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ABSTRACT
Network virtualization is a powerful way to run multiple archi-
tectures or experiments simultaneously on a shared infrastruc-
ture. However, making efficient use of the underlying resources
requires effective techniques for virtual network embedding—
mapping each virtual network to specific nodes and links in
the substrate network. Since the general embedding problem
is computationally intractable, past research has focused on
two main approaches: (i) significantly restricting the problem
space to allow efficient solutions or (ii) proposing heuristic al-
gorithms that do not use the substrate resources efficiently. In
this paper, we advocate a different approach: rethinking the
design of the substrate network to enable simpler embedding
algorithms and more efficient use of resources, without restrict-
ing the problem space. In particular, we simplify virtual link
embedding by: i) allowing the substrate network to split a vir-
tual link over multiple substrate paths and ii) employing path
migration to periodically re-optimize the utilization of the sub-
strate network. We also explore node-mapping algorithms that
are customized to common classes of virtual-network topolo-
gies. Our simulation experiments show that path splitting,
path migration, and customized embedding algorithms enable
a substrate network to satisfy a much larger mix of virtual
networks.

1. INTRODUCTION
Network virtualization has emerged as a powerful way to al-

low multiple network architectures, each customized to a par-
ticular application or user community, to run on a common
substrate. For example, virtualization can enable multiple re-
searchers to evaluate new network protocols simultaneously on
a shared experimental facility [3, 7, 2, 10]. In addition, network
virtualization could serve as the foundation of a future Internet
that allows multiple service providers to offer customized end-
to-end services over a common physical infrastructure [14, 27].
For example, Voice over IP (VoIP) could run on a virtual net-
work that provides predictable performance (by allocating ded-
icated resources and employing routing protocols that ensure
fast recovery from equipment failures), whereas online banking
could run on a virtual network that provides security guaran-
tees (through self-certifying addresses and secure routing pro-
tocols).

Making efficient use of the substrate resources requires effec-
tive techniques for virtual network (VN) embedding—mapping
a new virtual network, with constraints on the virtual nodes
and links, on to specific physical nodes and links in the sub-
strate network. However, the VN embedding problem is ex-
tremely challenging, for four main practical reasons:

Node and link constraints. Each VN request has resource
constraints, such as processing resources on the nodes and
bandwidth resources on the links, that the embedding must
satisfy. For example, to run a controlled experiment, a re-

searcher may need 1 GHz of CPU for each virtual node and 10
Mbps for each virtual link. In addition, the VN may impose ad-
ditional constraints on node location or link propagation delay.
For example, a commercial gaming service may need virtual
nodes in several major cities, as well as virtual links with prop-
agation delays less than 50 msec. The combination of node and
link constraints make the embedding problem computationally
difficult to solve.

Admission control. Since the substrate resources are lim-
ited, some VN requests must be rejected or postponed to avoid
violating the resource guarantees for existing virtual networks.
That is, the substrate must reserve node and link resources,
and perform admission control on new requests to ensure that
sufficient resources are available. For example, a virtual net-
work that requires 1 GHz of CPU for each virtual node may
be rejected if no physical nodes have enough unallocated pro-
cessing capacity. Once accepted, the virtual networks receive
their guaranteed resources through scheduling techniques for
sharing the node and link resources.

Online requests. The VN requests are not known in ad-
vance, and may arrive dynamically and stay in the network for
an arbitrary period of time before departing. For example, a
researcher may start a new experiment at any time, to run for
some duration based on the needs of the experiment. Similarly,
a service provider may deploy a new service at any time, and
continue supporting the service indefinitely, possibly discontin-
uing the service when it is no longer profitable. To be practical,
the embedding algorithm must handle VN requests as they ar-
rive, rather than handling a large collection of requests at once.
Online problems are typically much more difficult to solve, be-
cause the embedding algorithm has little (if any) visibility into
the future request arrivals.

Diverse topologies. The virtual networks may have diverse
topologies. For example, researchers may run experiments un-
der a variety of topologies to explore how their protocol per-
forms in different settings. Also, a service provider may tailor
the virtual-network topology to the application, such as a hub-
and-spoke to provide customers with access to a centralized
server, or a tree to distribute streaming video to a group of
receivers. Although virtual networks may have a wide variety
of structures, certain kinds of topologies—such as a hub-and-
spoke or a tree—may be especially common in practice. Han-
dling arbitrary topologies, while efficiently supporting the most
common topologies, introduces an additional challenge for the
embedding algorithm.

These four properties make the VN embedding problem very
difficult. In fact, the problem is computationally intractable,
even if some of these four properties are ignored. Due to the
combination of node and link constraints, the VN embedding
problem is NP-hard, even in the offline case. (For example,
assigning virtual nodes to the substrate network without vio-
lating bandwidth constraints can be reduced to the multiway
separator problem, which is NP-hard [6].) Even if the loca-



tions of the virtual nodes are pre-determined, embedding the
virtual links with bandwidth constraints is still NP-hard, as
discussed in more detail in Section 3. The online problem is
even more difficult to solve. Traditional techniques for solving
online problems (e.g., dynamic programming) are impractical
here because the properties of incoming VN requests are gen-
erally unpredictable and the search space is prohibitively huge
when the substrate network is large.

Previous research has addressed these computational chal-
lenges by restricting the problem space in one or more dimen-
sions to enable efficient heuristics [31, 13, 22, 25], at the expense
of limiting the practical applicability of the solutions. For ex-
ample, the papers either solve an offline variant of the prob-
lem [31, 22], consider only bandwidth constraints [13, 25], or
do not perform admission control [31, 22, 13]. In this paper, we
take a different approach—we reconsider the capabilities of the
underlying substrate network, to make the substrate network
more supportive of the VN embedding problem. This allows us
to create simpler embedding algorithms that make more effi-
cient use of the substrate resources, without compromising on
the four challenges listed above. Since network virtualization
is still in its infancy, we believe it is important to explore how
to design the substrate to best satisfy its goals.

In particular, we investigate how to simplify the problem of
virtual-link embedding by allowing the substrate network to
map a virtual link to multiple substrate paths with a flexible
path-splitting ratio. In addition, for efficient handling of online
requests, we allow the substrate to periodically re-optimize the
mapping of existing virtual links, either by selecting new un-
derlying paths or adapting the splitting ratios for the existing
paths. Flexible path splitting is realizable in practice without
disrupting the basic properties of a link—such as predictable
bandwidth, propagation delay, and in-order packet delivery, as
discussed in more detail in Section 3.3. Flexible path splitting
allows us to map virtual links to the substrate in polynomial
time, while making much more efficient use of substrate band-
width and increasing robustness to substrate failures. This
feature allows us to satisfy the first three of the four challenges
listed above. To address the fourth challenge, we introduce
customized node-embedding algorithms for common topologies
like a hub-and-spoke.

The remainder of this paper is organized as follows. In Sec-
tion 2, we define the VN embedding problem and present a
simple embedding algorithm that does not assume any special
capabilities from the substrate. This algorithm is similar to the
techniques proposed in previous research, extended to support
admission control and online requests. The algorithm serves as
a basis of comparison for our new algorithm for substrates that
support path splitting and migration, as discussed in Section 3.
Section 4 presents simulations that evaluate our algorithm and
quantify the benefits of a more flexible substrate. In Section 5,
we present our customized node-embedding algorithm for hub-
and-spoke topologies, and promising initial simulation results.
Section 6 compares our algorithms with related work, and Sec-
tion 7 concludes the paper with a discussion of future research
directions.

2. VIRTUAL NETWORK EMBEDDING
In this section, we first describe the general VN embedding

problem. Then, we present an original solution to this problem
without assuming the substrate can split a virtual link over
multiple underlying paths.

2.1 Virtual Network Embedding Problem
Substrate network. We denote the substrate network by

an undirected graph Gs = (Ns, Ls, As
N , As

L), where Ns and
Ls refer to the set of nodes and links, respectively. We use
superscript to refer to substrate or virtual network, and use

Table 1: Notations of VN Embedding Problem

Gs Substrate network

Ns Nodes of substrate network

Ls Links of substrate network

As
N Node attribute of substrate network

As
L Link attribute of substrate network

Ps Paths on substrate network

Gv Virtual network

Nv Nodes of virtual network

Lv Links of virtual network

Cv
N Node constraint of substrate network

Cv
L Link constraint of substrate network

RN Resources allocated for virtual network nodes

RL Resource allocated for virtual network links
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Figure 1: An example of VN embedding

subscript to refer to nodes or links, unless otherwise specified.
Substrate nodes and links are associated with their attributes,
denoted by As

N and As
L, respectively. In this paper, we consider

CPU capacity and location for node attributes, and bandwidth
capacity for link attributes. We also denote by Ps the set of
all loop-free paths in the substrate network.

The right side of Figure 1 shows a substrate network, where
the numbers over the links represent available bandwidths and
the rectangles are the CPU resources available at the nodes.

Virtual network request. We denote by an undirected
graph Gv = (Nv, Lv, Cv

N , Cv
L) a virtual network request. A

VN request typically has link and node constraints that are
specified in terms of attributes of the substrate network. We
denote by Cv

L and Cv
N the set of link and node constraints,

respectively. Figure 1 depicts two VN requests. For exam-
ple, the VN request 1 requires the bandwidth 20 over the links
(a, b) and (a, c), and the CPU resource 10 at all nodes, a, b,
and c. The VN request 2 is: “connect two nodes d, e ∈ Nv with
constraints that node d should be in Atlanta (where substrate
nodes D and G are located), and node e should be in New Jer-
sey (where substrate nodes E and I are located), with ten units
of bandwidth on the virtual link between them.”

VN embedding. A virtual network embedding for a VN
request is defined as a mapping M from Gv to a subset of Gs,
such that the constraints in Gv are satisfied, i.e.,

M : Gv 7→ (N ′,P ′, RN , RL),

where N ′ ⊂ Ns and P ′ ⊂ Ps, and RN and RL are the node and
link resources allocated for the VN requests. The VN network
embedding can be naturally decomposed into node and link
mapping as follows:

Node Mapping: MN : (Nv, Cv
N ) 7→ (N ′, RN ),

Link Mapping: ML : (Lv, Cv
L) 7→ (P ′, RL).

The right side of Figure 1 shows the VN embedding solutions
for the two VN requests. For example, the nodes a, b, and



Req comes
Req leaves

fixed nodes

Embedding output for this time window

Req. Queue new Reqs. time window

Reqs postponed

Link Mapping

Node Mapping
Reqs postponed

Figure 2: The general algorithm overview

c in VN request 1 are mapped to the substrate nodes A, E,
and F, and the virtual links (a, b) and (a, c) are mapped to
the substrate paths (A,D,E) and (A,D,F) with the CPU and
bandwidth constraints all satisfied. A similar mapping occurs
for VN request 2.

Objectives. Our main interest is to propose an efficient
embedding algorithm for the online problem, where VN re-
quests arrive and depart over time. From the substrate network
provider’s point of view, a natural objective of an online em-
bedding algorithm would be to maximize the revenue. We in-
troduce the notion of revenue that corresponds to the economic
benefit of accepting VN requests. We denote by R(Gv(t)) the
revenue of serving the VN request at time t. Then, our objec-
tive is to maximize the long-term average revenue, given by the
following:

lim
T→∞

PT
t=0 R(Gv(t))

T
. (1)

The revenue can be defined in various ways according to
economic models. In this paper, we focus on bandwidth and
CPU as the main substrate network resources. Then, a natural
choice of the revenue for a VN request would be to the weighted
sum of revenues for bandwidth and CPU, each of which is pro-
portional to the amount of the requested resources. Similar to
the work in [31], we introduce a tunable weight α that allows
the substrate provider to strike a balance between the relative
costs of the two classes of resources.

Thus, for a VN request Gv, we define its revenue R(Gv(t))
at any particular time t that the virtual network Gv is running
as:

R(Gv(t)) =
X

lv∈Lv

bw(lv) + α
X

nv∈Nv

CPU(nv), (2)

where bw(lv) and CPU(nv) are the bandwidth and CPU re-
quirements for the virtual link lv and the virtual node nv, re-
spectively. We note that the bandwidth revenue (i.e., the first
term in Equation (2)) is not affected by the substrate paths
that the virtual links are mapped to, in particular, physical
distance or the number of hops of the mapped paths. This
seems to be reasonable, since VN requests are interested in
just satisfiability of their constraints in the substrate network
and will not pay for longer distance.

To achieve the goal in Equation (1), it is crucial to embed
incoming VN requests efficiently, such that the substrate re-
source is minimally occupied. This is because an inefficient
embedding of a virtual network at time t may restrict the sub-
strate’s ability to accept future requests.

2.2 General VN Embedding Algorithm
In this subsection, we propose a simple embedding algorithm

that does not exploit any special capabilities from the sub-

Algorithm 1 Greedy Node Mapping Algorithm

Step 1 Sort the requests according to their revenues.
Step 2 If no requests left, stop.
Step 3 Take one request with the largest revenue.
Step 4 Find the subset S of substrate nodes that satisfy

restrictions and available CPU capacity (larger than

that specified by the request.) If S == ∅, store this
request in the queue, and GOTO Step 2.

Step 5 For each virtual node, find the substrate node in S
with the “maximum available resources” H (defined
in Equation (3)), and GOTO Step 2.

strate network. The algorithm is motivated by the techniques
proposed in related work (e.g., [31, 25]) with extensions to per-
form admission control and handle online requests. Figure 2
depicts our algorithm.

Our algorithm collects a group of incoming requests during
a time window and then tries to allocate substrate resources to
satisfy the constraints required by the requests. Some requests
may be deferred due to lack of bandwidth or CPU resources
in the substrate network, and returned to the request queue.
The requests in the queue are dropped if they cannot be served
within some delay, which, specified by a request, corresponds
to the time that a request is willing to wait. The requests in
the request queue are processed again in the subsequent time
windows.

We process all VN requests arriving within the time window
as well as in the request queue, in decreasing order of their
revenues. We map virtual nodes onto the substrate for all the
considered VN requests, and then map the virtual links for
the requests that successfully finish the node mapping stage.
An alternative way, which we do not choose, is to map the
nodes and links of one request first, before mapping the other
requests. In the general VN embedding algorithm, both meth-
ods produce similar mapping results, but our method is more
efficient because of batch processing in the node/link mapping
stage.

The optimal embedding algorithm is computationally intractable
as discussed in Section 1. Our general VN embedding algorithm
heuristically tries to achieve the goal in Equation (1) over each
time window. Indeed, the algorithm contributes to instanta-
neous revenue maximization by giving higher priority to the
requests with more revenue and accepting as many requests
as possible in the node mapping. Additionally, the algorithm
tends to make efficient utilization of the substrate bandwidth
resources by mapping virtual links to shortest paths in the sub-
strate network, leaving more resources for future requests.

2.2.1 Node Mapping Algorithm
We employ a “greedy” node mapping algorithm, since it is

computationally too expensive to employ other strategies, such
as iterative methods [22] and simulated annealing [13, 19]. The
motivation of the greedy algorithm is to map the virtual nodes
to the substrate nodes with the maximum substrate resources
so as to minimize the use of the resources at the bottleneck
nodes/links [31]. This is beneficial to future requests which
require specific substrate nodes with scarce resources.

In our algorithm, we collect all outstanding requests, and
then map all the virtual nodes in these requests to the sub-
strate nodes. VN requests sometimes impose some restrictions
on their nodes. The examples of node restrictions include geo-
graphic location and special functionality at the substrate node.
These node restrictions are quite common in practice, e.g.,
servers near their customers in content-delivery service, pro-
grammable routers, and a node with Internet-2 network con-
nectivity. Requests with restrictions reduce the search space
for placing the virtual nodes (Step 4). For example, location-
specific requests usually limit their virtual nodes to particular



Algorithm 2 Link Mapping Algorithm

Step 1 Sort the requests that successfully completed the node-
mapping stage by their revenues.

Step 2 If no requests left, stop.
Step 3 Take one request with the largest revenue.
Step 4 For each virtual link of the request, we search the

k-shortest paths for increasing k, and stop the search
if we can find one with enough bandwidth capacity.

Step 5 If fail in Step 3 for some virtual link, then defer this
request, and store it in the request queue.

Step 6 GOTO Step 2.

geographic regions.
Then, we keep track of the available node/link resources of

the substrate network. Note that for a substrate node ns ∈ Ns,
we do not use CPU(ns) alone as the metric of available re-
source, because we not only want to make sure that there is
enough CPU capacity available, but also consider bandwidth
capacity to prepare for the subsequent link mapping stage.
Therefore, we define the amount of available resources for a
substrate node ns by:

H(ns) = CPU(ns)
X

ls∈L(ns)

bw(ls), (3)

where L(ns) is the set of all adjacent substrate links of ns,
CPU(ns) is the remaining CPU resource of ns, and bw(ls) is
the unoccupied bandwidth resource for the substrate link ls.
With this definition, for a virtual node, we find the substrate
node with the maximum available resources (Step 5).

2.2.2 Link Mapping Algorithm
When the substrate nodes are selected for mapping, we map

the virtual links to specific substrate links. Finding an optimal
mapping from a virtual link to a single substrate path with
fixed node mapping reduces to the Unsplittable Flow Problem
(UFP), which is NP-hard [20, 21]. Therefore, we use the k-
shortest path algorithm as an approximation approach in order
to minimize bandwidth consumption by the virtual network.

We search the k-shortest paths for increasing values of k,
until we find a path which has enough bandwidth to map the
corresponding virtual link. Our k-shortest-path link-mapping
algorithm can be solved in O(N log N +kN) time in a substrate
network with N nodes [12]. Both for computational efficiency
and efficient use of substrate resources, k should be kept small.

3. PATH SPLITTING AND MIGRATION
Restricting each virtual link to a single substrate path makes

the link-embedding problem computationally intractable, and
the resulting embeddings inefficient. In this section, we first
argue that the substrate network should support flexible split-
ting of virtual links over multiple substrate paths, and present
a new link-embedding algorithm that capitalizes on the flex-
ibility. Next, we describe how to periodically re-optimize the
mapping of existing virtual links to allow the substrate network
to accept more new requests. Finally, we explain how substrate
support for path splitting and migration can be implemented
in practice.

3.1 Path Splitting

3.1.1 Motivation for Flexible Path Splitting
To motivate substrate support for path splitting, consider

the example in Figure 3. Initially the substrate network runs
a single virtual network with three virtual nodes and two vir-
tual links that each require 20 units of bandwidth. The virtual
nodes are mapped to physical nodes A, E, and F, and the two
virtual links are mapped to the paths (A,D,E) and (A,D,F),
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Figure 3: Illustration of the benefit of path splitting

as shown in the lower left part of the figure. Now, suppose a
new VN request arrives with a single virtual link that requires
30 units of bandwidth. Unfortunately, no one path in the sub-
strate network can accommodate the new request. However,
the new VN could be mapped to nodes D and E, if the sub-
strate could allocate 20 units of bandwidth on the path (D, E)
and 10 on the path (D, G, H, I, E). That is, directing two-thirds
of the traffic over the (D, E) path and one-third over the (D,
G, H, I, E) path would allow the substrate to accept the second
request.

Path splitting enables better resource utilization by harness-
ing the small pieces of available bandwidth, allowing the sub-
strate to accept more VN requests. In addition, flexible path
splitting makes the link-embedding problem computationally
tractable. A virtual link l with some capacity constraint, say
Cl, is mapped into multiple paths in the substrate network,
such that the sum of reserved end-to-end bandwidth along the
multiple paths is equal to Cl. The division of traffic over the
substrate paths is specified as a splitting ratio, such as a ratio
of 2:1 in the example in Figure 3. Under flexible splitting over
multiple paths, the link-embedding problem can be reduced to
the Multicommodity Flow Problem (MFP) [5], which can be
solved in polynomial time.

The benefits of having multiple paths have been established
in other contexts, such as load balancing and reliability. In
some problem formulations, even having just two paths can sig-
nificantly reduce the maximum load on a network, compared
to solutions that limit the traffic flow to a single path [23, 18].
Having multiple paths also enables faster recovery from net-
work failures. For example, if a link or node fails, the network
can quickly switch the affected traffic to other paths simply
by changing the splitting ratios. In contrast, in a single-path
setting, a failure requires establishing a new end-to-end path,
leading to a more severe service disruption. Due to the compu-
tational, performance, and reliability benefits, we believe flexi-
ble path splitting should be a key feature in future virtualized
network infrastructures, and the rest of this paper will provide
the algorithmic and simulation-based evidence to support this
view.

3.1.2 Link Mapping Algorithm with Path Splitting
We describe the link mapping algorithm supporting path

splitting to enable efficient solutions in Algorithm 3. In Step
1, We first construct linear constraints for the virtual links. For
simplicity, consider a request with only one link lv with the ca-
pacity constraint C, where two end nodes of lv are denoted by
nv

1 and nv
2 . We denote by MN (nv

1) = ns
1 and MN (nv

2) = ns
2

the substrate nodes chosen for nv
1 and nv

2 , respectively, by the
node-mapping algorithm in Section 2.2. The pair of substrate
nodes (ns

1, ns
2) is a commodity, and finding multiple substrate

paths for lv is equivalent to finding flows from the source ns
1
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to the destination ns
2 in the substrate network with available

bandwidth on the substrate links.
Thus, a group of, say r, virtual links generates a group of

r commodities. The algorithm tries to find all the paths for r
commodities based on the following linear constraints:

∀ls ∈ Ls,

r
X

i=1

f(ci, l
s) ≤ bw(ls) (4)

where f(ci, l
s) is the bandwidth on the substrate link ls that

we allocate to commodity ci, or its corresponding virtual link.
After generating the r commodities and the linear constraints,
we solve the resulting multicommodity flow problem (Step 2).

Even with flexible path splitting, the MFP problem may not
have a feasible solution because one or more substrate links
do not have enough available capacity. The algorithm revisits
the node-mapping decisions for these virtual links (Steps 4, 5,
and 6). The failure in the MFP computation implies that one
of more substrate links violate the linear constraints in Equa-
tion (4). Fortunately, the MFP algorithm can easily output
the substrate links that violate the constraint, as well as the
extent of the violation. The node-remapping stage focuses its
attention on the substrate link with the largest violation, i.e.,
the ls ∈ Ls with the highest value of

Pr
i=1 f(ci, l

s) − bw(ls).
We randomly choose one virtual link that is originally mapped

to the path including the bottleneck link, and map one end of
this virtual link to another substrate node with maximum re-
maining resource H (defined in Equation (3)), in order to avoid
occupying this bottleneck link. We try this node remapping for
a pre-defined number of times Ttry and make sure each time
we choose a different bottleneck link. If the MFP is still in-
feasible after Ttry trials, we defer the request that requires the
most bandwidth on the bottleneck substrate link and return it
to the request queue, and then try to solve the MFP with the
remaining requests again. Larger values of Ttry increase the
computational overhead but improve the likelihood of finding
a successful embedding.

In practice, some virtual networks may have strict require-
ments that preclude path splitting1. As such, we envision our
algorithm would handle a mix of both kinds of VN requests. As
illustrated in Figure 4, we first apply Algorithm 2 for requests
that do not allow path splitting, before applying Algorithm 3

1The substrate provider may charge an extra fee to these vir-
tual networks, since non-splittable virtual links are more diffi-
cult to support.

Algorithm 3 Link Mapping Algorithm for Requests with Path
Splitting

MFP Computation:
Step 1 For all requests with splittability, construct linear con-

straint on the commodities for each substrate link.
Step 2 Solve MFP (Multicommodity Flow Problem).

Step 3 If feasible, stop.
Node Remapping:
Step 4 If infeasible, find the “bottleneck” substrate link.
Step 5 Randomly choose one virtual link that is originally

mapped at the bottleneck link, pick one end of the
virtual link and map it to another substrate node with
maximum remaining resource H (defined in Equation
(3)). Then GOTO Step 2 with new linear constraints.

Step 6 If remapping of virtual nodes for Ttry times does not
produce a feasible solution, eliminate one of the VN
requests having the “largest” impact on infeasibility.
Then, construct the linear constrains only with the
remaining requests, and GOTO Step 2.

for requests that allow path splitting. Unfortunately, node-
remapping is difficult to perform for the unsplittable virtual
links, since the embedding algorithm processes one virtual link
at a time. For the collection of virtual links that fail to find a
suitable path, we cannot easily identify the most congested sub-
strate link in a computationally efficient manner. To maintain
computational simplicity, we do not consider node-remapping
for these requests. In the evaluation, we quantify the benefits
of path splitting, with and without the node-remapping step.

3.2 Migration for Online Requests
To deal with the online nature of the VN embedding prob-

lem, we introduce the idea of path migration, i.e., changing the
route or splitting ratio of a virtual link. This turns out to be
another advantage offered by the availability of multipath in
the substrate network.

3.2.1 Motivation for Path Migration
Since VN requests arrive and depart over time, the substrate

network can easily drift into an inefficient configuration, where
resources are increasingly fragmented, forcing the substrate to
reject future requests or route new virtual links over more ex-
pensive (longer) paths. Theoretically, one could try to address
these challenges with predictive models of future requests, cou-
pled with mathematical techniques like dynamic programming.
However, the arrival and departure of requests is unpredictable
and the underlying search space is too large for dynamic pro-
gramming to be practical. Instead, we argue the substrate
network should be able to “rebalance” the mapping of virtual
networks to make more efficient use of the substrate resources
and to maximize the chance of accepting future requests. In
particular, the ability to migrate virtual links to different sub-
strate paths—while keeping the node mapping intact—can fur-
ther improve the substrate’s ability to accept future requests.

To motivate substrate support for path migration, consider
the example in Figure 5. Initially the substrate networks runs
a single virtual network with three nodes and two virtual links
that each require 20 units of bandwidth. Now, suppose a new
VN request arrives with a single virtual link that requires 30
units of bandwidth. Unfortunately, no pair of nodes in the sub-
strate network can accommodate the new request, even if path
splitting is permitted. For example, in the left side of Figure 5,
nodes D and E have a path (D,E) with 20 units of bandwidth,
a path (D,B,C,E) with 5 units of bandwidth, and a path (D, A,
B, C, E) with 0 units of bandwidth—not enough to support a
virtual link requiring 30 units of bandwidth. However, migrat-
ing some of the traffic for the first virtual network to a different
path would enable the substrate to accept the new request. In
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Figure 5: Illustration of the benefit of migration

particular, the substrate could carry half of the traffic for vir-
tual link (a,b) on a new path (A, B, C, E) to free up additional
capacity on the substrate link (D, E). Then, the second virtual
network can have link (d,e) mapped to substrate path (D,E).

3.2.2 Migration Algorithm
In the migration algorithm described in Algorithm 4, we fix

the node mapping of the virtual networks already running on
the substrate. We perform path migration by rerunning the
link-mapping algorithm with requests that allow path splitting
(Algorithm 3). Path migration is performed by either chang-
ing the splitting ratios for the existing paths or selecting new
underlying paths.

If only adjusting the splitting ratios is allowable rather than
setting up any new paths, we have to make sure that the flows
coming from a commodity only traverse the substrate paths
originally taken in the link mapping stage. Thus, we add the
following linear constraints to the constraints in Equation (4)
(Step 2):

f(ci, l
s) = 0, ∀ls ∈ Ls,∀ci, l

s /∈ P s(ci), (5)

where P s(ci) is the set of original substrate paths the virtual
link (or corresponding commodity ci) was mapped to. Then
we solve the MFP problem again with the new constraints of
both Equations (4) and (5). If we are allowed to select new
underlying paths, we rerun the link-mapping algorithm with
only the constraints in Equation (4).

Path migration allows us to (periodically) treat the online
embedding problem as an offline problem, to capitalize on the
efficiency gains that are possible when handling a large collec-
tion of requests together. As such, we expect the benefits of
path migration to be highest when the time window (for group-
ing requests) is small, and less significant as the window grows
larger.

In practice, migrating paths introduces overhead to estab-
lish new paths, switch the traffic onto the new paths, and tear
down the old paths. As such, the benefits of path migration
should be weighed against the overheads. To illustrate this, we
expect that VN requests would be quite diverse in their dura-
tions, which corresponds to their running time in the substrate
network, ranging from a few months to several hours. As an ex-
ample, a content distribution network like Akamai [1] may run
indefinitely, whereas an impromptu conference or video game
may last for a few hours. The algorithm should not migrate
short-lived virtual networks that are likely to exit the system
soon after the migration completes. Thus, our algorithm only
considers the requests whose durations are larger than some
threshold Tdur (Step 1). Fortunately, migrating long-running
virtual networks should offer ample benefits in practice, since
many short-lived virtual networks will come and go while they

Algorithm 4 Path Migration Algorithm

For all the served requests,
Step 1 Select the request set S whose durations are larger

than a threshold Tdur.
Step 2 If only changing splitting ratio is allowed, add linear

constraints (Equation (5)), so that each virtual link is
forced to be mapped to the paths it originally take in
the link mapping step. If setting up new path is also
allowed, skip this step.

Step 3 Rerun the link mapping algorithm with path splitting,
and migrate the related paths.

run. Virtual-network requests would indicate their likely du-
ration, or we can infer that a virtual network that has run for
a long time is likely to continue running for a long time, anal-
ogous to previous research on migration in the context of job
scheduling [17].

3.3 Implementation Issues
Path splitting can be easily implemented in the substrate

network without significant overhead. When the virtual node
directs a packet over the virtual link, the substrate sends the
packet over one of the paths based on the target splitting ratio.
The virtual network is largely oblivious to the splitting of the
traffic, as long as care is taken to prevent out-of-order packet
delivery. The substrate can employ a variety of techniques to
prevent performance disruptions:

1) Hash-based splitting. Out-of-order delivery is a primary
concern for packets in the same flow—a group of packets
between the same end hosts or part of the same transport-
level connection. Hash-based splitting prevents out-of-
order delivery by directing all packets from the same flow
to the same path. The substrate router first divides the
hash space into weighted partitions that each correspond
to one substrate path. Then, we apply hashing to the
packets based on their header bits and forward the pack-
ets to the corresponding substrate path. This hash-based
scheme is efficient and, in fact, is widely used in IP net-
works to split traffic evenly over equal-cost multipath [15,
8]. The substrate router can use consistent hashing to
minimize the fraction of flows that must change paths
when the splitting ratio changes [9].

2) Adding artificial delay. Another solution is to equalize
the delays along the multiple paths. This is possible be-
cause all substrate nodes and links belong to a single
party—the substrate provider. The substrate provider
can add small artificial delay to overcome variable prop-
agation delay, e.g., by using Dummynet [26]. Moreover,
we do not need to be concerned about congestion-related
delay, since unlike in a conventional best-effort network
(e.g., the Internet), these virtual networks are allocated
bandwidth resources in advance.

3) Tagging the packets. Since the substrate network is under
the control of a single party, each packet can be tagged
with a sequence number or timestamp. Then the remote
end-point of the virtual link can reorder the packets based
on the tags before delivering the packets to the receiving
virtual node.

Path migration relates closely to path splitting, and is easily
implemented either by selecting new underlying paths or adapt-
ing the splitting ratios for the existing paths. In addition, path
migration will not cause significant service disruptions for two
reasons: (i) we need just a slight change of flow splitting ratio
for the already-existing paths; (ii) we can create the new path
in advance before moving the traffic to avoid service disrup-
tion. Therefore, path migration should not unduly influence
the performance experienced by the virtual network.

In our current work, we have focused on path migration while



keeping the node-mapping intact, to minimize the disruption
experienced by the virtual networks. However, in ongoing work
we plan to explore node migration to provide even greater flexi-
bility in handling new VN requests. We believe node migration
should be feasible for several reasons. First, long-running ser-
vices usually have their own maintenance windows, where they
drain traffic off a server to upgrade the software. These main-
tenance windows can be used for node migration. Second, with
ample warning and prior planning, we can minimize the neg-
ative effects of node migration on an ongoing service. Node
migration can be done quite quickly in practice, e.g., within a
few seconds [29, 28], and the virtual node can continue running
in the old location until the migration completes.

4. PERFORMANCE EVALUATION
In this section, we first describe the performance evaluation

environment, and then present our main evaluation results.
Our evaluation focuses primarily on quantifying the benefits
of substrate support for flexible path splitting and migration
in the VN embedding problem.

4.1 Evaluation Environment
We implemented a VN embedding simulator (publicly avail-

able at [4]) to evaluate our embedding algorithm and the ad-
vantages of flexible support for path splitting and migration.

The actual characteristics of substrate and virtual networks
are not well understood since network virtualization is still an
open field. Therefore, we use synthetic networks to study the
trends and quantify the benefits of path splitting and migra-
tion.

Substrate network. We use the GT-ITM tool [30] to gen-
erate a substrate network topology. The GT-ITM tool has
been popularly used in research that requires practical net-
work topology generation. The substrate network is configured
to have 100 nodes, a scale that corresponds to a medium-sized
ISP, and at every experiment, 500 links are generated on aver-
age. The CPU resources at nodes and the link bandwidths at
links follow a uniform distribution from 0 to 100 units.

Virtual network request. In one VN request, the number
of VN nodes is randomly determined by a uniform distribution
between 2 and 10, following a similar approach as previous work
[13].

Each pair of virtual nodes are randomly connected with prob-
ability 0.5. This means that for a n-node virtual network, we
have n(n − 1)/4 links on average. The arrivals of VN requests
are modeled by a Poisson process with mean five requests per
time window. The duration of the requests follows an exponen-
tial distribution with 10 time windows on average. We run all
of our simulations for 500 time windows, which corresponds to
about 2500 requests on average in one instance of simulation.

The parameters and their symbols that we vary in all our
simulations are summarized in the following table:

E[CPU] average CPU requirement on a virtual node
E[BW] average bandwidth requirement on a virtual link
RPS(%) percentage of the requests allowing path splitting
DELAY time a request is willing to wait (see Section 2.2)

α weight constant in revenue function (Equation (2))
Ttry number of rounds in node remapping

Comparison method. Comparing our algorithm with pre-
vious work is difficult because these earlier embedding algo-
rithms do not start with the same problem formulation. They
do not handle one or more of the first three challenges in Sec-
tion 1 (i.e., combined node and link constraints, admission con-
trol, or online requests). Instead, we use the algorithm in Sec-
tion 2.2, which embodies many of the key ideas from prior work,
as a baseline for comparison.

4.2 Evaluation Results
Our evaluation results quantify the benefits of path splitting

and migration in various environments. We present our simu-
lation results by summarizing the key observations.

(1) More requests allowing path splitting leads to larger
revenues, which is further improved by path migration.
Figures 6 shows the long-term average revenue with increas-
ing percentages of the requests permitting path splitting for
different average link bandwidth requirements. In these exper-
iments, we remove the influence of CPU in the constraint and
the revenue (i.e., E[CPU]=0 and α=0). Each request which can-
not be served immediately will wait for at most 3 time windows
in the queue (DELAY=3) and node remapping in Algorithm 3
is tried just once, i.e., Ttry = 1.

In Figure 6, the performance of the general algorithm in Sec-
tion 2 does not depend on RPS(%), since the general algorithm
maps each virtual link into a single path in the substrate net-
work. However, with more requests allowing path splitting,
the substrate network resources are efficiently utilized at cur-
rent time window, which enables the system to accept more
requests, leading to an increase in the average revenue. When
all the requests allow path splitting, our algorithm achieves
about 120% revenue increase over the general algorithm. Even
with half of the requests permitting path splitting, we still gain
about 65% revenue increase.

Figure 6 also shows that path migration further increases
the revenue. For example, when RPS(%)=100, our algorithm
with path migration achieves additional 15% revenue increase
over the algorithm only with path splitting. This implies that
path splitting is a dominant factor in the revenue increase, and
path migration further builds on path splitting to adapt to the
online VN embedding problem more flexibly. More benefits are
expected to be obtained by node migration, at the expense of
more service disruption.

When the bandwidth requirement is low (E[BW]=25) and
substrate resources are ample, we can accept all the requests
for both algorithms. Naturally, the revenue remains the same,
whether the requests allow path splitting or not. We will show
later in Figure 11 that in this case, our algorithm reduces cost
more than the general algorithm. Note that in Figure 6, the
revenues differ when E = 25 and E =50 due to its dependence
on the amount of required (average) bandwidth in the requests.

(2) Path splitting still increases revenue when CPU re-
quirements are considered. Figure 9 shows the long-term
revenues with both CPU and bandwidth requirements, where
the average CPU requirement is set to be 25 and other param-
eters are the same as those in Figure 6.

We observe a similar increase in revenue from path split-
ting. We achieve more than 100% revenue increase over the
general algorithm, when RPS(%)=100; and about 50% when
RPS(%)=50. However, the benefits from migration are less dra-
matic. This is due to the fact that we only employ path mi-
gration, which does not offer any benefits when the node CPU
resource is the bottleneck. Note that revenue increase with the
CPU requirement is less than that without the CPU require-
ment. This is anticipated, because when CPU requirements
tends to reduce the number of accepted requests.

To further evaluate effects of CPU resource constraints, in
Figure 10, we have tested different weight constants α in the
revenue definition (Equation (2)) while keeping all the other
parameters the same. The benefits of path splitting over the
general algorithm decrease as α increases, since path splitting
and migration only improve the bandwidth resource utilization
in the link mapping stage. For example, when CPU and band-
width are almost equally evaluated in the revenue function,
we achieve 90% of revenue increase over the general algorithm;
when CPU resource becomes the main factor (α=1), our al-
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Figure 11: Effect on cost (E[BW]:25,
E[CPU]:0, DELAY:3, α:0, Ttry:1)

gorithm with path splitting still achieves around 80% more
revenue than the general algorithm.

(3) Node remapping contributes modestly to revenue in-
crease. Revenue is not significantly influenced by the
delay we choose. All previous experiments were made with
Ttry = 1, i.e., we ran one round of node remapping in Algo-
rithm 3. In Figure 8, we show the result of the path splitting
algorithm without node remapping (i.e., Ttry = 0), where the
revenue only decreases by 4%. This implies that the revenue
increase shown in earlier simulations mainly comes from path
splitting itself. With increasing values of Ttry, we could achieve
more substantial increases in revenue at the expense of compu-
tation time, because we must rerun the link mapping stage for
Ttry times more than the path splitting solution without node
remapping.

Figure 7 shows that our benefits of path splitting and migra-
tion are not influenced by delay we choose (DELAY=3), since
the result for DELAY=6 is similar to Figure 6 where DELAY=3.
This is because the substrate resources are almost fully used
with requests coming and departing over time, so that the de-
ferred requests cannot be accepted even if it waits for more
time.

(4) Without admission control, path splitting and mi-
gration reduces cost. In case when the substrate network
resources are sufficient, but the number of incoming VN re-
quests per time-window is small, we can probably service all
the requests, irrespective of using of path splitting or not, i.e.,
the long-term revenue achieved will be the same for the general
algorithm and the algorithm with path splitting. However, the
algorithm allowing path splittability saves substrate network
resources.

First, we discuss notions of cost to quantify efficiency in re-

source utilization. The bandwidth cost for a VN request should
be defined to reflect the entire amount of bandwidth used to
map the request to the physical substrate network. For a sin-
gle virtual link in the request, it would be natural to use its
required bandwidth multiplied by the length of the substrate
path that the virtual link is mapped to. With path splitting,
we count the bandwidth allocated on each path of the virtual
link and sum them up. Thus, we define the cost of virtual
network Gv by:

Cbw(Gv) =
X

lv∈Lv

X

p∈P s(lv)

bw(p, lv), (6)

where P s(lv) is the path(s) the virtual link lv is mapped on,
bw(p, lv) is the amount of bandwidth allocated to that virtual
link. Similarly, we define the CPU cost of virtual network Gv

by:

CCPU(Gv) =
X

nv∈Nv

CPU(nv), (7)

where CPU(nv) is the amount of CPU virtual node nv requires.
In Figure 11, we have simulated the case where the resource

requirement of requests is low (E[BW]=25, E[CPU]=0), where
other parameters are the same as before, i.e., (DELAY=3, α=1,
Ttry=1).

We observe that with the increase in percentage of requests
permitting path splitting, we reduce the bandwidth cost Cbw

over the general algorithm by making more efficient use of the
network. When RPS(%)=100, we reduce 10% cost than the
general algorithm. Path migration further reduces the band-
width cost by 7%. The CPU cost CCPU remains the same
(CCPU = 3.1) with the increase of RPS(%), since all the re-
quests are accepted, whether they allow path splitting or not.



Algorithm 5 Customized Node Mapping Algorithm for Re-
quests with Hub-and-spoke

Steps 1, 2, and 3: Same as in Greedy Node Mapping (Algo-
rithm 1).
Step 4 If the request has hub-and-spoke topology,

4.1 For each hub node, find the substrate node with
the maximum available resource in S.

4.2 For each spoke node, find the shortest path be-
tween a substrate node in S and the substrate
node mapped to the corresponding hub node.

else, apply Step 4 in General Node Mapping.
Step 5 Same as in Greedy Node Mapping.

5. CUSTOMIZED NODE MAPPING
Although virtual networks may have arbitrary topologies,

we expect some classes of topologies to be relatively common,
since they meet the needs of the key applications in network
virtualization. For example, a hub-and-spoke topology is com-
monly used to connect multiple sites to a centralized server,
e.g., gaming and CDN (Content Distribution Network), and a
tree topology is commonly used to distribute content efficiently
to a large collection of receivers, e.g. multicast distribution of
IPTV.

The popularity of a small set of topological structures can be
leveraged for better solutions to the VN embedding problem.
In our ongoing work, we present node-mapping techniques that
are customized to specific topologies, starting with the simple
hub-and-spoke topology.

As an example, we propose a customized node mapping (which
is extended from the Greedy Node Mapping in Algorithm 1)
with hub-and-spoke topologies, as summarized in Algorithm 5.
The customized node mapping algorithm differs from the greedy
node mapping in that we choose the substrate nodes differ-
ently for hub and spokes nodes. The maximum available re-
source is allocated only for the hub nodes (Step 4.1), and the
spoke nodes are mapped into the substrate nodes that have
the shortest path to the substrate node hosting the virtual hub
node (Step 4.2). This is motivated by the fact that the hub
node handles much more traffic than the individual spokes.
In Step 4.2, we also achieve significant cost reduction, since
cost is generally proportional to the distance (i.e., number of
hops), whereas the greedy algorithm allocates large substrate
resource to “unimportant nodes” (i.e., the spokes). The wasted
resources keep the greedy node mapping algorithm from leaving
enough resources available to satisfy the future requests.
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Figure 12: Effect of customized node mapping for hup-
and-spoke topology (RPS(%):0, E[BW]:10, E[CPU]:10, α:0,
Ttry:1)

To evaluate the customized node mapping algorithm, we
compare the greedy node mapping and our customized node
mapping with the requests of hub-and-spoke topologies in Fig-

ure 12. Our preliminary experiments evaluate a small substrate
network handling virtual networks with small resource require-
ment of requests correspondingly (E[BW]=10, E[CPU]=10). We
also keep RPS(%) as zero to evaluate the benefits of customized
node mapping in the absence of path splitting. We observe that
our customized algorithm performs better than the greedy algo-
rithm when the percentage of hub-and-spoke topologies among
all the requests increases. By taking advantage of the topology
information, our customized algorithm allocates the hub-and-
spoke request more efficiently than the greedy algorithm. Thus,
our algorithm can allow more requests and achieve a higher
average revenue over time. We are currently exploring and
evaluating other algorithms that are customized for different
common topologies, like trees.

6. RELATED WORK
Previous research has explored how to embed Virtual Private

Networks (VPNs) in a shared provider topology [11, 16]. How-
ever, several of the properties in Section 1 make the VN embed-
ding problem different, and more difficult, than the VPN de-
sign problem. In particular, the VN embedding problem must
deal with both node and link constraints for arbitrary topolo-
gies, whereas VPNs usually have a standard topology, such as
full mesh and hub-and-spoke [24]. Moreover, the resource con-
straints in a VPN are typically just bandwidth requirements,
specified by a traffic matrix (i.e., the traffic volume for each
pair of nodes), rather than node constraints (e.g., processing
resources).

Related work on VN embedding addresses the hardness of
the problem by relaxing one or more of the key properties of
the problem (see Table 2). These key properties include (i)
whether requests are processed online or not, (ii) whether the
requests have link constraints, node constraints, or both, (iii)
whether admission control is performed to reject requests when
resources are insufficient, and (iv) what virtual topologies are
supported.

Several of the previous studies focus on the offline problem,
where all VN requests are known in advance. Zhu and Ammar
[31] assume that the substrate network resources are unlimited,
and aim at achieving load balancing in the substrate network,
obviating the need for admission control. The VN-embedding
problem for the requests with general topology is solved by sub-
dividing the requests into multiple star topologies to allocate
more substrate resource to the center of each decomposed star
topology. Lu and Turner [22] also consider an offline problem
for only a single virtual network with a backbone-star topology,
where their goal is to minimize the cost. They assume that only
bandwidth constraints are imposed, and the substrate network
resources are unlimited with no admission control needed.

In regard to the online problem, Fan and Ammar [13] con-
sider dynamic topology reconfiguration policies for virtual net-
works with dynamic communication requirements, but no con-
sideration of the node constraints such as CPU. They also as-
sume that substrate network resources are unlimited to accept
all requests (i.e., no admission control) and try to find a strat-
egy to minimize cost. Zhu and Ammar [31] also solve the online
problem by recalculating the whole embedding solution period-
ically, which is computationally complex. The Emulab testbed
[25] considers the online embedding problem with the band-
width constraint. The node constraint in Emulab is provided
as the exclusive use of nodes, i.e., different virtual networks can-
not share a substrate node. Admission control is not explicitly
addressed in [25], but it can be inferred that an admission con-
trol that rejects request if the bandwidth/node resources are
insufficient.

As we have described so far, past research on VN embedding
algorithms tries to come up with an efficient solution by look-
ing at only a subset of the key challenges outlined in Section 1.



Table 2: Comparison of VN Embedding Algorithms
on/offline CPU/BW admission control topology objective

NetFinder [31] offline both no general load balancing
[22] offline both no backbone-star cost
[13] online BW no traffic matrix cost

Emulab [25] online BW primitive general cost
This paper online both yes general revenue (& cost)

This clearly limits the applicability of the algorithms. In this
work, we deal with the most general cases by considering all as-
pects of the four properties in the embedding algorithm design,
tackling the online VN embedding problem with both node and
link constraints. In particular, we modify the algorithms in
previous work [31, 25] to allow admission control and further
improve them by making the substrate network more flexible
and supportive to this problem, in conjunction with customiza-
tion of the algorithms for different types of requests.. We also
improve the link mapping algorithm through substrate support
for path splitting and migration. We are currently exploring
the method to improve node mapping algorithm by customiz-
ing it for diverse topologies. In terms of the objective function
in the VN embedding problem, our work is practical, because
our goal is to maximize revenue, which is natural for online
problem with admission control.

7. CONCLUSION
A key problem in the current study of network virtualiza-

tion, the VN embedding problem, has various constraints that
make it computationally intractable. In this paper, rather than
significantly restrict the problem space to make the problem
tractable, we rethink the VN embedding problem by propos-
ing a more flexible substrate network to better support vir-
tual network embedding. This flexibility includes path split-
ting and migration. From both the theoretical and engineering
perspective, we show that allowing substrate path splitting and
migration would help us to attain better resource utilization.
Through our publicly available simulator, we demonstrate the
benefits of these approaches in making the embedding prob-
lem computationally easier, and the resulting embeddings more
efficient. We also propose that customized node mapping al-
gorithms would improve the VN embedding performance and
show preliminary results. We are currently exploring more cus-
tomized node mapping algorithms dealing with common classes
of virtual-network topologies.
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