy and its marginal
distribution, not the individual strategy values or payoffs of others. From simple al-
gebra of (8), it is shown to be structured in terms of local information: Vn(θ) =
θnsn(θ) + ln(1 − sn(θ)). Since sn(·) can be measured in the midst of playing a
player’s own strategy, e.g., ŝn(·), via CDM with one-hop message passing, best re-
sponse or payoff gradient of our game can be locally estimated. This feature enables us
to develop distributed game dynamics, which indeed corresponds to Coord-steep and
Coord-ind (see Section 5.3).

8We use the notation Ψi,Ψij in both (20) and (26) for notational simplicity, since they obviously have
the same detailed form.
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5.2 Equilibrium Analysis
We first present popular notions: Nash equilibrium and Price-of-Anarchy in game the-
ory:

Definition 1. In the CoordGain(β),
(i) a strategy profile θNE is a Nash equilibrium (NE) if

Ψn(θNE
n , θNE

−n) ≥ Ψn(θn, θ
NE
−n), ∀θn ∈ R, ∀n ∈ N.

(ii) a Price-of-Anarchy (PoA) is

PoA =
maxθ

∑
(i,j)∈E Uij(sij(θ))−

∑
i∈V Ci(si(θ))

minθNE
∑

(i,j)∈E Uij(sij(θ))−
∑
i∈V Ci(si(θ))

.

Furthermore, we say that a NE θNE (if exists) of the game is non-trivial, if players’
activation/coordination rate at equilibrium s(θNE) is positive, and trivial otherwise.
The PoA indicates the ratio between the social optimum and the worst equilibrium of
the game, and we say no PoA if PoA = 1. We now present our main results on the
equilibrium analysis.

Theorem 2 (Uniqueness and PoA). In the CoordGain(β),

(i) Uniqueness. for any β > 0, there exists a unique non-trivial NE θNE.

(ii) Price-of-Anarchy. (pθNE , s(θNE)) attains the optimal solution of A-CG-OPT, and
thus limβ→∞ PoA = 1.

The proof of Theorem 2 is presented in Appendix. We prove that our game is an
ordinal potential game, where the potential function corresponds to the dual function
of A-CG-OPT. It implies that our game has a unique non-trivial NE θNE, in particular,
the solution of A-CG-OPT is attained at (pθNE , s(θNE)), i.e., θNE = θo. Therefore,
there is asymptotically no PoA in our game, i.e., the aggregate coordination gain at
the unique non-trivial NE becomes arbitrarily close to the social optimum by choosing
sufficiently large β.

5.3 Reverse Engineering of Coord-steep and Coord-ind
Best response dynamics. The most popular dynamics is the best response (BR) dynam-
ics that each player chooses its best strategy, given the strategy (at the previous frame)
of all other players, i.e., at frame t,

θn[t+ 1] = BRn(θ−n[t]) := arg max
θn∈R

Ψn(θn, θ−n[t]),

which leads to a fixed point of the following function in CoordGain(β): ∀i ∈ V,∀(i, j) ∈
E,

θi[t+ 1] = −βC ′i
(
si(θi[t+ 1], θ−i[t])

)
,
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θij [t+ 1] = βU ′ij

(
sij(θij [t+ 1], θ−ij [t])

)
. (28)

Jacobi dynamics. The second dynamics is Jacobi dynamics, whose idea is to adjust
each player’s strategy gradually towards its best response strategy, i.e., at frame t,

θn[t+ 1] = θn[t] + α ·
(
BRn(θ−n[t])− θn[t]

)
,

where α ∈ (0, 1] is a smoothing parameter9. The smoothing parameter captures how
accurately the dynamics follows the BR dynamics, where α = 1 corresponds to the
BR dynamics. From (18) and (28), we can verify that a variant of Jacobi dynamics
of our game (BR dynamics as a special case) which exploits cumulative rate s̄[t] in-
stead of s(θ[t]) at every frame is indeed equivalent to Coord-steep, i.e., approximated
(parameterized by β) steepest ascent method of CG-OPT.
Gradient dynamics. Finally, we investigate the gradient dynamics [34] that each player
n first determines the gradient of its payoff (26), ∇Ψn(θ), then updates its strategy in
that direction with a constant step-size α ∈ (0, 1], i.e., at frame t,

θn[t+ 1] = θn[t] + α · ∇Ψn(θn[t]).

The interpretation of the gradient dynamics from an economic perspective is that if
the marginal coordination utility of an edge (i, j) exceeds the marginal penalty, i.e.,
∇Ψij(θ) > 0, its strategy is increased to achieve more coordination gain, and if
∇Ψij(θ) < 0, its strategy is decreased to reduce the penalty. From the objective
function (20) and our payoff function (26), we can verify that Coord-ind is equivalent
to a variant of gradient dynamics of our game, which exploits s̄[t] from samples instead
of computing the exact s(θ[t]),∇s(θ[t]).

To summarize, Coord-steep, Coord-ind are stochastically-approximated variants
of Jacobi dynamics and gradient dynamics of CoordGain(β), respectively. Theorem 1
states that those dynamics converge to the unique non-trivial NE. Note that this is a new
feature in our work, not prevalent in general game-theoretic approaches for distributed
optimization, i.e., there exists no generalized distributed dynamics converging to a NE
(even it exists) due to a lack of information, in a broad class of games [35].

6 Numerical Results
In this section, we carry out numerical experiments to assess our analytical findings of
Coord-algorithms by considering networks with various topologies and cost functions.
Setup. In this paper, we consider “basic” topologies to show that our Coord-algorithms
converge to the accurate solution, and a random topology that is regarded as a collection
of such basic topologies for more general results. The network topologies under which
our results are presented here are star, complete, and random graphs. For numerical
results, we consider proportional fairness across edges for coordination utility, i.e.,

9Jacobi dynamics generally makes a smoother move than the BR dynamics, where a small smoothing
parameter plays the role of compensating for the instability of the BR dynamics, see [24].

18



(a) STAR (b) COMP (c) RAND topology

Figure 2: Network topologies
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(b) Coordination gain of STAR-C1
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(c) Long-term rate of COMP-C1
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(d) Coordination gain of COMP-C1

Figure 3: Convergence of parameter, coordination gain, and long-term rate to optimal-
ity on STAR-C1 and COMP-C1.

Uij(x) = log(x) for all edges (i, j) ∈ E, and consider two cost functions for nodes:
(C1) Ci(x) = 2x2 and (C2) Ci(x) = 1

1−x for all nodes i ∈ V , as classified into the
following 4 topologies.
◦ STAR-C1: Star graph of 5 nodes with (C1)
◦ COMP-C1: Complete graph of 4 nodes with (C1)
◦ RAND-C1: Random graph of 15 nodes, 21 edges with (C1)
◦ RAND-C2: Random graph of 15 nodes, 21 edges with (C2)

The above topologies are depicted in Fig. 2: Fig. 2(a) for STAR-C1, Fig. 2(b)
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(b) Long-term rate of RAND-C1
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(d) Trade-off between efficiency(β) and
convergence speed

Figure 4: Convergence of coordination gain, long-term rate, and trade-off on RAND-C1
and RAND-C2.

for COMP-C1, and Fig. 2(c) for RAND-C1, RAND-C2. Moreover, for a fixed frame
duration T = 10, we choose a step-size function a[t] = 3/t for Coord-dual, α = 0.5
for Coord-steep, Coord-ind, which satisfy the condition (24), and take various values
of efficiency parameter β from 0.5 to 5.0.
(i) Convergence to the optimal solution: To demonstrate our analytical findings of
convergence to optimality, we first consider simple cases which support that Coord-
algorithms find the “accurate” solution (i.e., the unique NE of the game), where the
exact solution can be numerically solved. Then, we show the performance of Coord-
algorithms with two cost functions, under more general topology.
Simple cases: Let λ? and C? denote the optimal solution of CG-OPT and the maxi-
mum coordination gain of the network, respectively. We first solve the exact optimal
solution at STAR-C1: λ?1 = 0.447, C? = −5.218. Parameter updates of node 1 and
the total coordination gain of Coord-algorithms with β = 5.0 are shown in Fig. 3(a)
and 3(b), respectively. We see that all three algorithms converge to the accurate solu-
tion after long iterations within a range of O(1/β) gap, yet the convergence speeds of
them do not show much difference in simple cases. Under COMP-C1, the exact opti-
mal solution is attained at λ?1 = 0.6125, C? = −5.942, whose convergence results of
node 1’s activation rate and the total coordination gain are illustrated in Fig. 3(c) and
3(d). Note that the algorithms take shorter time for convergence to the optimal solution
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in star than in comp because each node has only one edge except the hub node, i.e.,
node 1, thus pairwise interactions are less complex in star.
Degree of coordination at optimal solution: We provide numerical results of two types
of cost functions, under a random topology. For both cases RAND-C1 and RAND-C2,
Fig. 4(b), 4(c) show that Coord-ind with α = 0.5, β = 4.0 converges. Note that at
the convergent status, the long-term activation rate of a node depends on the degree
of coordination, i.e., particularly in terms of (i) how many neighbors it has, and (ii)
how powerful its neighbor is. As we see in Fig. 4(b) and 4(c), node 6 in Fig. 2(c), i.e.,
who has very little contribution to the coordination gain since it has only one neighbor,
achieves the lowest long-term activation rate, while node 13 has relatively high long-
term rate. Comparing nodes 9 and 15, even though both have two neighbors, node
9 achieves a higher long-term rate since one of its neighbors (node 13) is a hub so
that node 9 may implicitly contribute to coordination gain of the network via node
13. Moreover, we see that the network becomes less aggressive to be coordinated and
activated if nodes have cost functions Ci(x) = 1

1−x (i.e., under RAND-C2), since it
prevents exclusive node activations.
(ii) Comparison among Coord-algorithms: Second, we compare the convergence of
Coord-algorithms under RAND-C1. In Fig. 4(a), we observe that regarding the coordi-
nation gain, Coord-steep, Coord-ind converge within 107 iterations, while Coord-dual
still moves towards the optimal point even after 3 × 107 iterations. Note that Coord-
dual, Coord-ind are not designed to follow the steepest ascent direction of CG-OPT,
thus Coord-steep exhibits the faster convergence. Between Coord-dual and Coord-
ind, we expect that the rational and individual behavior when considering appropriate
penalty functions in (27) brings significant improvements in the convergence rate.
(iii) Trade-off between efficiency and convergence speed: Finally, we present the nu-
merical results that show the convergence speed and efficiency (i.e., Price-of-Anarchy)
of the Coord-algorithms for various values of β. To support that the incurring coordina-
tion gain gap due to efficiency parameter is 1/β as stated in Theorem 1 and Theorem 2,
we vary β from 0.5 to 5.0 and plot the coordination gain at the converged point, and
measure the convergence speed. Fig. 4(d) shows that, as β grows, Coord-algorithms
require exponentially long time to converge, but the corresponding convergent point
becomes closer to the optimal solution. From the numerical results under RAND-C1,
coordination gain with β = 4.0 is −21.405 and converges after 2.4 × 107 iterations,
while that with β = 0.5 is −22.11 and converges after 1.7× 105 iterations.

7 Conclusion and Discussion

7.1 Summary
In many multi-agent networked environments, a variety of gains from coordinating
actions of interacting agents are generated. In this paper, we first formulate an op-
timization problem that captures the amount of peer-to-peer coordination gain at the
cost of node activation over a given network structure, and develop three distributed
simulation-based algorithms relying only on one-hop message passing and local ob-
servations, which we call Coord-algorithms. It is inspired by a control of Ising model

21



in statistical physics, and theoretical findings of convergence to optimality of Coord-
algorithms take a stochastic approximation method that runs a Markov chain incom-
pletely over time with a smartly designed step-size function. We also provide new
interpretations of Coord-steep and Coord-ind from a game-theoretic perspective.

7.2 Limitation and Future Work
In spite of theoretical findings of convergence to optimality, our Coord-algorithms may
suffer from slow convergence for some dense graphs. Even this slow convergence is-
sue has been observed in many prior work that use stochastic approximation theoretic
update algorithms [32, 33], there also have been several efforts to expedite the conver-
gence time [28,36], which we believe, ensure practical values of our theoretical results.
Future work includes the precise analysis of the convergence rate of Coord-algorithms
via applying theoretical techniques, e.g., with the notion of mixing time or via weak
convergence theory [37, 38].

A Proof of Theorem 1

A.1 Preliminary
The convergence analysis of our Coord-algorithms is on the strength of stochastic ap-
proximation theory. As we will verify later, each of Coord-algorithms is interpreted as
a stochastic approximation procedure with controlled continuous-time Markov process,
where the stationary distribution of the underlying Markov process from CDM indeed
corresponds to an Ising model. Here, we first provide preliminary results about the
convergence analysis of a general stochastic approximation procedure with a controlled
Markov process, where an ordinary differential equation (ODE) is usefully utilized to
study the limiting behavior of the system states [28–30].

Consider a general discrete-time process {x[t]}t∈Z≥0
of the following form:

x[t+ 1] = x[t] + a[t] · v(x[t], Y [t]), ∀t ∈ Z≥0, (29)

where x[t] ∈ RL is L-dimensional vector representing the system state at the itera-
tion t; a[t] corresponds to the step-size of the process; and Y [t] is a random variable
representing the random observation (from a Markov process) during the iteration t
used to update the system state. This process is often called a stochastic approximation
with controlled continuous-time Markov process, in [28, 29]. Here, (i) {z(s)}s≥0 is a
stochastic process taking values in a finite set Z , (ii) for s ∈ [t, t + 1), z(s) evolves
as a continuous-time Markov process with a control process x[t], i.e., with a con-
trolled transition kernelGx[t], (iii) the observation Y [t] is a function of {z(s)}t≤s<t+1,
i.e., Y [t] =

∫ t+1

t
f(z(s))ds, where f(·) is a bounded function, and (iv) v(x, Y ) is a

bounded, continuous, Lipschitz in x and uniformly over Y . We shall assume that if
x[t] = x,∀t for a fixed x ∈ RL, the controlled Markov kernel Gx is irreducible and
ergodic with unique stationary distribution πx, and furthermore, the mapping x 7→ Gx

is continuous and x 7→ πx is Lipschitz continuous. In the following, ξx(dy) denotes
the stationary distribution of one unit iteration, i.e.,

∫ 1

0
f(zx(s))ds, where zx(·) is a
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Markov process with Gx, and we also assume that x[t] remains bounded, which can be
easily imposed by projecting the process to a bounded subset of RL. Finally, we use
a positive monotonically decreasing step-size function a[t] satisfying (24), where the
example choices of such step-size function include a[t] = 1

t ,
1

1+t log t .

Now, define a virtual time-scale κ(t) =
∑t−1
m=0 a[m]. We take a continuous-time

piecewise linear interpolation of the system state for the time-scale κ in the following
way: define {xκ(τ)}τ∈R+ as: ∀t ∈ Z≥0, ∀τ ∈ [κ(t), κ(t+ 1)),

xκ(τ) = x[t] + (x[t+ 1]− x[t])× τ − κ(t)

κ(t+ 1)− κ(t)
. (30)

Intuitively, for a decreasing step-size a[t], the interpolated continuous trajectory xκ(τ)
is an accelerated version of the original trajectory x[t]. Now, the following lemma
provides the convergence guarantee of the iterative procedure (29).

Lemma A.1 (Theorem 1 of [30], Corollary 8 of [28](pp.74)). Let T > 0, and denote
by x̃s(·) the solution on [s, s+ T ] of the following ODE:

ẋ(τ) =

∫
y

v(x(τ), y) · ξx(τ)(dy), with x̃s(s) = xκ(s). (31)

Then, we have almost surely,

lim
s→∞

sup
τ∈[s,s+T ]

‖xκ(τ)− x̃s(τ)‖ = 0.

Note that since the Markov process is irreducible and ergodic, and f is continuous
and bounded, we have,∫

y

v(x, y)ξx(dy) =
∑
z∈Z

v(x, f(z))πx(z), a.s..

Therefore, the ODE (31) becomes the following simpler form, which will be used later
in the proof of Theorem 1:

ẋ(τ) =
∑
z∈Z

v(x(τ), f(z))πx(τ)(z). (32)

Lemma A.1 states that as time evolves, the dynamics of the underlying Markov
process is averaged due to the decreasing step-size, e.g., a[t] = 1

t , thus “almost reach-
ing the stationary status.” Intuitively, we expect that due to the decreasing step-size, the
speed of variations of x[t] decreases and tends to 0 when time sufficiently grows. As
consequence, the dynamic of (29) is close to that of an irreducible and ergodic Markov
process with a fixed generator (as if the system state was frozen), and has time to con-
verge to its ergodic behavior. Thus, it suffices to see how the ODE (31) (equivalently
(32)) behaves. Moreover, when the ODE (31) has a unique fixed stable equilibrium x?,
we have almost surely, limt→∞ x[t] = x?.
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A.2 Proof of Theorem 1 (i): Convergence
We now show the convergence of Coord-algorithms in Theorem 1. In particular, we
prove that Coord-algorithms converge to the optimal solution of the approximated
problem A-CG-OPT in (14). Our main proof strategy follows the stochastic approxi-
mation procedure whose limiting behavior is understood by an ODE as in Section A.1.
For each scheme of Coord-algorithms, the proof contains following common two steps:
first in Step 1, we show that the dynamics asymptotically approach some deterministic
trajectory which is described as a solution trajectory of an ODE system, where each
scheme tracks a slightly different deterministic trajectory. In Step 2, we then prove that
the resulting deterministic trajectory converges to the solution of A-CG-OPT. To do
this, we take the afore-mentioned results of Lemma A.1 into each scheme.

i) Step 1. In this step, we apply preliminary results in Section A.1 to each scheme
of Coord-algorithms by showing that the original discrete sequence matches with the
setup defined as (29) in Section A.1 for Coord-dual or an alternatively derived discrete
sequence does for Coord-steep and Coord-ind. We first verify that each scheme is
a stochastic approximation procedure with controlled Markov noise in (29), and then
provide a lemma as a direct consequence of applying Lemma A.1 to our framework.
(a) Coord-dual. To follow the analysis in Section A.1, we first define a virtual time-
scale ζ(·) from the step-size a[·] of Coord-dual as: ζ(t) =

∑t−1
m=0 a[m]. We now con-

struct {θ(τ)}τ∈R+
10, which interpolates the discrete sequence of (9) similarly to (30).

We also define ŝ(τ) := ŝ[t] ·1ζ(t)≤τ≤ζ(t+1), where 1A is the indicator function for the
event A. It then should be clear that this setup matches with (29) in Section A.1. The
equivalence is obtained by: x[t] ≡ θ[t]; Y [t] ≡ ŝ[t]; {z(s)}t≤s<t+1 ≡ {σ(s)}t≤s<t+1

is the process recording the configurations from CDM(θ[t]) during frame t; f(z(s)) ≡
φ(σ(s)) is a coordination configuration; πx ≡ pθ is the stationary distribution (7) of
the CDM(θ); and finally

vi(x, y) ≡ C ′−1
i

(
−x
β

)
− y, vij(x, y) ≡ U ′−1

ij

(
x

β

)
− y.

Note that under our setup of utility and cost function: strictly concave, continuously
twice-differentiable utility function Uij : [0, 1] 7→ R for edge (i, j) ∈ E and strictly
convex, continuously twice-differentiable cost function Ci : [0, 1] 7→ R for node i, we
have followings. First, vij(x, y) : [θmin, θmax]×[0, 1] 7→ R is Lipschitz continuous in x,
sinceUij is strictly convex, continuously twice-differentiable on compact set, it follows
that U ′−1

ij is Lipschitz continuous by the Mean Value Theorem. Second, vij(x, y) is a
linear function with respect to y, thus it is obvious that it is uniformly continuous in
y. Similar arguments hold for vi(x, y). Third, Markov process generated by CDM(θ)
is a continuous function of θ, and moreover θ 7→ pθ is Lipschitz continuous for the
bounded θ ∈ [θmin, θmax]. Therefore, one can verify that the assumptions in Section A.1
are satisfied.
(b) Coord-steep. Before to analyze the convergence of Coord-steep, we provide a
detail of the derivation of the rule (16). Recall that µ = [µσ]σ∈I(G) is the probability

10We omit ζ and use θ(τ) instead of θζ(τ) for notational simplicity.
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distribution over the feasible configurations I(G), and thus the definition of F(µ) in
(13) can be represented in following detailed form:

F(µ) :=
∑

(i,j)∈E

Uij
(
Eµ[σiσj ]

)
−
∑
i∈V

Ci(Eµ[σi])

=
∑

(i,j)∈E

Uij
( ∑
σ∈I(G)

µσ · σiσj
)
−
∑
i∈V

Ci
( ∑
σ∈I(G)

µσ · σi
)
. (33)

Now, using the chain rule, a partial derivative of F(µ) with respect to the variable µσ
is derived as follows:

∂F(µ)

∂µσ
=

∑
(i,j)∈E

U ′ij
(
Eµ[σiσj ]

)
· ∂Eµ[σiσj ]

∂µσ
−
∑
i∈V

C ′i
(
Eµ[σi]

)
· ∂Eµ[σi]

∂µσ

=
∑

(i,j)∈E

U ′ij
(
Eµ[σiσj ]

)
· σiσj −

∑
i∈V

C ′i
(
Eµ[σi]

)
· σi. (34)

Now, the first step is to approximate Coord-steep for large t by the dynamic of
a continuous-time ODE system, by taking a continuous-time interpolation. While a
stochastic approximation idea in Coord-dual comes from the diminishing step-size
a[·], adopting the cumulative rate s̄[t] in Coord-steep plays the similar role (see the
relation (19)). To understand the role of s̄[t], we introduce an alternative discrete-time
sequence {ρ[t]}t∈Z≥0

derived from {θ[t]}t∈Z≥0
of Coord-steep in (10) defined as:

ρ[t] =
1

α
· θ[t] +

(
1− 1

α

)
· θ[t− 1],

and thus we have the following property by applying recursion:

θ[t] = α · ρ[t] + (1− α) · θ[t− 1]

= αρ[t] + (1− α)
(
αρ[t− 1] + (1− α)θ[t− 2]

)
= · · · =

t−1∑
m=0

α(1− α)mρ[t−m]. (35)

Then, from (10) and (35), Coord-steep can be understood as the update rule {ρ[t]}t∈Z≥0

of following form:

ρi[t+ 1] = −βC ′i(s̄i[t]), ρij [t+ 1] = βU ′ij(s̄ij [t]), (36)

and thus we have

s̄i[t− 1] = C ′−1
i

(
−ρi[t]
β

)
, s̄ij [t− 1] = U ′−1

ij

(
ρij [t]

β

)
.

Now, when t grows large, the update rule (36) becomes approximately as follows under
the assumption (A1),

ρi[t+ 1] = −βC ′i(s̄i[t])
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(a)
= −β

(
C ′i(s̄i[t− 1]) +

1

t
(ŝi[t]− s̄i[t− 1])C ′′i (s̄i[t− 1])

)
= −βC ′i(s̄i[t− 1]) +

1

t
gi(ρi[t])(s̄i[t− 1]− ŝi[t])

(b)
= ρi[t] +

1

t
gi(ρi[t])

(
C ′−1
i

(−ρi[t]
β

)
− ŝi[t]

)
, (37)

and similarly,

ρij [t+ 1] = ρij [t] +
1

t
gij(ρij [t])

(
U ′−1
ij

(ρij [t]
β

)
− ŝij [t]

)
,

where gi(·), gij(·) are defined in (23), and both are positive for convex, increasing
function Ci(·) and concave, increasing function Uij(·). The equality (a) holds from a
first-order Taylor’s expansion, (b) comes from the Coord-steep rule.

To take afore-mentioned results in Section A.1 into this framework, we define
another virtual time-scale κ(t) as κ(t) :=

∑t−1
m=1

1
m with κ(0) = 0, since the dis-

crete sequence of Coord-steep is interpreted to have a step-size 1
t at iteration t, see

(37). We construct an interpolated trajectory {ρ(τ)}τ∈R+
from the discrete sequence

{ρ[t]}t∈Z≥0
in (36) with time-scale κ. Then, it should be clear that the alternative pro-

cess matches with the setup (29) in Section A.1. The equivalence is obtained by x[t] ≡
ρ[t]; Y [t] ≡ ŝ[t]; a[t] = 1

t ; {z(s)}t≤s<t+1 ≡ {σ(s)}t≤s<t+1; f(z(s)) ≡ φ(σ(s));
πx ≡ pθ in (7); and finally

vi(x, y) ≡ gi(x)
(
C ′−1
i

(−x
β

)
− y
)
, i ∈ V,

vij(x, y) ≡ gij(x)
(
U ′−1
ij

(x
β

)
− y
)
, (i, j) ∈ E.

(c) Coord-ind. Here, we also introduce an alternative discrete-time sequence {η[t]}t∈Z≥0

derived from {θ[t]}t∈Z≥0
of Coord-ind in (11) as follows:

η[t] =
1

γ[t− 1]
· θ[t] +

(
1− 1

γ[t− 1]

)
· θ[t− 1],

where γ[t] is given by

γi[t] =
α

β

∂si(θ[t])

∂θi
, γij [t] =

α

β

∂sij(θ[t])

∂θij
. (38)

Then, we have the following property by applying recursion:

θ[t] = γ[t− 1] · η[t] + (1− γ[t− 1]) · θ[t− 1]

= γ[t− 1]η[t]

+

t−1∑
m=1

m∏
l=1

(
1− γ[t− l]

)
γ[t−m− 1]η[t−m]. (39)
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Now, from (11) and (39), Coord-ind can be understood as the update rule {η[t]}t∈Z≥0

of representation in (22). Then, two sequences {ρ[t]}t∈Z≥0
in (36) and {η[t]}t∈Z≥0

in
(22) are evolved in the same way. Therefore, an interpolated trajectory {η(τ)}τ∈R+

from {η[t]}t∈Z≥0
with time-scale κ is equivalent to {ρ(τ)}τ∈R+

.
From the equivalence above, following is a direct consequence from Lemma A.1 in

Section A.1, which states that the interpolated trajectory of each scheme asymptotically
tracks the solution trajectory of the corresponding ODE system.

Lemma A.2. Let T > 0, and fix w > 0. (i) Coord-dual. Denote by θ̃w(·) the solution
on [w,w + T ] of the following ODE: ∀i ∈ V and ∀(i, j) ∈ E,

θ̇i(τ) = C ′−1
i

(
−θi(τ)

β

)
− Eθ(τ)[σi],

˙θij(τ) = U ′−1
ij

(
θij(τ)

β

)
− Eθ(τ)[σiσj ], (40)

with θ̃w(w) = θ(w). Then, we have almost surely,

lim
w→∞

sup
τ∈[w,w+T ]

‖θ(τ)− θ̃w(τ)‖ = 0.

(ii) Coord-steep and Coord-ind. Denote by ρ̃w(·) the solution on [w,w + T ] of the
following ODE: ∀i ∈ V and ∀(i, j) ∈ E,

ρ̇i(τ) = gi

(
ρi(τ)

)[
C ′−1
i

(
−ρi(τ)

β

)
− Eθ(τ)[σi]

]
,

ρ̇ij(τ) = gij

(
ρi(τ)

)[
U ′−1
ij

(
ρij(τ)

β

)
− Eθ(τ)[σiσj ]

]
, (41)

with ρ̃w(w) = ρ(w) = η(w). Then, we have almost surely,

lim
w→∞

sup
τ∈[w,w+T ]

‖ρ(τ)− ρ̃w(τ)‖ = 0,

and equivalently,

lim
w→∞

sup
τ∈[w,w+T ]

‖η(τ)− ρ̃w(τ)‖ = 0.

ii) Step 2. Now, we prove that each ODE system in Lemma A.2 has a unique fixed
point, and thus the resulting deterministic solution trajectory converges to the point.
We then show that the point attains at the optimal solution of A-CG-OPT, i.e., Coord-
algorithms converge to θ◦.
(a) Coord-dual. We show that the ODE system (40) has the solution of A-CG-OPT,
denoted by θ◦, as a unique fixed point. In particular, (40) may be interpreted as a sub-
gradient dynamics solving the dual of the convex problem A-CG-OPT. To that end, we
first consider the LagrangianL of A-CG-OPT with dual variables k = ([ki]i∈V , [kij ](i,j)∈E):

L(µ,λ;k) =
∑

(i,j)∈E

Uij(λij)−
∑
i∈V

Ci(λi) +
1

β
H(µ)
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+
∑
i∈V

ki(Eµ[σi]− λi) +
∑

(i,j)∈E

kij(Eµ[σiσj ]− λij). (42)

The primal solution of A-CG-OPT is the minimum point of the dual function, which
is given by D(k) = supµ,λ L(µ,λ;k). Finally, the dual problem is formulated as:

min
k∈R|V |+|E|

D(k). (43)

Note that the primal problem in (14) is a concave maximization and the dual problem
in (43) is a convex minimization from the concavity of entropy and Uij(·), convexity
of Ci(·) under our setup. Therefore, following the results in standard primal-dual op-
timization theory, there is no duality gap and both have the same, unique solution, and
moreover its sub-gradient algorithm will converge to the solution.

Given a feasible dual variable k, let (µ†(k),λ†(k)) be the corresponding feasible
primal solution that maximizes the LagrangianL. Given the structure ofL in (42), from
Karush-Kuhn-Tucker (KKT) conditions of A-CG-OPT, it follows that µ†(k),λ†(k)
should be such that:

µ†σ(k) ∝ exp
(∑
i∈V

βkiσi +
∑

(i,j)∈E

βkijσiσj

)
, ∀σ ∈ I(G),

λ†i (k) = arg max
y∈[0,1]

[
− Ci(y)− kiy

]
, ∀i ∈ V,

λ†ij(k) = arg max
y∈[0,1]

[
Uij(y)− kijy

]
, ∀(i, j) ∈ E. (44)

Now, we can conclude that µ†(θ) = pθ with θ = βk, from (7) and (44). Then, the
dual function is represented with respect to θ as D(θ) = L(µ†(θ),λ†(θ);θ), and the
slack in each constraint is given by:

Eµ†(θ)[σi]− λ
†
i (θ), and Eµ†(θ)[σiσj ]− λ

†
ij(θ). (45)

Accounting for (44) and (45), the sub-gradient algorithm solving the dual problem (43)
with parameter θ, i.e., using∇D(θ), is given by following ODEs: ∀i ∈ V, ∀(i, j) ∈ E,

θ̇i = C ′−1
i

(
−θi
β

)
− Eθ[σi], ˙θij = U ′−1

ij

(
θij
β

)
− Eθ[σiσj ]. (46)

which is obviously equivalent to (40), provided that θ(τ) remains between [θmin, θmax]
component-wisely. Note that the dual solution, denoted by θ◦, actually belongs to the
interval [θmin, θmax] component-wisely, as a fixed point of (46), under (A1). There-
fore, the sub-gradient converges to the dual solution θ◦, where the corresponding pri-
mal solution is (µ◦,λ◦)11, and hence the solution trajectory of the ODE system (40)
also does. Finally, we can conclude that under Coord-dual, we have almost surely,
limt→∞ θ[t] = θ◦.

(b) Coord-steep. In case of Coord-steep, we need an additional step that proves the
equivalence of the convergence of alternative process {ρ[t]}t∈Z≥0

and that of {θ[t]}t∈Z≥0
.

11It is obvious that we mean µ◦ = µ†(θ◦) = pθ◦ and λ◦ = λ†(θ◦).
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Since parameter lies in compact region, from (35), there exist constants L and M such
that ∀t ∈ Z≥0,

|ρi[t]| < L,

∣∣∣∣gi(ρi[t])(C ′−1
i

(−ρi[t]
β

)
− ŝi[t]

)∣∣∣∣ < M. (47)

For ε > 0, let T (ε) :=
4 log( εM4L )

ε log(1−α) . Then, for all t ≥ T (ε), |ρi[t]− θi[t]| ≤ 5
4εM,

because12

|ρi[t]− θi[t]|
(a)
=

∣∣∣∣∣ρi[t]−
t−1∑
m=0

ρi[t−m]α(1− α)m

∣∣∣∣∣
≤

t−1∑
m=0

|ρi[t]− ρi[t−m]|α(1− α)m + |ρi[t]| (1− α)t

(b)

≤ εt/4

t− εt/4
M + 2L

t−1∑
m=εt/4

α(1− α)m + L(1− α)εt/4

(c)

≤ ε

2
M + 2L(1− α)εt/4 + L(1− α)εt/4

(d)

≤ 5

4
εM,

where (a) comes from (35), (b) and (c) come from the following using triangle in-
equality and (37), (47):

εt/4−1∑
m=0

|ρi[t]− ρi[t−m]|α(1− α)m

≤
εt/4−1∑
m=1

m∑
k=1

|ρi[t− k + 1]− ρi[t− k]|α(1− α)m

≤
εt/4−1∑
m=1

m ·M
t−m

α(1− α)m ≤ εt/4

t− εt/4
M,

and finally (d) holds for t ≥ T (ε) and ε ≤ 2. Therefore, we have the following relation
between ρ[t] and θ[t]:

lim
t→∞

ρ[t]− θ[t] = 0. (48)

Now, we observe that the ODE system (41) is equivalent to (40), because we have
positive gi(·), gij(·). Therefore, the ODE system (41) converges to a unique fixed point,
say ρ◦, such that θ◦ = ρ◦. Finally, from (48), we can conclude that under Coord-steep,
we have almost surely, limt→∞ θ[t] = θ◦.
(c) Coord-ind. In case of Coord-ind, similarly to the earlier scheme Coord-steep, we
prove the equivalence of the convergence of {η[t]}t∈Z≥0

and that of {θ[t]}t∈Z≥0
. From

the simple algebra of (8), we have component-wisely:

∇s(θ) = s(θ)
(

1− s(θ)
)
. (49)

12Here, we use just εt/4 instead of dεt/4e for notionally simplicity.

29



We first denote by γmin and γmax the minimum and maximum value of the sequence
{γ[t]}t∈Z≥0

in (38), respectively. Note that for sufficiently large β, γmin, γmax is less
than 1, since ∇s(θ) ∈ (0, 1/4) from (49). Now, since parameter θ lies in compact
region, from (39), there also exist constants L and M such that ∀t ∈ Z≥0,

|ηi[t]| < L, and
∣∣∣∣gi(ηi[t])(C ′−1

i

(−ηi[t]
β

)
− ŝi[t]

)∣∣∣∣ < M.

For ε > 0, let S(ε) :=
4 log(min( εM4L ,(

εM
4L −

γmin

γmax )·( γ
max

γmin )2))

ε log(1−γmin)
. Then, for all t ≥ S(ε) and

ε ≤ 2, similar argument in Coord-steep can be done to show |ηi[t]− θi[t]| ≤ 5
4
γmax

γmin εM .
Now, we have the following relation between η[t] and θ[t] that:

lim
t→∞

η[t]− θ[t] = 0. (50)

From the equivalence of {ρ[t]}t∈Z≥0
and {η[t]}t∈Z≥0

, combined with Lemma A.2 and
the argument of the ODE system (41) in Coord-steep, we can conclude that under
Coord-ind, we have almost surely, limt→∞ θ[t] = θ◦.

Consequently, from Step 1 and Step 2, we complete the proof that under all Coord-
algorithms, θ[t] converges to θ◦, where the optimal solution of A-CG-OPT is attained.

A.3 Proof of Theorem 1 (ii): Optimality
We now show the asymptotic optimality of Coord-algorithms by verifying the relation
between the solution of A-CG-OPT and that of CG-OPT. In Section A.2, we have
shown that the result of Coord-algorithms converges to θ◦ such that the corresponding
(pθ◦ , s(θ

◦)) is the solution of A-CG-OPT in (14). To establish a goodness of the result
of Coord-algorithms, note that the optimal solution of CG-OPT in (3), denoted by λ?,
along with an appropriate distribution µ? ∈M, is one feasible solution of the problem
A-CG-OPT. Therefore, it follows that∑

(i,j)∈E

Uij(λ
?
ij)−

∑
i∈V

Ci(λ
?
i )

(a)

≤
∑

(i,j)∈E

Uij(λ
?
ij)−

∑
i∈V

Ci(λ
?
i ) +

1

β
H(µ?)

(b)

≤
∑

(i,j)∈E

Uij(λ
◦
ij)−

∑
i∈V

Ci(λ
◦
i ) +

1

β
H(µ◦)

(c)

≤
∑

(i,j)∈E

Uij(λ
◦
ij)−

∑
i∈V

Ci(λ
◦
i ) +

log |I(G)|
β

.

In the above, the first inequality (a) comes from the fact that the entropy is non-
negative, (b) holds since (µ◦,λ◦) is the optimal solution of A-CG-OPT, and finally
we have used the fact that the maximum value of a discrete-valued random variable’s
entropy is at most the logarithm of the cardinality of the support set |I(G)|, for the last
inequality (c).
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B Proof of Theorem 2
Proof. (i) Uniqueness. We prove the existence and the uniqueness of non-trivial NE
in our game CoordGain(β) using a potential game approach. Consider the following
function P (θ) on the space C+ = {θ : s(θ) > 0}, i.e., the set of strategies producing
“non-trivial” rates, defined by:

P (θ) := − sup
µ∈M,λ∈[0,1]|V |+|E|

L(µ,λ;
θ

β
), (51)

where L(·) is defined in (42) to describe a dual function of A-CG-OPT. It is easy to
check that P (θ) is strictly concave in θ since P (·) is the supremum of L(·), which is a
family of affine functions in θ. We now show that CoordGain(β) for any constant β >
0 is an ordinal potential game [39] with the potential function P (θ), i.e., sgn∂Ψn(θ)

∂θn
=

sgn∂P (θ)
∂θn

, for all players n ∈ N. To verify this, we first have derivative of each player’s
payoff function: for each node player i ∈ V ,

∂Ψi(θ)

∂θi
= − ∂

∂θi

(
Ci(si(θ)) +

1

β

∫ θi

−∞
xs′i(x, θ−i)dx

)
= −∂si(θ)

∂θi

(
C ′i(si(θ)) +

θi
β

)
= −si(θ)

(
1− si(θ)

)(
C ′i(si(θ)) +

θi
β

)
,

where the last equality comes from (49). Similarly, we also have for each edge player
(i, j) ∈ E,

∂Ψij(θ)

∂θij
= sij(θ)

(
1− sij(θ)

)(
U ′ij(sij(θ))− θij

β

)
.

Second, we have derivative of a potential function as:

∂P (θ)

∂θi
= C ′−1

i

(−θi
β

)
− si(θ), and

∂P (θ)

∂θij
= U ′−1

ij

(θij
β

)
− sij(θ).

Therefore, on the space C+, sgn∂Ψn(θ)
∂θn

= sgn∂P (θ)
∂θn

for each player n ∈ N . From
the standard results in potential game theory and strict concavity of P (·), the solution
that maximizes P (·) is a NE θNE, where each player’s strategy is a best response to
the others’ strategies, i.e., ∇Ψn(θ) = 0,∀n ∈ N , and moreover it is unique and non-
trivial.
(ii) Price-of-Anarchy. The proof of Price-of-Anarchy follows the same argument in
Section A.3, since we observe that the unique non-trivial NE in our game θNE coin-
cides with the optimal solution of A-CG-OPT, i.e., θNE = θ◦. From the analysis in
Section A.3, we can easily verify that

PoA =

∑
(i,j)∈E Uij(sij(θ

?))−
∑
i∈V Ci(si(θ

?))∑
(i,j)∈E Uij(sij(θ

NE))−
∑
i∈V Ci(si(θ

NE))
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= 1 +O

(
log |I(G)|

β

)
,

and thus we have limβ→∞ PoA = 1.
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