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Abstract—Rate Adaptation (RA) is a fundamental mechanism in 802.11 systems. It allows transmitters to adapt the coding and
modulation scheme as well as the MIMO transmission mode to the radio channel conditions, to learn and track the (mode, rate) pair
providing the highest throughput. The design of RA mechanisms has been mainly driven by heuristics. In contrast, we rigorously
formulate RA as an online stochastic optimization problem. We solve this problem and present G-ORS (Graphical Optimal Rate
Sampling), a family of provably optimal (mode, rate) pair adaptation algorithms. Our main result is that G-ORS outperforms
state-of-the-art algorithms such as MiRA and Minstrel HT, as demonstrated by experiments on a 802.11n network test-bed. The design
of G-ORS is supported by a theoretical analysis, where we study its performance in stationary radio environments where the
successful packet transmission probabilities at the various (mode, rate) pairs do not vary over time, and in non-stationary environments
where these probabilities evolve. We show that under G-ORS, the throughput loss due to the need to explore sub-optimal (mode, rate)
pairs does not depend on the number of available pairs. This is a crucial advantage as evolving 802.11 standards offer an increasingly
large number of (mode, rate) pairs. We illustrate the superiority of G-ORS over state-of-the-art algorithms, using both trace-driven
simulations and test-bed experiments.

Index Terms—Rate Adaptation, Multi-Armed Bandits, 802.11, Test-Bed.

F

1 INTRODUCTION

I N wireless communication systems, Rate Adaptation (RA) is
a fundamental mechanism allowing transmitters to adapt the

coding and modulation scheme to the radio channel conditions.
In 802.11 systems, the transmitter may choose from a finite set
of rates with the objective of identifying as fast as possible the
rate providing maximum throughput, i.e., maximizing the product
of the rate and the successful packet transmission probability.
The challenge stems from the fact that these probabilities are not
known a priori at the transmitter, and that they may evolve over
time. The transmitter has to learn and track the best transmission
rate, based on the measurements and observations made on the
successive packet transmissions. In 802.11 Multiple Input Multi-
ple Output (MIMO) systems (from 802.11n standard), the design
of RA mechanisms is further complicated by the fact that the
transmitter has to jointly select a rate and a MIMO mode (e.g.
a diversity-oriented single-stream mode or a spatial multiplexing-
oriented multiple-stream mode), and hence the best (mode, rate)
pair has to be learned and tracked. To simplify the terminology,
algorithms that adapt both the rate and MIMO mode are still
referred to as RA algorithms.

Over the last decade, a large array of RA mechanisms for
802.11 systems has been proposed. We may categorize these
mechanisms depending on the feedback and measurements from
past transmissions available at the transmitter, and actually used
to sequentially select rates for packet transmissions. Traditionally
in 802.11 systems, RA mechanisms are based on rate sampling
approaches, i.e., the (mode, rate) selection solely depends on the
number of successes and failures of previous packet transmissions
at the various available (mode, rate) pairs. Examples of such mech-
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anisms include Auto Rate Fall-back (ARF) [1] and SampleRate
[2]. As 802.11 standards evolve, the number of available (mode,
rate) pairs increases, and it has become quite large in 802.11n and
802.11ac, making the use of sampling approaches questionable.

A natural alternative to RA sampling approaches consists in
using channel measurements. So far, such measurements have not
been explicitly used in practice. The most accessible measurement,
the Receiver Signal Strength Indicator (RSSI), is known to lead to
poor predictions of the Packet Error Rate (PER) at the various rates
(see e.g. [3], [4], [5], [6], [7], [8]). These poor predictions are for
example due to the fact that RSSI is an indicator averaged over
the various Orthogonal Frequency-Division Multiplexing (OFDM)
frequency bands, and hence does not reflect frequency-selective
fading. Note that 802.11n Network Interface Controllers (NICs)
actually measure and report the channel quality at the OFDM sub-
carrier level (this indicator is often referred to as the Channel
State Information (CSI) in the literature), which provides better
information than the simple RSSI. CSI feedback could be used to
improve PER prediction accuracy, but incurs extra overhead, see
e.g. [3], [4], [7], [9], [10]. CSI feedback is actually supported by
very few 802.11 devices. A promising solution could then consist
in storing and using only parts of this information, as proposed for
example in [8].

As of now, it seems difficult to predict whether measurement-
based RA mechanisms will be widely adopted in the future, or
whether rate sampling approaches will continue to prevail. In
this paper, we investigate the fundamental performance limits
of sampling-based RA mechanisms. Our objective is to design
the best possible rate sampling algorithm, i.e., the algorithm that
identifies as fast as possible the (mode, rate) pair maximizing
throughput. Our approach departs from previous methods to
design RA mechanisms: in existing mechanisms, the way sub-
optimal (mode, rate) pairs are explored is based on heuristics. In
contrast, we look for the optimal way of exploring sub-optimal
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(mode, rate) pairs. Our main finding is that, perhaps surprisingly,
this rigorous approach yields RA mechanisms that outperform
state-of-the art algorithms such as MiRA and Minstrel HT, and
this claim is supported by experiments on a 802.11n test-bed.

We rigorously formulate the design of the best rate sampling
algorithm as an online stochastic optimization problem. In this
problem, the objective is to maximize the number of packets
successfully sent over a finite time horizon. We show that this
problem reduces to a Multi-Armed Bandit (MAB) problem [11].
In MAB problems, a decision maker sequentially selects an action
(or an arm), and observes the corresponding reward. Rewards
of a given arm are random variables with unknown distribution.
The objective is to design sequential action selection strategies
that maximize the expected reward over a given time horizon.
These strategies have to achieve an optimal trade-off between
exploitation (actions that have provided with high rewards so far
have to be selected) and exploration (sub-optimal actions have
to be chosen so as to learn their average rewards). For our RA
problem, the various arms correspond to the decisions available at
the transmitter to send packets, i.e., in 802.11a/b/g systems, an arm
corresponds to a modulation and coding scheme or equivalently to
a transmission rate, whereas in MIMO 802.11n systems, an arm
corresponds to a (mode, rate) pair. When a (mode, rate) pair is
selected for a packet transmission, the reward is equal to 1 if the
transmission is successful, and equal to 0 otherwise. The average
successful packet transmission probabilities at the various (mode,
rate) pairs are of course unknown, and have to be learnt.

The sequential (mode, rate) selection problem is referred to
as a structured MAB problem in the following, as it differs
from classical MAB problems. Indeed, the average throughputs
achieved at various rates exhibit natural structural properties. For
802.11a/b/g systems, the throughput is an unimodal function of
the selected rate. For MIMO 802.11n systems, the throughput
remains unimodal in the rates within a single MIMO mode, and
also satisfies some structural properties across modes. We model
the throughput as a so-called graphically unimodal function of
the (mode, rate) pair. As we demonstrate, graphical unimodality
is instrumental in the design of RA mechanisms, and can be ex-
ploited to learn and track the best rate or (mode, rate) pair quickly
and efficiently. Finally, most MAB problems consider stationary
environments, which, for our problem, means that the successful
packet transmission probabilities at different rates do not vary
over time. In practice, the transmitter faces a non-stationary
environment as these probabilities could evolve over time. We
consider both stationary and non-stationary radio environments.

We present the following contributions.
(i) We formulate the design of optimal RA algorithms as an

online stochastic optimization problem, referred to as a graphi-
cally unimodal Multi-Armed Bandit (MAB) problem (Section 3).

(ii) For stationary radio environments, where the successful
packet transmission probabilities using the various (mode, rate)
pairs do not evolve, we derive an upper performance bound satis-
fied by any sampling-based RA algorithm. This limit quantifies the
inevitable performance loss due to the need to explore sub-optimal
(mode, rate) pairs. It also indicates the performance gains that
can be achieved by devising RA schemes that optimally exploit
the structural properties of the MAB problem. As it turns out,
the performance loss due to the need to explore does not depend
on the number of available (mode, rate) pairs, i.e., on the size
of the decision space. This suggests that rate sampling methods
can perform well even if the number of decisions available

at the transmitter grows large. We present G-ORS (Graphical-
Optimal Rate Sampling) (Section 4), a RA algorithm applicable to
802.11 systems with single or multiple MIMO modes, and whose
performance matches the upper bound derived previously. Thus,
G-ORS is optimal. As it turns out, the performance of G-ORS
does not depend on the size of the decision space (the number
of available (mode, rate) pairs), which is quite remarkable, and
suggests that sampling-based RA mechanisms perform well even
when the decision space is large (Section 5).

(iii) For non-stationary radio environments where the success-
ful packet transmissions do vary over time, we propose SW-G-
ORS and EMWA-G-ORS (Section 4) two versions of G-ORS
adapted to non-stationary environments, and provide guarantees
on the performance of SW-G-ORS. We show that again, the latter
does not depend on the size of the decision space, and that the
best rate (or (mode, rate) pair) can be efficiently learnt and tracked
(Section 6).

(iv) We illustrate the efficiency of our algorithms through
simulations exploiting both artificially generated traces, and traces
extracted from test-beds (Section 7).

(v) Finally, we implement the proposed algorithms in a
802.11n test-bed, based on the open source Minstrel HT modules.
Again we verify that our algorithms outperform state-of-the-art
RA schemes, and work well in network scenarios (Section 8). We
made the drivers source code publicly available at [12].

2 RELATED WORK

In recent years, there has been a growing interest in the design
of RA mechanisms for 802.11 systems, motivated by the new
functionalities (e.g. MIMO, and channel width adaptation) offered
by the evolving standards.

Sampling-based RA mechanisms. ARF [1], one of the ear-
liest RA algorithms, consists in changing the transmission rate
based on packet loss history: a higher rate is probed after n
consecutive successful packet transmissions, and the next available
lower rate is used after two consecutive packet losses. In case of
stationary radio environments, ARF essentially probe higher rates
too frequently (every 10 packets or so). To address this issue,
AARF [13] adapts the threshold n dynamically to the speed at
which the radio environment evolves. Among other proposals,
SampleRate [2] sequentially selects transmission rates based on
estimated throughputs over a sliding window, and has been shown
to outperform ARF and its variants. The aforementioned algo-
rithms were initially designed for 802.11 a/b/g systems, and they
seem to perform poorly in MIMO 802.11n systems [10]. One
of the reasons for this poor performance is the non-monotonic
relation between PER and rate in 802.11n MIMO systems, when
considering all rate options and ignoring modes. When modes
are ignored, the PER does not necessarily increase with the rate.
As a consequence, RA mechanisms that ignore modes may get
stuck at low rates. To overcome this issue, the authors of [10]
propose MiRA, a RA scheme that zigzags between MIMO modes
to search for the best (mode, rate) pair. In the design of RAMAS
[14], the authors categorize the different types of modulations
into modulation-groups, as well as the MIMO modes into what
is referred to as enhancement groups; the combination of the
modulation and enhancement group is mapped back to the set
of the modulation and coding schemes. RAMAS then adapts these
two groups concurrently. As a final remark, note that in 802.11
systems, packet losses are either due to a mismatch between the
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rate selection and the channel condition or due to collisions with
transmissions of other transmitters. Algorithms such as MiRA
[10], H-RCA [15], LD-ARF [16], CARA [17], and RRAA [18]
explicitly distinguish between losses and collisions.

It is important to highlight the fact that in all the aforemen-
tioned RA algorithms, the way sub-optimal rates (or (mode, rate)
pairs) are explored to identify the best rate is based on heuristics.
This contrasts with the proposed algorithms, that are designed,
using stochastic optimization methods, to learn the best rate for
transmission as fast as possible. The way sub-optimal rates are
explored under our algorithms is optimal.

Measurement-based methods. As mentioned in the introduc-
tion, measurement-based RA algorithms could outperform sam-
pling approaches if the measurements (RSSI or CSI) used at the
transmitter could be used to accurately predict the PER achieved
at the various rates. However this is not always the case, and
measurement-based approaches incur an additional overhead by
requiring the receiver to send channel-state information back to the
transmitter. In fact, sampling and measurement-based approaches
have their own advantages and drawbacks. We report here a few
measurement-based RA mechanisms.

In RBAR [19] (developed for 802.11 a/b/g systems), Request
To Send/Clear To Send (RTS/CTS)-like control packets are used
to “probe” the channel. The receiver first computes the best rate
based on the SNR measured over an RTS packet and then informs
the transmitter about this rate using the next CTS packet. OAR
[20] is similar to RBAR, but lets the transmitter send multi-
ple back-to-back packets without repeating contention resolution
procedure. CHARM [21] leverages the channel reciprocity to
estimate the SNR value instead of exchanging RTS/CTS packets.
In 802.11n with MIMO, ARAMIS [8] uses in addition to the
SNR, a metric referred to as diffSNR to predict the PER at
each rate. The diffSNR corresponds to the difference between the
maximum and minimum SNRs observed on the various antennas
at the receiver. ARAMIS exploits the fact that environmental
factors (e.g., scattering, positioning) are reflected in the diffSNR.
Hybrid approaches combining SNR measurements and sampling
techniques have also been advocated, see [22]. It is also worth
mentioning cross-layer approaches, as in [23], where the Bit
Error Rate (BER) is estimated using information provided at the
physical layer.

In some sense, measurement-based RA schemes in 802.11
systems try to mimic RA strategies used in cellular networks.
However in these networks, more accurate information on channel
condition is provided to the base station [24]. Typically, the base
station broadcasts a pilot signal, from which each receiver mea-
sures the channel conditions. The receiver sends this measurement,
referred to as CQI (Channel Quality Indicator), back to the base
station. The transmission rate is then determined by selecting the
highest CQI value which satisfies the given Block Error Rate
(BLER) threshold, e.g., 10% in 3G systems. More complex, but
also more efficient rate selection mechanisms are proposed in [25],
[26]. These schemes predict the throughput more accurately by
jointly considering other mechanisms used at the physical layer,
such as HARQ (Hybrid Automatic Repeat Request).

Stochastic MAB problems. In this paper, we map the design
of sampling-based RA algorithms to a so-called graphically uni-
modal MAB problem. The connection between MAB problems
and RA algorithms has been mentioned in [27]. However, the

authors of [27] do not solve their MAB problem, and present
heuristic algorithms only.

There is an extensive literature on MAB problems, see [28] for
a survey. Stochastic MAB formalize sequential decision problems
where the decision maker has to strike an optimal trade-off
between exploitation and exploration. MAB problems have been
applied in many disciplines – their first application was in the
context of clinical trials [29]. Most existing theoretical results
concern unstructured MAB problems [30], i.e., problems where
the average reward associated with the various arms are not
related. For this kind of problems, Lai and Robbins [11] derived
an asymptotic lower bound on regret and also designed optimal
decision algorithms. The originality of our problem lies in its
structure: the average reward is a graphically unimodal function of
the decisions (here the (mode, rate) pairs. This structure is an ad-
vantage as it may be exploited to learn the best decision faster, but
it also brings additional theoretical challenges. When the average
rewards are structured, the design of optimal decision algorithms
is challenging. Unimodal bandit problems have received little
attention so far. In [31], the authors propose various heuristic
algorithms, that in turn do not provide good performance. We
recently proposed a solution to unimodal bandit problems in [32]:
we derived regret lower bounds and algorithms that approach these
performance limits. The present paper builds on these results.
Observe that the bandit problem corresponding to the design of RA
schemes enjoys a unimodal structure, but also has an additional
structure. Indeed, when selecting a rate r for transmission, the
expected reward (here the throughput) is the product of r and of
the successful packet transmission at this rate. This information
should be exploited in the design of RA schemes. We extend the
results of [32] to account for this additional structure. We also
study unimodal bandit problems in non-stationary environments,
where the average rewards of the different arms evolve over time.
Non-stationary environments have not been extensively studied in
the bandit literature. For unstructured problems, the performance
of algorithms based on UCB [33] has been analyzed in [34], [35],
[36] under the assumption that the average rewards are abruptely
changing. Here we consider more realistic scenarios where the
average rewards smoothly evolve over time. To our knowledge,
such scenarios have only been considered in [37], [38], however
those contributions do not consider unimodality, which is the main
structural assumption we wish to leverage.

3 PRELIMINARIES

3.1 Models
We consider a single link (a transmitter-receiver pair). At time 0,
the link becomes active and the transmitter has packets to send
to the receiver. For each packet, the transmitter has to select a
rate (for 802.11 a/b/g/ systems), or a MIMO mode and a rate (for
802.11n MIMO systems). The set of such possible decisions is
denoted by D, and is of cardinality D. The set of MIMO modes
isM (for 802.11 a/b/g systems, there is a single available mode)
and in mode m, the rate is selected from set Rm. For d ∈ D, we
write d = (m, k) when the mode m is selected along with the k-
th lowest rate inRm. Let rd be the rate selected under decision d.
After a packet is sent, the transmitter is informed on whether or not
the transmission has been successful. Based on the observed past
transmission successes and failures, the transmitter has to make
a decision for the next packet transmission. We denote by Π the
set of all possible sequential (mode, rate) pair selection schemes.
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Packets are assumed to be of unit size so that the duration of a
packet transmission at rate r is 1/r.

3.1.1 Channel models
For the i-th packet transmission using (mode, rate) pair d, a binary
random variable Xd(i) indicates the success (Xd(i) = 1) or
failure (Xd(i) = 0) of the transmission.

Stationary radio environments. In such environments, the
success transmission probabilities using the different (mode, rate)
pairs do not evolve over time. This arises when the system
considered is static (in particular, the transmitter and receiver
do not move). Formally, Xd(i), i = 1, 2, . . ., are independent
and identically distributed, and we denote by θd the success
transmission probability under decision d, θd = E[Xd(i)]. Let
µd = rdθd. We denote by d? the optimal (mode, rate) pair,
d? ∈ arg maxd∈D µd.

Non-stationary radio environments. In practice, channel con-
ditions may be non-stationary, i.e., the success probabilities could
evolve over time. In many situations, the evolution over time
is rather slow, see e.g. [27]. These slow variations allow us to
devise RA algorithms that efficiently track the best (mode, rate)
pair for transmission. In the case of non-stationary environments,
we denote by θd(t) the success transmission probability under
decision d, and by d?(t) the optimal (mode, rate) pair at time t.

Unless otherwise specified, we consider stationary radio envi-
ronments. Non-stationary environments are treated in Section 6.

3.1.2 Structural properties: Graphical Unimodality
Our problem is to identify as fast as possible the (mode, rate) pair
with the highest throughput. To this aim, we leverage a crucial
structural property of the problem. In practice, we observe that
the throughput vs. (mode, rate) pair function has a structure called
graphical unimodality.

Definition. Graphical unimodality is defined through an undi-
rected graph G = (D, E), whose vertices correspond to the
available decisions ((mode, rate) pairs). When (d, d′) ∈ E, we
say that the two decisions d and d′ are neighbours, and we let
N (d) = {d′ ∈ D : (d, d′) ∈ E} be the set of neighbours of
d. Graphical unimodality means that when the optimal decision
is d?, then for any d ∈ D, there exists a path in G from d
to d? along which the expected throughput is strictly increasing.
In other words there is no local maximum in terms of expected
throughput except at d?. Therefore, the maximum of the expected
throughput can be found using local search in G. Formally,
θ ∈ UG, where UG is the set of parameters θ ∈ [0, 1]D such
that, if d? = arg maxd µd, for any d ∈ D, there exists a path
(d0 = d, d1, . . . , dp = d?) in G such that for any i = 1, . . . , p,
µdi > µdi−1

. For instance, if D = {1, . . . , |D|} and G is a
line graph, graphical unimodality reduces to classical unimodality
i.e. d 7→ µd is strictly increasing on {1, . . . , d?} and strictly
decreasing on {d?, . . . , |D|}.

Graphical unimodality in 802.11. In the case of 802.11 sys-
tems with a single mode, i.e., 802.11g and earlier standards, the
throughput is a unimodal function of the rates, which is well
known, see e.g. [10], and hence graphical unimodality holds.
The corresponding graph G is a line as illustrated in Fig. 1. In
802.11n MIMO systems, we can find a graph G such that the
throughput obtained at various (mode, rate) pairs is graphically
unimodal with respect to G. Such a graph is presented in Fig. 1,
for systems using two MIMO modes, a single-stream (SS) mode,

and a double-stream (DS) mode. It has been constructed exploiting
various observations and empirical results from [8], [10]. First, for
a given mode (SS or DS), the throughput is unimodal in the rate.
Then, when the SNR is relatively low, it has been observed that
using SS mode is always better than using DS mode; this explains
why for example, the (mode, rate) pair (SS,13.5) has no neighbour
in the DS mode. Similarly, when the SNR is very high, then it is
always optimal to use DS mode. Finally when the SNR is neither
low nor high, there is no mode that clearly outperforms the other,
which explains why we need edges between the two modes in the
graph.

Fig. 1: Graphs G providing unimodality in 802.11g systems
(above) and MIMO 802.11n systems (below). Rates are in Mbit/s.
In 802.11n, two MIMO modes are considered, single-stream (SS)
and double-stream (DS) modes.

It is tempting to exploit another structural property of the
throughput function. If a transmission is successful at a high
rate, it has to be successful at a lower rate, and similarly, if
a low-rate transmission fails, then transmitting at a higher rate
would also fail. We refer to this property as “monotonicity”.
Formally this means that for any m ∈ M, θ(m,k) > θ(m,l)

if k < l, or equivalently that θ = (θd, d ∈ D) ∈ T , where
T = {η ∈ [0, 1]D : η(m,k) > η(m,l),∀m ∈ M,∀k < l}.
Unfortunately, this structural property does not always hold [15].
There, it is shown that the rates 9 and 18 Mbps are redundant, and
do not satisfy the monotonicity property. Hence we ignore this
property, and focus on exploiting the graphical unimodal structure
of the problem.

3.2 Objectives

We now formulate the design of the best (mode, rate) pair
selection algorithm as an online stochastic optimization problem.
An optimal algorithm maximizes the expected number packets
successfully sent over a given time horizon T . The choice of T is
not really important as long as during an interval of duration T , a
large number of packets can be sent – so that inferring the success
transmission probabilities efficiently is possible.

Under a given RA algorithm π ∈ Π, the number of
packets γπ(T ) successfully sent up to time T is: γπ(T ) =∑
d

∑sπd (T )
i=1 Xd(i), where sπd (T ) is the number of transmission

attempts at (rate, mode) d before time T . The sd(T )’s are
random variables (since the rates selected under π depend on the
past random successes and failures), and satisfy the following
constraint:

∑
d s

π
d (T ) × 1

rd
≤ T . Wald’s lemma implies that

E[γπ(T )] =
∑
d E[sπd (T )]θd.
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Thus, our objective is to design an online algorithm solving
the following stochastic optimization problem:

max
π∈Π

∑
d

E[sπd (T )]θd, (1)

s.t. sπd (T ) ∈ N,∀d ∈ D and
∑
d

sπd (T )× 1

rd
≤ T.

3.3 Graphically Unimodal Multi-Armed Bandit
We now show that problem (1) is asymptotically (for large T )
equivalent to a graphically unimodal MAB problem. Consider an
alternative system where the duration of a packet transmission at
any rate is one slot, and where decisions are taken at the beginning
of each slot. When rate r is selected, and the transmission is
successful, the reward is incremented by an amount of r bits.
In this alternative system, the objective is to design π ∈ Π solving
the following optimization problem.

max
π∈Π

∑
d

E[tπd (T )]rdθd, (2)

s.t. tπd (T ) ∈ N,∀d ∈ D, and
∑
d

tπd (T ) ≤ T,

where tπd (T ) denotes the number of times decision d has been
taken up to slot T . If the same algorithm π is applied both in
the original and alternative systems, we simply have: tπd (T ) =
sπd (T )/rd, assuming without loss of generality that 1/rd is an
integer number of slots. The optimization problem (2) corresponds
to a MAB problem (see below for a formal definition). To assess
the performance of π ∈ Π, it is usual in the MAB literature to
use the notion of regret. The regret up to slot T compares the
performance of π to that achieved by an Oracle algorithm always
selecting the best (mode, rate) pair. The regretsRπ1 (T ) andRπ(T )
of algorithm π up to time slot T in the original and alternative
systems are then:

Rπ1 (T ) = θd?brd?T c −
∑
d

θdE[sπd (T )],

Rπ(T ) = θd?rd?T −
∑
d

θdrdE[tπd (T )].

In the next section, we show that for any π ∈ Π, an asymptotic
lower bound of the regret Rπ(T ) is of the form c(θ) log(T )
where c(θ) is a strictly positive constant. It will also be shown
that there exists an algorithm π ∈ Π that actually achieves
this lower bound in the alternative system, in the sense that
lim supT→∞Rπ(T )/ log(T ) ≤ c(θ). In such a case, we say
that π is asymptotically optimal. The following lemma states
that the same lower bound holds in the original system, and that
any asymptotically optimal algorithm in the alternative system is
also asymptotically optimal in the original system. All proofs are
presented in Appendix.
Lemma 3.1. Let π ∈ Π. For any c > 0, we have:(

lim inf
T→∞

Rπ(T )

log(T )
≥ c
)

=⇒
(

lim inf
T→∞

Rπ1 (T )

log(T )
≥ c
)
,(

lim sup
T→∞

Rπ(T )

log(T )
≤ c
)

=⇒
(

lim sup
T→∞

Rπ1 (T )

log(T )
≤ c
)
.

In view of the above lemma, instead of trying to solve (1),
we can rather focus on analyzing the MAB problem (2). We
know that optimal algorithms for (2) will also be optimal for
the original problem. Our MAB problem, whose specificity lies

in its structure, i.e., in the correlations and graphical unimodality
of the throughputs obtained using different (mode, rate) pairs, is
summarised below.

(PG) Graphically Unimodal MAB. We have a set D of possible
decisions. If decision d is taken for the i-th time, we receive a
reward rdXd(i). (Xd(i), i = 1, 2, ...) are i.i.d. with Bernoulli dis-
tribution with mean θd. The structure of rewards across decisions
are expressed through θ ∈ UG for some graph G. The objective
is to design an algorithm π minimizing the regret Rπ(T ) over all
possible algorithms π ∈ Π.

4 G-ORS ALGORITHMS

We propose G-ORS (Graphical-Optimal Rate Sampling), a family
of (rate, mode) selection algorithms which can be adapted to both
stationary and non-stationary environments.

4.1 Algorithm description

G-ORS algorithms use three statistics in order to select a decision
at time slot n: td(n) which is the number of times decision
d has been selected under G-ORS up to slot n, µ̂d(n) the
empirical average reward using decision d up to slot n. More
precisely µ̂d(n) equals rd times the empirical success probability
using decision d up to slot n. The leader L(n) at slot n is the
decision with maximum empirical average reward µ̂d(n) (ties
broken arbitrarily). The last statistic is ld(n), the number of
times decision d has been the leader up to slot n. The precise
definitions of td(n), µ̂d(n) and ld(n) are given in the next
subsections, and allow to adapt the algorithm to both stationary
and non-stationary environments. Introduce, for any d ∈ D, the
set M(d) = N (d) ∪ {d}. Finally, let γ be the maximum degree
of a vertex in G. The G-ORS algorithm assigns an index to each
decision d and the index bd(n) of decision d in time slot n is
given by bd(n) = F (td(n), µ̂d(n), lL(n)(n), rd) where:

F (t, µ, l, r) = max
{
q ∈ [0, r] : tI

(µ
r
,
q

r

)
≤ log l + c log log l

}
,

(3)

with c ≥ 3 a positive constant, and I the Kullback-Leibler (KL)
divergence between two Bernoulli distributions with respective
means p and q:

I(p, q) = p log
p

q
+ (1− p) log

1− p
1− q

.

For the n-th slot, G-ORS essentially selects the decision in the
neighborhood of the leader with maximal index and is described
in Algorithm 1. Ties are broken arbitrarily.

Algorithm 1 G-ORS algorithm

For n = 1, . . . , D:
Select (mode, rate) pair d(n) = n.

For n ≥ D + 1:
L(n) ∈ arg maxd∈D µ̂d(n);
d̄ ∈ arg maxd∈M(L(n)) bd(n);
Select (mode, rate) pair

d(n) =

{
L(n) if (lL(n)(n)− 1)/γ ∈ N,
d̄ otherwise.
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4.2 G-ORS Design Principles

The rationale of G-ORS comes from Theorem 5.1, stated in the
next section. This theorem quantifies the minimal number of times
each sub-optimal decision d 6= d? should be explored. More
precisely, we show in the proof of Theorem 5.1 that d should
be explored log(T )/I(θd, µd?/rd) times if d is a neighbor of d?

inG, and a sub-logarithmic number of times otherwise. Now since
d? is unknown, the leader L(n) is used as a surrogate. To check
if L(n) = d?, G-ORS selects the neighbor of L(n) with largest
index bd(n). The index bd(n) is a high probability confidence
upper bound for µd, so that selecting the decision with highest
index ensures that the best neighbor of L(n) will be discovered
after exploring for a sufficiently long time. Therefore G-ORS
conducts a local search in graph G by exploring neighbors of
the current leader, and moves towards decisions which are better
than the current leader. In fact, asymptotically, the proportion of
time where L(n) 6= d? is negligible, so that only neighbors of
d? incur significant regret (see Theorem 5.2). Also, if G is the
complete graph, the problem reduces to a classical MAB, and G-
ORS reduces to a variant of KL-UCB, an asymptotically optimal
for classical MABs [39].

4.3 Variants

Depending on the definition of the statistics td(n), µ̂d(n) and
ld(n), we now define several variants of G-ORS. Let d(t) denote
the (mode, rate) pair selected at time t under G-ORS.

4.3.1 Basic G-ORS

The basic G-ORS algorithm, which is adequate for stationary
environments is obtained by computing the statistics using the
complete history from time slot 1 to n, so that:

td(n) =
∑n

t=0
1{d(t) = d}

µ̂d(n) =
∑n

t=0

rd
td(n)

Xd(t)1{d(t) = d}

ld(n) =
∑n

t=0
1{L(t) = d}.

4.3.2 SW-G-ORS

The SW-G-ORS algorithm (Sliding Window G-ORS) is adequate
for non-stationary environments and computes statistics (denoted
with a .τ superscript) on a sliding window of size τ :

tτd(n) =
∑n

t=n−τ
1{d(t) = d}

µ̂τd(n) =
∑n

t=n−τ

rd
tτd(n)

Xd(t)1{d(t) = d}

lτd(n) =
∑n

t=n−τ
1{Lτ (t) = d}.

Indeed a natural and efficient way of tracking the changes of θ(t)
over time is to select a decision at time t based on observations
made over a fixed time window preceding t, i.e., to account for
transmissions that occurred between time slots t−τ and t, see e.g.
[36]. The time window τ is chosen empirically: it must be large
enough (to accurately estimate throughputs), but small enough
so that the channel conditions do not vary significantly during
a period of duration τ .

4.3.3 EWMA-SW-ORS

One issue with SW-G-ORS is that it requires us to keep and
constantly update in memory the history of all transmissions and
their outcomes over the last time window. This can becomes
even impossible for large windows. A classical way to circumvent
this problem is to use Exponentially Weighted Moving Averages
(EWMAs) instead of sliding windows [36]. When using EWMA
in the computation of quantities such as µ̂d(n), past transmissions
are discounted at a rate parametrized by α > 0 based on the time
epochs they occurred:

tαd (n) = (1− α)tαd (n− 1) + α1{d(t) = d}
ρ̂αd (n) = (1− α)ρ̂αd (n− 1) + αrdXd(t)1{d(t) = d}
lαd (n) = (1− α)lαd (n− 1) + α1{Lα(t) = d}
µ̂αd (n) = ρ̂αd (n)/tαd (n).

with the convention that tαd (0), ρ̂αd (0) and lαd (0) are 0. In Section
8, we present another practical way to discount past transmissions
so as to get an algorithm with memory requirement as light as that
of EWMA-G-ORS, and that mimics the behavior of SW-G-ORS.

5 STATIONARY RADIO ENVIRONMENTS

We consider here stationary radio environments, and first derive
a lower bound on regret satisfied by any (mode, rate) selection
algorithm. Then, we show that the regret of G-ORS matches the
derived lower bound.

5.1 Regret lower bound

To derive a lower bound on regret for MAB problem (PG), we
first introduce the notion of uniformly good algorithms [11]. An
algorithm π is uniformly good, if for all parameters θ, for any
α > 0, we have1: E[tπd (T )] = o(Tα),∀d 6= d?, where tπd (T ) is
the number of times decision d has been chosen up to time slot T ,
and d? denotes the optimal decision (d? depends on θ). Uniformly
good algorithms exist as we shall see later on. We further define,
for any d ∈ D, the set N(d) = {d′ ∈ N (d) : µd ≤ rd′}.

Theorem 5.1. Let π ∈ Π be a uniformly good sequential decision
algorithm for the MAB problem (PG). We have:

lim sup
T→∞

Rπ(T )

log(T )
≥ cG(θ),

where cG(θ) =
∑
d∈N(d?)

rd?θd?−rdθd
I(θd,

rd?θd?
rd

)
.

The number of terms in the sum cG(θ) is at most equal to the
degree of the graph G. In particular, in case of 802.11 systems
with a single mode, G is a line, and cG(θ) has at most two terms.
In MIMO 802.11n systems, cG(θ) has at most 4 terms if G is the
graph presented in Fig. 1. More generally, the regret lower bound
does not depend on the number of available decisions, which is
an important property as this number can be quite large. Note
that to obtain this lower bound, the graphical unimodality of the
throughput plays an important role. Indeed, without structure, the
lower bound on regret scales linearly with the number of available
decisions, see [11].

1. f(T ) = o(g(T )) means that limT→∞ f(T )/g(T ) = 0.
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5.2 Regret analysis of G-ORS
Next we show that the regret of G-ORS matches the lower bound
derived in Theorem 5.1, i.e., under G-ORS, the way suboptimal
(rate, mode) pairs are explored to identify the best pair d? is
optimal. The next theorem states that the regret achieved under
G-ORS matches the lower bound derived in Theorem 5.1. G-ORS
is hence asymptotically optimal.

Theorem 5.2. Fix θ ∈ UG. The regret of algorithm π = G-ORS
satisfies:

lim sup
T→∞

Rπ(T )

log(T )
≤ cG(θ).

It is worth noting again that the regret of G-ORS does not
depend on the size of the decision space, which, as already
mentioned, constitutes a highly desirable property. In the proof
of the above theorem, we actually get a more precise bound
on Rπ(T ): it is shown that for any ε > 0, Rπ(T ) ≤ (1 +
ε)cG(θ) log(T ) +O(log(log(T ))).

6 NON-STATIONARY RADIO ENVIRONMENTS

In this section, we consider non-stationary radio environments
where the transmission success probabilities θ(t) at various
(mode, rate) pairs evolve over time. We show that SW-G-ORS
efficiently tracks the best mode and rate for transmission, provided
that the speed at which θ(t) evolves remains controlled. To sim-
plify the presentation, we present the algorithm in the alternative
system (see Section 3), where time is slotted, and at the beginning
of each slot, a (mode, rate) pair is selected, i.e., we study non-
stationary versions of MAB problem (PG).

6.1 Objective
We denote by Xd(t) the binary r.v. indicating the success or
failure of a transmission using (mode, rate) pair d at the t-
th slot. (Xd(t), t = 1, 2, . . .) are independent with evolving
mean θd(t) = E[Xd(t)]. Let µd(t) = rdθd(t). The objective
is to design a sequential decision scheme minimizing the non-
stationary regret RπNS(T ) over all possible algorithms π ∈ Π,
where

RπNS(T ) =
T∑
t=1

(
µd?(t)(t)− µdπ(t)(t)

)
,

and d?(t) (resp. dπ(t)) denotes the best decision (resp. the
decision selected under π) at time t. d?(t) = arg maxd µd(t).
The above definition of regret is not standard: the regret is exactly
equal to 0 only if the best transmission decision is known at
each time. This notion of regret really quantifies the ability of
the algorithm π to track the best decision. In particular, as shown
in [36], under some mild assumptions on the way θ(t) varies,
we cannot expect to obtain a regret that scales sub-linearly with
time horizon T . The regret is linear, and what we really wish to
minimize is the regret per unit time RπNS(T )/T .

6.2 Assumptions
To analyze the performance of SW-G-ORS, we make the following
assumptions. θ(t) varies smoothly over time. For any d, θd(t) is σ-
Lipschitz (i.e., |θd(t′)−θd(t)| ≤ σ|t′−t|). We further assume that
graphical unimodality holds at all time, in the sense that for any
t, θ(t) ∈ ŪG, where ŪG is the smallest closed set containing UG

(taking the closure of UG is needed: the optimal decision changes,
and hence at some times, two decisions may have the same average
throughput). Finally, we assume that the proportion of time where
two decisions are not well separated (they have similar throughput)
is controlled in the following sense: there exists ∆0 and C > 0
such that for any ∆ ≤ ∆0, for any d and d′ ∈ N(d),

lim sup
T→∞

1

T

T∑
n=1

1{|µd(n)− µd′(n)| ≤ ∆} ≤ C∆.

This assumption is natural, and typically holds in practice: the
constant C characterizes the proportion of time when the through-
puts achieved under d and d′ cross each other. In MAB problems,
it is in general problematic to have decisions with very similar
average rewards, and this constitutes the main difficulty in the
regret analysis in non-stationary environments where rewards of
various decisions cross each other. The above assumptions are
only required to provide a theoretical regret analysis of SW-G-
ORS and do not impact its practical applicability as σ, C and ∆
are not input parameters of SW-G-ORS (or EMWA-G-ORS).

6.3 Regret analysis of SW-G-ORS

Theorem 6.1. Under the above assumptions, the non-stationary
regret under π =SW-G-ORS satisfies:

lim sup
T→∞

RπNS(T )

T
≤ C ′σ1/4 log(1/σ),

where the constant C ′ > 0 is uniform in σ.

Note that σ1/4 log(1/σ) tends to 0 as σ → 0, which indicates
that the regret per unit of time vanishes when we slow down the
evolution of θ(t), i.e., SW-G-ORS tracks the best decision if θ(t)
evolves slowly. Also observe that the performance guarantee on
SW-G-ORS does not depend on the size of the decision space
(i.e., on D). The proof of the above theorem is long and technical,
and is omitted here. It is presented in details in [40], and follows
similar techniques as those used in the proof of Theorem 5.1 in
[32].
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(a) Generated non-stationary trace
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Fig. 3: Artificially generated non-stationary scenario: (a) the
generated non-stationary trace evolving from “steep” to “gradual”
to “lossy”; and (b) throughput of SW-G-ORS, SampleRate, and
Oracle.

7 TRACE-BASED EVALUATION

In this section, we evaluate the performance of RA algorithms
using both artificially generated data and test-bed traces. The
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Fig. 2: Regret in 802.11g systems for SampleRate, G-ORS, and SW-G-ORS in three different stationary scenarios: (a) steep; (b) gradual;
and (c) lossy scenarios. The unit of regret is 0.5 Kbits.

test-bed traces contain, at each time, the outcomes of transmis-
sions for the various possible decisions. Hence, this trace-based
evaluation allows a fair performance comparison of the different
RA algorithms. It further provides the opportunity to assess the
performance of an Oracle algorithm always selecting the decision
with the highest expected throughput, and thus to quantify the
regret of the various algorithms.

7.1 802.11g systems

We start with 802.11g systems with 8 available rates, namely
{6, 9, 12, 18, 24, 36, 48, 54}Mbits/s. We test four RA algorithms:
G-ORS, SW-G-ORS, SampleRate [2], and Oracle. We use the
simple line graph depicted in the upper part of Fig. 1 for both of
G-ORS and SW-G-ORS. As proposed in [2], the sliding window
size is set equal to 10s for SW-G-ORS and SampleRate.

7.1.1 Synthetic traces
Stationary environments. We consider three typical scenarios with
stationary radio environments as defined in [2]: steep, gradual,
and lossy. In steep scenarios, the success probability is either very
high or very low. In gradual scenarios, the success probability
decreases slowly as the rate increases, and the optimal rate has
a success probability higher than 0.5. In lossy scenarios, the best
rate has a low success probability, i.e., less than 0.5. We generate
three synthetic traces using the success probabilities:

θsteep = (.99, .98, .96, .93, .90, .10, .06, .04),

θgradual = (.95, .90, .80, .65, .45, .25, .15, .10),

θlossy = (.90, .80, .70, .55, .45, .35, .20, .10),

for steep, gradual, and lossy scenarios, respectively (the success
probability of the optimal rate is highlighted in bold).

Fig. 2 presents the regret of the RA algorithms for each of the
three traces. SampleRate explores a new rate at every tenth packet
transmission, and hence, SampleRate has a regret increasing lin-
eary with time. G-ORS and SW-G-ORS explore rates in an optimal
manner, and significantly outperform SampleRate. The regret of
G-ORS grows sub-linearly with time as shown in Theorem 5.2.
The regret difference between G-ORS and SW-G-ORS is small
and hence the use of a sliding window does not seem to be very
detrimental in stationary environments. Observe that according
to Theorem 5.1, the optimal rate in the steep scenario can be
identified with a lower regret (if one uses an efficient algorithm),

i.e., cG(θsteep) ≤ cG(θgradual) and cG(θsteep) ≤ cG(θlossy). This
observation is confirmed by our experiments.

Non-stationary environments. We generate a non-stationary trace
with time-varying success probabilities θ(t), which smoothly
evolve from “steep” to “gradual” to “lossy” as depicted in
Fig. 3(a). In Fig. 3(b), we plot the performance of SW-G-ORS, Or-
acle and SampleRate. SW-G-ORS exhibits a performance almost
equal to that of the Oracle algorithm and significantly outperforms
SampleRate. The performance of SampleRate is particularly poor
in the last phase corresponding to a lossy scenario. This is
because SampleRate excludes a rate whose four recent successive
transmissions have failed even if it is the best rate, and hence it
cannot perform well in lossy environments.

7.1.2 Test-bed traces
We now present the results obtained from the traces of our 802.11g
test-bed, consisting of two 802.11g nodes (SparkLAN WPEA
123AG/E) connected in ad-hoc mode. We collect two traces: (a)
to generate a stationary environment, we fix the positions of the
two nodes so that the successful packet transmission probabilities
are roughly constant over time; (b) to generate a non-stationary
environment, we move the receiver at the speed of a pedestrian.
The traces record the packet loss history at each rate (we suc-
cessively send multiple packets of size 1500 bytes, using the 8
available rates in a round robin manner). The traces and results are
presented in Fig. 4. Again, in both scenarios, SW-G-ORS clearly
outperforms SampleRate, and exhibits a performance almost equal
to that of the Oracle algorithm.

7.2 802.11n MIMO systems
Next, we investigate the performance of SW-G-ORS in 802.11n
systems, supporting both MIMO transmission and packet aggre-
gation. We consider 16 (mode, rate) pairs with two MIMO modes,
SS and DS, as in [8], [10], and an aggregated Medium Access
Control (MAC) protocol data unit (A-MPDU) frame consisting
of 30 subframes of size 1KB each. We plot the performance of
four RA algorithms: SW-G-ORS, SampleRate [2], MiRA [10] and
Oracle. For SW-G-ORS, we use the graph G depicted in the lower
part of Fig. 1. The size of the sliding window for SW-G-ORS and
SampleRate is taken equal to 1 second for fair comparison. It is
noted that MiRA is specifically designed for 802.11n systems [10]
and jointly performs both rate adaptation and packet aggregation.
For a fair comparison, we extract the rate adaptation algorithm
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Fig. 4: 802.11g test-bed traces and results: (left) instantaneous throughput of every rate, and (right) instantaneous throughput of the
various RA algorithms in (a) stationary; and (b) non-stationary environments.

from MiRA. It is noted that the design of MiRA is based on
some assumptions on the problem structure: a locally monotonic
structure is assumed (see 3.1.2) so that so that transmission
at a higher rate (using the same MIMO mode) results in a
lower success transmission probability. If this assumption fails,
MiRA may fail to identify the optimal decision. MiRA samples
the various decisions and computes confidence intervals for the
success probability of each decision. To do so, the expectation
and standard deviation are estimated using EWMAs with discount
factors α = 1/8 and β = 1/4, respectively. Once the best rate
for each mode has been identified with high confidence, MiRA
zig-zags between neighboring modes to find the best mode. We
implement the RA algorithm of MiRA using the same choice of
parameters as suggested in [10].

We perform trace-based benchmarks, using both synthetic and
test-bed traces. To generate synthetic traces, we use a mapping
between the channel measurement (SNR and diffSNR) 2 and the
success probability. This mapping was obtained by the authors
of [8]. Namely, given decision d, its success probability is given
by a known function of d, SNR and diffSNR (the latter two
do not depend on d). To generate a stationary environment, we
fix a value of SNR and diffSNR, and generate packet losses
using the corresponding success probabilities. To generate a non-
stationary environment, we vary the values of SNR and diffSNR
smoothly, and generate packet losses using the corresponding
evolving success probabilities. We also directly use test-bed traces
which were used to obtain the mapping mentionned above in [8].
Here each trace corresponds to a different stationary environment.
We generate a non-stationary trace by smoothly concatenating 5
stationary traces.

The results are presented in Fig. 5, where the throughput at a
given time is computed by averaging over a time window of 0.5
seconds. In stationary environments, while every RA algorithm
is able to find the best decision given enough time, SW-G-ORS
learns the best decision much faster than MiRA and SampleRate,
since these algorithms do not explore decisions in an optimal way.
In non-stationary scenarios, the throughput of SW-G-ORS is very
close to that of the Oracle. MiRA and SampleRate are more or
less able to track the best decision but the performance loss with
respect to SW-G-ORS is significant.

8 TEST-BED EXPERIMENTS

To assess the practical gains obtained by G-ORS algorithms, we
conduct experiments in an indoor 802.11n test-bed. The perfor-

2. diffSNR is the maximal gap between the SNRs measured at the various
antennas.

mance of G-ORS algorithms is compared to that of (i) Minstrel
HT [41], the default RA algorithm implemented in the 802.11n
wireless driver of the current linux kernel, (ii) Atheros MIMO RA,
often included in the linux kernel as an alternative option, and (iii)
MiRA [10], which has recently been made publicly available [42].
MiRA has been briefly described in the previous section (Sec-
tion 7.2). The RA algorithms in Minstrel HT and Atheros MIMO
are similar: they estimate the expected throughputs achieved at
the various (mode, rate) pairs using EWMAs, and probe randomly
selected (mode, rate) pairs to track the optimal pair. In Minstrel
HT, new pairs are probed periodically and when packet losses
are observed at the current best empirical (mode, rate) pair. In
Atheros MIMO RA, new pairs are also probed periodically, when
the throughput at the current best empirical (mode, rate) pair
goes below a given threshold. This contrasts with G-ORS which
optimally probes adjacent (mode, rate) pairs, and exploits the
unimodal structure efficiently, as highlighted by our theoretical
analysis.

8.1 Implementing G-ORS algorithms
We implement G-ORS algorithms by modifying Minstrel HT [41],
a popular open source RA algorithm for 802.11n systems. Using
Minstrel as a foundation, we simply modify its RA module and
we leave all the other Minstrel modules unchanged, including the
frame aggregation module and the adaptive RTS/CTS module.

Selecting the graph G. To implement G-ORS algorithms, we
first need to choose a graph G such that the throughput is a
graphically unimodal function w.r.t. G. According to the regret
analysis presented earlier, we can achieve a better performance
if we select the sparsest of such graphs. Note however, the
graphical unimodality of the throughput function is critical for
the algorithm to work well; hence it is safer to select a denser
graph G – this leads to a more robust algorithm. In our im-
plementation, we add some redundant edges to the graph de-
scribed in Fig. 1. More precisely, in the implemented graph G,
a (mode, rate) pair is connected to at most 8 closest pairs: 4
with higher rates, and 4 lower rates with a tie-breaking rule of
favoring DS over SS. For example, the neighbors of (SS, 13.5)
are {(SS, 27), (DS, 27), (SS, 40.5), (SS, 54)}, and the neigh-
bors of (SS, 108) are {(DS, 81), (SS, 81), (DS, 54), (SS, 54)} ∪
{(DS, 108), (SS, 121.5), (SS, 135), (DS, 162)}.

Efficient implementation of a sliding window. Implementing a
real sliding window as that described in SW-G-ORS requires
to store and process every transmission in the corresponding
time window; and the number of transmissions per second can
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Fig. 5: Instantaneous throughput of the various RA algorithms in 802.11n systems: (left) stationary environments, and (right) non-
stationary environments along (a) artificial traces; and (b) test-bed traces.

be up to several thousands. In practice, it is wiser to discount
previous transmissions based on the time they occurred. Indeed,
this allows to maintain simple indexes for each decision, as done
by EWMA-G-ORS, and removes the need to store in memory
the outcomes of all transmissions that occurred within a time
window. For example, EWMA-G-ORS and MiRA [10] are based
on discounting past transmissions at an exponential rate. But
roughly speaking, the way that transmissions are discounted does
not significantly impact the performance in practice provided that
the “average” discount factor is preserved [36]. Here, we have
an additional difficulty: transmissions do not occur regularly over
time, since the duration of a transmission depends on the chosen
rate, and it is important that a transmission is discounted w.r.t.
to time, rather than its sequence number (as done in EWMA-G-
ORS). This is because sliding windows are implemented to cope
with non-stationary channel conditions that vary over time.

To circumvent this issue, we propose the following approx-
imate implementation of SW-G-ORS. The main idea underlying
this approximate implementation is to assume packet transmis-
sions using a decision d are regularly spaced over time. Let tn
denote the time at which we receive the feedback for the n-th
transmitted frame (A-MPDU packet), and let ηd(n) denote the
number of packets or sub-frames in the n-th frame sent using
decision d. It is noted that packets within the same frame use
the same decision d, so that ηd(n) is the number of packets of
the n-th frame if the latter uses d, and is equal to 0 otherwise.
Finally, as previously let tτd(n) be our approximate number of
packet transmissions using d between time tn − τ and tn. To
express tτd(n) as a function tτd(n − 1), assume that the packet
transmissions tτd(n − 1) using d are regularly spaced over time
within time interval (tn−1 − τ, tn−1). With this assumption, we
get:

tτd(n) =

(
1− tn − tn−1

τ

)
tτd(n− 1) + ηd(n).

The other relevant statistics µ̂τd(n) and lτd(n) are updated in the
same manner. For simplicity, until the end of this section, we refer
to this new approximate algorithm as “SW-G-ORS”, whenever
doing so does not create confusion.

8.2 Test-bed Setup

The indoor 802.11n test-bed consists of one Access Point (AP)
and ten clients in the ICT building of KAIST in South Korea
as depicted in Fig. 6. The AP and clients are implemented on
a desktop computer and laptops, respectively. All of them are

operated by Ubuntu 12.04 LTS with Linux kernel 3.11.6. They
are equipped with the Qualcomm Atheros AR9280 2.4/5GHz
chipset supporting 802.11n 2 × 2 MIMO, where both SS and
DS MIMO modes are available. Note that since several basic
functionalities such as floating point arithmetic and computation of
logarithms are unavailable in kernel mode, we have implemented
data structures and functions from scratch to allow us to use such
basic functionalities.

To avoid external interference, we use the 5.4GHz frequency
band, which is typically not available in South Korea3. We
generate both UDP and TCP network traffic. We use the popular
network measurement tool iperf [43] with default settings, where
TCP sessions have a packet length of 128 KB, and UDP sessions
have a packet length of 8 KB and a sufficient injection rate of
200 Mbit/s. More details about the traffic scenarios are provided
below.

8.3 Experiment Results
We evaluate the various RA algorithms in three scenarios, de-
pending on the number of interfering links, and on the nature
of the evolving channel conditions (stationary vs. non-stationary).
We report averaged performance (UDP/TCP goodputs) from 200
measurements over 100s with 95% confidence intervals.

(a) Stationary single link. In this scenario, the AP sends data
packets to 9 clients. The positions of all nodes are fixed as shown
in Fig. 6. We measure the average UDP and TCP goodput over
100s on each of the 9 downlink streams (from AP to clients).
The results are plotted in Fig. 7. For almost all links, SW-G-
ORS outperforms the other RA algorithms for both UDP and
TCP traffic. The superiority of SW-G-ORS is flagrant for the
link AP-P4. For this link, the other algorithms cannot find the
optimal (mode, rate) pair possibly due to the fact that they assume
a monotonic structure, which sometimes does not hold in practice.
More specifically, MiRA assumes local monotonicity, so that
transmission at a higher rate (using the same MIMO mode) results
in a lower success transmission probability, and other algorithms
assume global monotonicity, so that transmission at a higher rate
(using any MIMO mode) results in a lower success transmission
probability. On the contrary, SW-G-ORS manages to identify the
best pair in all scenarios, and it is the only algorithm to find the
best pair for AP-P4. For this link, SW-G-ORS provides a 34%
UDP goodput gain over Minstrel HT, 44% over MiRA and 74%
over Atheros MIMO RA.

3. We were granted the permission to perform this experiment by the Korean
Communications Commission.
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Fig. 7: Test-bed experiments, stationary single link scenario: goodput of (a) UDP and (b) TCP sessions on each link with 95% confidence
intervals.
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Fig. 6: Floorplan of the indoor 802.11n test-bed used for scenarios
(a) and (b).

(b) Non-stationary single link. In this scenario, we move a client
from position P5 to position P4 back and forth, while the AP
remains static. The client moves at the speed of 1m/s4 and the
travel between P4 and P5 (one-way) takes 20 seconds. Fig. 8
shows the instantaneous UDP goodput under each RA algorithm.
All RA schemes except Atheros MIMO seem to quickly adjust the
data rate to track the channel variations. Under Atheros MIMO
RA, new (mode, rate) pairs are probed when the throughput using
the current pair decreases. Hence the (mode, rate) pair does not
change when the channel conditions improve, and one has to wait
for the next round of probing. We see that SW-G-ORS tracks the
optimal (mode, rate) pair in a highly efficient manner. SW-G-ORS
achieves the highest average goodput over the experiment with
gains up to 13% over Minstrel HT, up to 25% over MiRA and up
to 43% over Atheros MIMO RA (refer to Table 1 for the average
throughput).

(c) Stationary multiple links. In this scenario, we consider three
interfering transmitters, as shown in Fig. 9(a). The network
topology corresponds to the “flow-in-the-middle” situation: link
(S2-R2) in the middle interferes with both (S1-R1) and (S3-R3)
links, whereas the two latter links do not interfere with each other.
Fig. 9 shows the average (over 100s) goodputs of the three links
under the various RA schemes for both UDP and TCP traffic. It

4. In order to reproduce the same mobility pattern for every trial and hence
to be able to compare the various RA algorithms, this speed is that of a slow
pedestrian (we were dragging a cart containing the client).
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Fig. 8: Test-bed experiments, non-stationary single link scenario:
instantaneous goodput of UDP sessions of each RA algorithm.

TABLE 1: Test-bed experiments, non-stationary single link sce-
nario: throughput over 200 measurements taken over 100 seconds
and the corresponding gains with 95% confidence intervals.

Rate Adaptation Average UDP Goodput Average Gain
Algorithm (Mbit/s) (%)

Atheros MIMO RA 67.1 ± 1.80 46.4 ± 3.19
Minstrel HT 85.2 ± 1.60 13.6 ± 1.49

MiRA 76.4 ± 3.05 34.7 ± 3.97
G-ORS 96.2 ± 1.88 -

is noted that the y-axis of Fig. 9 has two different labels: one
for the goodput of individual links on the left, and another one
for the total goodput on the right. SW-G-ORS provides not only
the best total performance, but also the best fairness. In scenarios
with interference, it is often important to distinguish the cause of
transmission failures: collision or channel noise, especially when
the used RA algorithm assumes a monotonic structure. Indeed,
this assumption may result in very poor performance since it gives
rise to a malicious feedback cycle: collisions are misinterpreted
as channel errors, so that the RA algorithm decreases the rate,
and even more collisions occur. To address this problem, various
methods explicitly distinguishing collisions and channel errors
have been employed in CARA [17], RRAA [18], H-RCA [15], and
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Fig. 9: Test-bed experiments, stationary multiple links scenario: goodput of (a) UDP and (b) TCP sessions on each link with 95%
confidence intervals.

MiRA [10], while they keep the monotonic structure assumption
(that leads to mistakes when identifying the optimal rate as shown
in Fig. 7, AP-P4). SW-G-ORS does not assume a monotonic struc-
ture, but rather exploits the robust unimodal structure described
through the graph G with redundant connectivity. It avoids the
malicious feedback cycle and always finds the optimal rate. At
the same time, SW-G-ORS uses the adaptive RTS mechanism
of Minstrel HT which enables RTS/CTS handshake for a while
once it experiences a burst subframe loss in an A-MPDU packet
since the burst subframe loss can be interpreted as a collision [10].
This adaptive RTS mechanism provides a good trade-off between
reducing collisions and RTS/CTS overhead. In turn, as illustrated
in Fig. 9(b) and 9(c), SW-G-ORS yields very significant UDP/TCP
goodput gains particularly for the middle link (S2-R2).

9 CONCLUSION AND PERSPECTIVES

In this paper, we formulated the design of RA algorithms in 802.11
systems as an online stochastic optimization problem, and more
precisely as a structured Multi-Armed Bandit (MAB) problem.
This versatile formalism allowed us to devise the family of G-
ORS algorithms which includes SW-G-ORS and EWMA-G-ORS,
a family of algorithms which provably learn the best decision for
transmission as fast as it is possible. Through extensive numerical
and test-bed experiments, we have shown that our algorithms out-
perform state-of-the-art sampling-based RA algorithms in 802.11g
and 802.11n systems, including MiRA and Minstrel HT. The
design of the latter algorithms were based on heuristics, and
were engineering solutions tailor-made for 802.11n systems, in
particular, to handle MIMO mode and rate selection and packet
aggregation schemes jointly, while G-ORS is generic based on
rigorous mathematical arguments.

In G-ORS and SW-G-ORS, we have (rigorously) optimized
the MIMO mode and rate selection scheme only. The MAB
framework presented here can be used to extend G-ORS to an
optimal joint packet aggregation and RA algorithm, which we
believe would provide an even higher performance gain compared
to MiRA and Minstrel HT. Optimizing packet aggregation and RA
schemes jointly would correspond to a unimodal MAB problem
with switching costs5. The switching cost would indeed model
the loss in performance due to the overhead (e.g. due to ac-
knowledgments) incurred when changing frame. Other extensions

5. Switching costs have been addressed in MAB problems without structure,
see e.g. in [44], but not in MABs with structure.

are worth considering. G-ORS and SW-G-ORS can be directly
applied to 802.11ac systems if the Multi-User(MU) MIMO feature
is not used. However, when one wishes to exploit the MU MIMO
feature, we believe that again a MAB framework can be used to
devise optimal MU MIMO rate adaptation algorithms.
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APPENDIX

PROOF OF LEMMA 3.1
Let T > 0. By time T , we know that there have been at least
bTr1c transmissions, but no more than dTrKe. Also observe that
both regrets Rπ and Rπ1 are increasing functions of time. We
deduce that:

Rπ(bTr1c) ≤ Rπ1 (T ) ≤ Rπ(dTrKe).
Now

lim inf
T→∞

Rπ1 (T )

log(T )
≥ lim inf

T→∞

Rπ(bTr1c)
log(T )

= lim inf
T→∞

Rπ(bTr1c)
log(bTr1c)

≥ c.

The second statement can be derived similarly.

PROOF OF THEOREM 5.1
We apply the theory of controlled Markov chains developed in
[45]. Using the same terminology and notation as in [45], the
parameter θ takes values in UG; the Markov chain has values in
S = {0, r1, . . . , rD}; the set of control laws is {1, . . . , D}, i.e.,
each control law corresponds to a (mode, rate) pair; the transition
probabilities are given as follows: for all x, y ∈ S ,

p(x, y; d, θ) = p(y; d, θ) =

{
θd, if y = rd,
1− θd, if y = 0;

finally, the reward r(x, d) = x.
We now fix θ ∈ UG. Define Id(θ, λ) = I(θd, λd) for any

d. Further define the set B(θ) consisting of all bad parameters
λ ∈ UG such that d? is not optimal under parameter λ, but which
are statistically indistinguishable from θ:

B(θ) = {λ ∈ UG : λd? = θd? ,max
d

rdλd > rd?λd?},

B(θ) can be written as the union of sets Bd(θ), d = 1, . . . , D
defined as: Bd(θ) = {λ ∈ B(θ) : rdλd > rd?λd?}. Note that
Bd(θ) = ∅ if rd < rd?θd? . Define P = {d : rd ≥ rd?θd?}, and
P ′ = P \ {d?}.

Let π ∈ Π be a uniformly good algorithm. By applying The-
orem 1 in [45], we know that lim supT R

π(T )/ log(T ) ≥ c(θ),
where c(θ) is the minimal value of the following optimization
problem:

min
∑
d cd(µd? − µd) (4)

s.t. infλ∈Bd(θ)

∑
l 6=d? clI

l(θ, λ) ≥ 1, ∀d ∈ P ′ (5)

cd ≥ 0, ∀d. (6)

Now assume that (5) holds. For any d ∈ N(d?) ∩ P ′, for any
ε > 0, select λ such that rdλd = µd? + ε, and for any l 6= d,
λl = θl. Then λ ∈ Bd(θ), and hence:∑

l 6=d?
clI

l(θ, λ) = cdI

(
θd,

µd? + ε

rd

)
≥ 1.

We deduce that c(θ) ≥ cεG(θ) where cεG(θ) is the minimal value
of the optimization problem:

min
∑
d cd(µd? − µd)

s.t. cdI
(
θd,

µd?+ε
rd

)
≥ 1, ∀d ∈ N(d?)

cd ≥ 0, ∀d.
Hence for any ε > 0, c(θ) ≥

∑
d∈N(d?)

µd?−µd
I(θd,

µd?+ε

rd
)
. We

conclude that lim supT R
π(T )/ log(T ) ≥ cG(θ). �

PROOF OF THEOREM 5.2
We provide a sketch of proof only due to space limitations, refer to
[40] for a complete proof. Let T > 0. The regret of π = G−ORS
up to time T is:

Rπ(T ) =
∑
d6=d?

(µd? − µd)E[
T∑
n=1

1{d(n) = d}].

We decompose the set {d(n) = d} into Ad(n) = {d(n) =
d, L(n) 6= d?} (the leader is not d?) and Bd(n) = {d(n) =
d, L(n) = d?} (the leader is d?), and analyze the two corre-
sponding contributions to regret. We have:∑

d6=d?
(µd? − µd)E[

T∑
n=1

1{Ad(n)}] ≤ rd?
∑
d6=d?

E[ld(T )].

Now when L(n) = d?, G-ORS selects a decision d ∈ N (d?), we
deduce that Rπ(T ) is upper bounded by:

rd?
∑
d6=d?

E[ld(T )] +
∑

d∈N(d?)

(µd? − µd)E[
T∑
n=1

1{Bd(n)}]

The main difficulty consists in bounding the first term, i.e., the
average number of times where d? is not the leader. The following
result provides the required bound. Its proof presented in [40][The-
orem C.1] relies on concentration inequalities, and properties of
the KL divergence.

E[ld(T )] = O(log(log(T ))), ∀d 6= d?.

From the above theorem, we conclude that the leader is d?

except for a negligible number of instants (in expectation). When
d? is the leader, G-ORS behaves as KL-UCB [39] restricted to the
set N(d?) of possible decisions. Following the same analysis as
in [39], we can show that for all ε > 0 there are constants C1 ,
C2(ε) and β(ε) > 0 such that:

E[
T∑
n=1

1{Bd(n)}] ≤ E[
T∑
n=1

1{bd(n) ≥ bd?(n)}]

≤ (1 + ε)
log(T )

I(θd,
rd?θd?
rd

)
+ C1 log(log(T )) +

C2(ε)

T β(ε)
.

Putting pieces together, we get:

Rπ(T ) ≤ (1 + ε)cG(θ) log(T ) +O(log(log(T ))),

which concludes the proof. �
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