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Abstract—Crowdsourcing systems are popular for solving
large-scale labelling tasks with low-paid workers. We study
the problem of recovering the true labels from the possibly
erroneous crowdsourced labels under the popular Dawid-Skene
model. To address this inference problem, several algorithms have
recently been proposed, but the best known guarantee is still
significantly larger than the fundamental limit. We close this gap
by introducing a tighter lower bound on the fundamental limit
and proving that Belief Propagation (BP) exactly matches this
lower bound. The guaranteed optimality of BP is the strongest in
the sense that it is information-theoretically impossible for any
other algorithm to correctly label a larger fraction of the tasks.
Experimental results suggest that BP is close to optimal for all
regimes considered and improves upon competing state-of-the-art
algorithms.

Index Terms—Crowdsourcing, Belief Propagation, Optimal
Inference

I. INTRODUCTION

CROWDSOURCING platforms provide scalable human-
powered solutions to labelling large-scale datasets at

minimal cost. They are particularly popular in domains where
the task is easy for humans but hard for machines, e.g.,
computer vision and natural language processing. For example,
the CAPTCHA system [2] uses a pair of scanned images of
English words, one for authenticating the user and the other
for the purpose of getting high-quality character recognitions
to be used in digitizing books. However, because the tasks
are tedious and the pay is low, one of the major issues is
the quality of the labels. Errors are common even among
those who put in efforts. In real-world systems, spammers are
abundant, who submit random answers rather than good-faith
attempts to label. There are adversaries deliberately giving
wrong answers.

A common and powerful strategy to improve reliability is
to add redundancy: assigning each task to multiple workers
and aggregating their answers by some algorithm such as
majority voting. Although majority voting is widely used in
practice, several novel approaches, which outperform majority
voting, have been recently proposed, e.g. [3]–[7]. The key
idea is to identify the good workers and give more weights to
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the answers from those workers. Although the ground truths
may never be exactly known, one can compare one worker’s
answers to those from other workers on the same tasks, and
infer how reliable or trustworthy each worker is.

The standard probabilistic model for representing the noisy
answers in labelling tasks is the model introduced by Dawid
and Skene in [8]. Under this model, the core problem of
interest is how to aggregate the answers to maximize the
accuracy of the estimated labels. This is naturally posed as
a statistical inference problem that we call the crowdsourced
classification problem. Due to the combinatorial nature of
the problem, the Maximum A Posteriori (MAP) estimate is
optimal but computationally intractable. Several algorithms
have recently been proposed as approximations, and their per-
formances are demonstrated only by numerical experiments.
These include algorithms based on spectral methods [9]–[13],
Belief Propagation (BP) [14], expectation maximization [14],
[15], maximum entropy [16], [17], weighted majority voting
[18]–[20], and combinatorial approaches [21].

Despite the algorithmic advances, theoretical advances have
been relatively slow. Some upper bounds on the performances
are known [11], [15], [21], but fall short of answering
which algorithm should be used in practice. In this paper,
we ask the fundamental question of whether it is possible
to achieve the performance of the optimal MAP estimator
with a computationally efficient inference algorithm. In other
words, we investigate the computational gap between what is
information-theoretically possible and what is achievable with
a polynomial time algorithm.

Our main result is that there is no computational gap in
the crowdsourced classification problem for a broad range of
problem parameters. Under some mild assumptions on the
parameters of the problem, we show the following:

Belief propagation is exactly optimal.

To the best of our knowledge, our algorithm is the only com-
putationally efficient approach that provably maximizes the
fraction of correctly labeled tasks, achieving exact optimality.

Contribution. We consider binary classification tasks and
identify regimes where the standard BP achieves the per-
formance of the optimal MAP estimator. When each task
is assigned enough number of workers, we prove that it is
impossible for any other algorithm to correctly label a larger
fraction of tasks than BP. This is the only known algorithm
to achieve such a strong notion of optimality and settles
the question of whether there is a computational gap in the
crowdsourced classification problem for a broad range of
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parameters. We provide experimental results confirming the
optimality of BP for both synthetic and real datasets.

The provable optimality of BP-based algorithms in graphical
models with loops (such as those in our model) is known only
in a few instances including community detection [22], error
correcting codes [23] and combinatorial optimization [24].
Technically, our proof strategy for the optimality of BP is
similar to that in [22] where another variant of BP algorithm is
proved to be optimal to recover the latent community structure
among users. However, our proof technique overcomes several
unique challenges, arising from the complicated correlation
among tasks that can only be represented by weighted and
directed hyper-edges, as opposed to simpler unweighted undi-
rected edges in the case of stochastic block models. This
might be of independence interest in analyzing censored block
models with some directed observations [25], and clustering
from hyper-edge information [26].

The crowdsourced classification problem has been first
studied in the dense regime, where all tasks are assigned all the
workers [9], [15]. In such dense regimes, as the problem size
increases, each task receives increasing number of answers.
Thus, previous work has studied the probability of labelling
all tasks correctly [9], [15]. However, in practice, the number
of workers per task (or tasks per worker), denoted by ` (or
r, resp.), is relatively small comparing to the total number of
tasks since the budget per task and the capacity of a worker
are constrained. For example, a typical choice of ` is three or
five. For such a fixed `, i.e., sparse regime, the probability of
error does not decay with increasing dimension of the problem.
The theoretical interest has been focused on identifying how
the error scales with `, that represents how much redundancy
should be introduced in the system. An upper bound that scales
as e−Ω(`) (when ` > `∗ for some `∗ that depends on the
problem parameters) was proved by [11], analyzing a spectral
algorithm that is modified to use the spectral properties of
the non-backtracking operators instead of the usual adjacency
matrices. This scaling order is also shown to be optimal by
comparing it to the error rate of an oracle estimator. Tighter
bounds are also provided for other spectral methods, but under
more restricted conditions in [10], [27].

In this paper, we focus on the sparse regime with small
`, r. More precisely, we show that for any given r ≥ 11

and some constant Cr depending on r, if ` > Cr, i.e., `
is possibly constant, BP is information-theoretically optimal.
This coincides with the empirical study in [14], where BP
outperforms other algorithms including the state-of-the-art
spectral approach proposed in [11]. In fact, the authors of
[14] showed that the spectral approach in [11] is a special
case of BP with a specific choice of the prior distribution on
the worker quality. This implies that the spectral approach is
suboptimal since the algorithmic prior might be in mismatch
with the true prior. Since the true prior is often unavailable in
practice, we propose a practical version of BP, which we call
EBP (Estimation and Belief Propagation) that has an additional
procedure estimating the prior from the observed data. Our

1In our previous work [1], we showed the optimality of BP for r = 1 or 2.
In this paper, we extend it for r ≥ 1, where a worker’s answers correspond
to a hyper-edge information on multiple tasks.

experimental result suggests that both EBP and BP with the
true prior closely achieve the optimal performance for all `, r,
although we show the optimality of BP in the certain regime
of `, r.

Organization. In Section II, we provide necessary back-
grounds including the Dawid-Skene model for crowdsourced
classification and the BP algorithm. Section III provides the
main results of this paper, and their proofs are presented in
Section IV. Our experimental results on the performance of BP
are reported in Section VI and we conclude in Section VII.

II. PRELIMINARIES

We describe the mathematical model and present the stan-
dard MAP and the BP approaches.

A. Crowdsourced Classification Model

We consider a set of n binary tasks, denoted by V . Each task
i ∈ V is associated with a ground truth si ∈ {−1,+1}. With-
out loss of generality, we assume si’s are independently chosen
with equal probability. We let W denote the set of workers
who are assigned tasks to answer. Hence, this task assignment
is represented by as a bipartite graph G = (V,W,E), where
edge (i, u) ∈ E indicates that task i is assigned to worker
u. For notational simplicity, let Nu := {i ∈ V : (i, u) ∈ E}
denote the set of tasks assigned to worker u and conversely
let Mi := {u ∈ W : (i, u) ∈ E} denote the set of workers to
whom task i is assigned.

When task i is assigned to worker u, worker u provides a
binary answer Aiu ∈ {−1,+1}, which is a noisy assessment
of the true label si. Each worker u is parameterized by a
reliability pu ∈ [0, 1], such that each of her answers is correct
with probability pu. Namely, for given p := {pu : u ∈ W},
the answers A := {Aiu : (i, u) ∈ E} are independent random
variables such that

Aiu =

{
si with probability pu

−si with probability 1− pu
.

We assume that the average reliability is greater than 1/2, i.e.,
µ := E[2pu − 1] > 0.

This Dawid-Skene model is the most popular one in crowd-
sourcing dating back to [8]. The underlying assumption is
that all the tasks share a homogeneous difficulty; the error
probability of a worker is consistent across all tasks. We
assume that the reliability pu’s are i.i.d. according to a relia-
bility distribution on [0, 1], described by a probability density
function π.

For the theoretical analysis, we assume that the bipartite
graph is drawn uniformly over all (`, r)-regular graphs for
some small `, r using, for example, the configuration model
[28], where each task is assigned to ` random workers and
each worker is assigned r random tasks. In real-world crowd-
sourcing systems, the designer gets to choose which graph to
use for task assignments. Random regular graphs have been
proven to achieve minimax optimal performance in [11], and
empirically shown to have good performances. This is due to
the fact that the random graphs have large spectral gaps.
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B. MAP Estimator

Under this crowdsourcing model with given assignment
graph G = (V,W,E) and reliability distribution π, our goal
is to design an efficient estimator ŝ(A) ∈ {−1,+1}V of the
unobserved true answers s := {si : i ∈ V } from the noisy
answers A reported by workers. In particular, we are interested
in the optimal estimator minimizing the (expected) average
bit-wise error rate, i.e.,

minimize
ŝ:estimator

Perr(ŝ) (1)

where we define

Perr(ŝ;G) :=
1

n

∑
i∈V

P [si 6= ŝi (A) | G] .

The probability here is taken with respect to the conditional
distribution of s, ŝ and A given G. For simplicity, we often
omit G in the argument of Perr if it is clear from context.
From standard Bayesian arguments, the maximum a posteriori
(MAP) estimator is an optimal solution of (1):

ŝ∗i (A) := arg max
si

P[si | A] . (2)

However, this MAP estimator is challenging to compute, as
we show below. Note that

P[s, p | A] ∝ P[p] · P[A | s, p]

=
∏
u∈W

P[pu]
∏
i∈Nu

P[Aiu | si, pu]

=
∏
u∈W

π(pu) · pcuu (1− pu)ru−cu , (3)

where ru := |Nu| is the number of the tasks assigned to
worker u and cu := |{i ∈ Nu : Aiu = si}| is the number
of the correct answers from worker u. Then,

P[s | A] =

∫
[0,1]W

P[s, p | A]dp

∝
∏
u∈W

∫ 1

0

π(pu) · pcuu (1− pu)ru−cudpu︸ ︷︷ ︸
:=fu(sNu )

, (4)

where we let fu (sNu) := E[pcuu (1 − pu)ru−cu ] denote the
local factor associated with worker u for given G. We note
that the factorized form of the joint probability of s in (4)
corresponds to a standard graphical model with a factor graph
G = (V,W,E) that represents the joint probability of s given
A, where each task i ∈ V and each worker u ∈W correspond
to the random variable si and the local factor fu, respectively,
and the edges in E indicate couplings among the variables
and the factors.

The marginal probability P[si | A] in the optimal estimator
ŝ∗i (A) is calculated by marginalizing out s−i := {sj : i 6= j ∈
V } from (4), i.e.,

P[si | A] =
∑

s−i∈{±1}V \i
P[s | A] ∝

∑
s−i

∏
u∈W

fu (sNu) .

(5)

We note that the summation in (5) is taken over exponentially
many s−i ∈ {−1,+1}n−1 with respect to n. Thus in general,

the optimal estimator ŝ∗, which requires to obtain the marginal
probability of si given A in (2), is computationally intractable
due to the exponential complexity in (5).

C. Belief Propagation

Recalling the factor graph described by (4), the computa-
tional intractability in (5) motivates us to use a standard sum-
product belief propagation (BP) algorithm on the factor graph
as a heuristic method for approximating the marginalization.
The BP algorithm is described by the following iterative
update of messages mi→u and mu→i between task i and
worker u and belief bi on each task i:

mt+1
i→u(si) ∝

∏
v∈Mi\{u}

mt
v→i(si) , (6)

mt+1
u→i(si) ∝

∑
sNu\{i}

fu(sNu)
∏

j∈Nu\{i}

mt+1
j→u(sj) , (7)

bt+1
i (si) ∝

∏
u∈Mi

mt+1
u→i(si) , (8)

where the belief bi(si) is the estimated marginal probability of
si given A. We here initialize messages with a trivial constant
1
2 and normalize messages and beliefs, i.e.,

∑
si
mi→u(si) =∑

si
mu→i(si) =

∑
si
bi(si) = 1. Then at the end of k

iterations, we estimates the label of task i as follows:

ŝ
BP(k)
i = arg max

si

bki (si) . (9)

We note that if the factor graph is a tree, then it is known
that the belief converges, and computes the exact marginal
probability [29].

Property 1. If assignment graph G is a tree so that the
corresponding factor graph is a tree as well, then

bti(si) = P[si | A] for all t ≥ n ,

where bti(si) is iteratively updated by BP in (6)–(8).

However, for general graphs which may have loops, e.g.,
random (`, r)-regular graphs, BP has no performance guar-
antee, i.e., BP may output bi(si) 6= P[si | A]. Further
the convergence of BP is not guaranteed, i.e., the value of
limt→∞ bti(si) may not exist.

III. PERFORMANCE GUARANTEES OF BP

In this section, we provide the theoretical guarantees on the
performance of BP. To this end, we consider the output of BP
in (9) with a choice of k = O(log log n). It follows that the
overall complexity of BP is bounded by O(n`r log r·log log n)
as each iteration of BP requires O(n`r log r) operations [14].

A. Exact Optimality of BP for large `

We show in the following that BP is asymptotically optimal
when each task is assigned to sufficiently large (but possibly
constant with respect to the number of tasks) number of
workers, i.e., ` > Cr,π . This follows from a tighter bound
in the non-asymptotic regime, where we upper bound the
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optimality gap, exponentially vanishing in the number of
iterations k.

Theorem 1. Consider the Dawid-Skene model under the task
assignment generated by a random bipartite (`, r)-regular
graph G consisting of n tasks and (`/r)n workers. Let
ŝBP(k) denote the output of BP in (9) after k iterations. For
µ := E[2pu − 1] > 0, E[(2pu − 1)2] < 1, and constant r ≥ 1,
there exists a constant Cr,π that only depends on r and π such
that if ` ≥ Cr,π , then for sufficiently large n:

E
[
Perr(ŝ

BP(k))− min
ŝ:estimator

Perr(ŝ)

]
≤ 2−k +

3(`r)2k+1

n
,

(10)

where the expectation is taken with respect to the graph G.
Hence, when we set k = log log n with constant r and ` =
O(log n), for sufficiently large n,

E
[
Perr(ŝ

BP(k))− min
ŝ:estimator

Perr(ŝ)

]
≤ 2−k+1 , (11)

which converges to 0 as n→∞.

A proof is provided in Section IV-A. Our analysis compares
BP to an oracle estimator. This oracle estimator not only
has access to the observed crowdsourced labels, but also
the ground truths of a subset of tasks. Given this extra
information, it performs the optimal estimation, outperforming
any algorithm that operates only on the observations. Using
the fact that the random (`, r)-regular bipartite graph has a
locally tree-like structure [28] and BP is exact on the local
tree [29], we prove that the performance gap between BP and
the oracle estimator vanishes due to decaying correlation from
the information on the outside of the local tree to the root.
To be specific, the decaying correlation and the probability
to have local tree within the neighborhood of depth k are
captured in the first and second terms in the RHS of (10),
respectively. This establishes that the gap between BP and the
best estimator vanishes in the large system limit under some
condition on `, r, k.

Although empirically, BP works well in all regimes of
parameters as suggested in Section VI, for the theoretical
analysis, we limit the parameters to verify (i) (`r)k = o(n)
for the locally tree-like graph structure, and (ii) ` > Cr,π with
fixed r for the decaying correlation. The locally tree-like struc-
ture is essential also in other applications such as community
detection [22], since it provides the conditional independence
between two consecutive generations of the computation tree.
When r = 1, there is nothing to learn about the workers and
simple majority voting is also the optimal estimator. BP also
reduces to majority voting in this case, achieving the same
optimality, and in fact C1,π = 1. The interesting non-trivial
case is when r ≥ 2. The sufficient condition is for ` to be larger
than some Cr,π . The problem of analyzing BP for ` < Cr,π is
challenging. Similar challenges have not been resolved even
in a simpler models2 of stochastic block models, where BP
and other efficient inference algorithms have been analyzed
extensively [22], [30].

2The stochastic block model is simpler than our model in the sense that it
has only pair-wise factors which is the special case of our model with r = 2.

The assumption on µ is canonical, since it only requires that
the crowd as a whole can distinguish what the true label is. In
the case µ < 0, one can flip the sign of the final estimate to
achieve the same guarantee. It is more intuitive to understand
this assumption as formally defining a ground truths, as what
the majority crowd would agree on (on average) if we asked
the same question to all the workers in the crowd. Hence, this
assumption is without loss of generality.

The assumption on E[(2pu − 1)2] < 1 is mild, as the only
case when E[(2pu − 1)2] = 1 is if pu is a a binary random
variable taking values only in {0, 1}. In such cases, every
worker is either telling the exact truths consistently or exact
the opposite of the truths. It follows from Perron-Frobenius
theorem [31] that a naive spectral method would work (and so
does several other simple techniques). However, BP messages
are not smooth in this case, which is required for our analysis.
We believe optimality of BP still holds but requires a different
analysis technique.

B. Relative Dominance of BP for all `

For general `, r, we establish the dominance of BP over
two existing algorithms with known guarantees: the majority
voting (MV) and the state-of-the-art iterative algorithm (KOS)
in [11]. In the sparse regime, these are the only existing
algorithms with tight provable guarantees.

Theorem 2. Consider the Dawid-Skene model under the task
assignment generated by a random bipartite (`, r)-regular
graph G consisting of n tasks and (`/r)n workers. Let ŝMV

and ŝKOS denote the outputs of MV and KOS algorithms,
respectively. If (`r)k = o(n),

lim
n→∞

E
[
Perr(ŝ

BP)
]

≤ min
{

lim
n→∞

E
[
Perr(ŝ

MV)
]
, lim
n→∞

E
[
Perr(ŝ

KOS)
]}

where ŝBP is the output of BP in (9) after k iterations and the
expectations are taken with respect to the graph G.

A proof of the above theorem is presented in Section IV-B,
where we also use the locally tree-like structure so that we
need to assume (`r)k = o(n). Using Theorem 2 and the
known error rates of MV and KOS algorithms in [11], one
can derive the following upper bound on the error rate of BP:

lim
n→∞

E
[
Perr(ŝ

BP)
]

(12)

≤ min

{
lim
n→∞

e
−
(
`µ2

2

)
, lim
n→∞

e
−
(
`q
2 ·

q2(`−1)(r−1)−1
3q2(`−1)(r−1)+q(`−1)

)}
where q := E

[
(2pu − 1)2

]
and all the parameters `, r, µ, and

q can depend on n.
This is particularly interesting, since it has been observed

empirically and conjectured with some non-rigorous analysis
in [13] that there exists a threshold (` − 1)(r − 1) = 1/q2,
above which KOS dominates over MV, and below which
MV dominates over KOS (see Figure 2). This is due to the
fact that KOS is inherently a spectral algorithm relying on
the singular vectors of a particular matrix derived from A.
Below the threshold, the sample noise overwhelms the signal
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in the spectrum of the matrix, which is known as the spectral
barrier, and spectral methods fail. However, in practice, it is
not clear which of the two algorithms should be used, since the
threshold depends on latent parameters of the problem. Our
dominance result shows that one can safely use BP, since it
outperforms both algorithms in both regimes governed by the
threshold. This is further confirmed by numerical experiments
in Figure 2.

IV. PROOFS OF THEOREMS

In this section, we provide the proofs of Theorems 1 and 2.

A. Proof of Theorem 1

We first consider the case r = 1. Then, G is the set of
disjoint one-level trees, i.e., star graphs, where the root of each
tree corresponds to task ρ ∈ V and the leaves are the set Mρ

of workers assigned to the task ρ. Since the graphs are disjoint,
we have P[sρ|A] = P[sρ|Aρ,1], where A = {Aiu : (i, u) ∈ E}
and Aρ,1 = {Aρu : u ∈ Mρ}. From Property 1, it follows
that ŝBPρ (A) = arg maxsρ P[sρ | Aρ,1] = ŝ∗ρ(Aρ,1). Therefore,
for any ` ≥ 1, the optimal MAP estimator ŝ∗ρ(A) in (2) is
identical to the output ŝBPρ with any k ≥ 1.

We now focus on the case r ≥ 2. Recall that random (`, r)-
regular bipartite graph G is locally tree-like. More formally,
from Lemma 5 in [13], it follows that for ρ ∈ V ,

P[Gρ,2k is not a tree] ≤ 3`r

n
((`− 1)(r − 1))

2k
, (13)

where we let Gρ,2k = (Vρ,2k,Wρ,2k, Eρ,2k) denote the sub-
graph of G induced by all the nodes within (graph) distance
2k from root ρ and ∂Vρ,2k denote the set of (task) nodes3

whose distance from ρ is exactly 2k. Let

∆(ŝρ(A);G) :=
1

2
− P[sρ 6= ŝρ(A) | G] ,

where the probability is taken with respect to the conditional
distribution of s, ŝ, and A given G. We here note that
∆(ŝρ(A);G) is a function of the distribution of ŝρ(A) given
G. For simplicity, we often omit G in the notation if it
is clear from context. Then, ∆(ŝρ(A);G) is the expected
gain of estimator ŝρ(A) compared to random guessing, i.e.,
Perr(ŝ(A)) = 1

2 −
1
n

∑
ρ∈V ∆(ŝρ(A)). Using (13), we obtain

E
[
Perr(ŝ

BP(k))− min
ŝ:estimator

Perr(ŝ)

]
≤ 1

n

∑
ρ∈V

E
[
∆(ŝ∗ρ(A);G)−∆(ŝBPρ ;G) | Gρ,2k is a tree

]
+

3(`r)2k+1

n
, (14)

where the expectation is taken with respect to the graph G.
Fix an arbitrary task ρ ∈ V and G, and assume Gρ,2k is a

tree. Then, it is enough to show that ∆(ŝ∗ρ(A)) and ∆(ŝ
BP(k)
ρ )

converge to the same value at exponential rate with respect to
k, i.e., ∣∣∆(ŝ∗ρ(A))−∆(ŝBPρ )

∣∣ ≤ 2−k . (15)

3Since G is a bipartite graph, the distance from task ρ to every task is even
and the distance from task ρ to every worker is odd.

To this end, we introduce two estimators, ẑ∗ρ(Aρ,2k) and
ŝ∗ρ(Aρ,2k), which have accesses to different amounts and types
of information. We now define the following oracle estimator:

ẑ∗ρ(Aρ,2k) := arg max
sρ

P[si | Aρ,2k, s∂Vρ,2k ] ,

where we denote

Aρ,2k := {Aiu : (i, u) ∈ Eρ,2k} . (16)

We note that ẑ∗ρ(Aρ,2k) uses the exact label information of
∂Vρ,2k separating the inside and the outside of Gρ,2k. Hence
one can show that ẑ∗ρ(Aρ,2k) outperforms the optimal estimator
ŝ∗ρ(A). We formally provide the following lemma whose proof
is given in Section V-A.

Lemma 1. Consider the Dawid-Skene model with a given task
assignment graph G = (V,W,E) and let A denote the set of
workers’ labels. For ρ ∈ V and k ≥ 1,

∆(ẑ∗ρ(Aρ,2k)) ≥ ∆(ẑ∗ρ(Aρ,2k+2)) . . . ≥ ∆(ŝ∗ρ(A)) .

Conversely, if an estimator uses less information than an-
other, it performs worse. Formally, we provide the following
lemma whose proof is given in Section V-B.

Lemma 2. Consider the Dawid-Skene model with a given task
assignment graph G = (V,W,E) and let A denote the set of
workers’ labels. For any ρ ∈ V and subset A′ ⊂ A,

∆(ŝ∗ρ(A)) ≥ ∆(ŝ∗ρ(A
′)) .

We note that the limit of limn→∞ E[∆(ŝ∗ρ(A))] exists due
to the non-increasing sequence of ∆(ẑ∗ρ(Aρ,2k)) ∈

[
− 1

2 ,
1
2

]
in

Lemma 1. Recalling the assumption that Gρ,2k is a tree and
Property 1, it follows that

ŝBP(k)
ρ := arg max

sρ

bkρ(sρ) = arg max
sρ

P[sρ | Aρ,2k] .

Thus, using Lemmas 1 and 2 with Aρ,2k ⊂ A, we have that

∆(ẑ∗ρ(Aρ,2k)) ≥ ∆(ŝ∗ρ(A))

≥ ∆(ŝBP(k)
ρ ) = ∆(ŝ∗ρ(Aρ,2k)) , (17)

where we define ŝ∗(Aρ,2k)ρ := arg maxsρ P[sρ | Aρ,2k].
Hence, the following lemma concludes (15) and completes
the proof of Theorem 1.

Lemma 3. Suppose Gρ,2k = (Vρ,2k,Wρ,2k, Eρ,2k) is given as
a tree of which root is task ρ and depth is 2k, where every
task except the leaves ∂Vρ,2k is assigned to ` workers and
every worker labels r tasks. For a given µ := E[2pu−1] > 0,
E[(2pu−1)2] < 1, and constant r ≥ 1, there exists a constant
Cr,π such that if ` ≥ Cr,π , then for sufficiently large k,∣∣∆(ẑ∗ρ(Aρ,2k))−∆(ŝ∗ρ(Aρ,2k))

∣∣ ≤ 2−k. (18)

A rigorous proof of Lemma 3 is given in Section V-C. Here,
we briefly provide the underlying intuition on the proof. As
long as µ is strictly greater than 0 and ` is sufficiently large, the
majority voting of the one-hop information {Aρu : u ∈ Mρ}
can achieve high accuracy. On the other hand, intuitively the
information in two or more hops is less useful. In the proof
of Lemma 3, we also provide a quantification of the decaying
rate of the correlation from the information on ∂Vρ,2k to ρ as
the distance 2k increases.
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B. Proof of Theorem 2

We note that that KOS is an iterative algorithm where for
each ρ ∈ V and k ≥ 1, ŝKOS,k

ρ depends on only Aρ,2k defined
in (16). In addition, it is clear that MV uses only one-hop
information Aρ,1 ⊂ Aρ,2k. Hence for given Aρ,2k, the MAP
estimator ŝ∗ρ(Aρ,2k) outperforms MV and KOS, i.e.,

∆(ŝ∗ρ(Aρ,2k)) ≥ max
{

∆(ŝMV
ρ ),∆(ŝKOS,k

ρ )
}
. (19)

Recall that if Gρ,2k is a tree, we have ŝBP,kρ = ŝ∗ρ(Aρ,2k).
Similarly to (14), by separating the expectation with respect
to G into the conditional expectations given Gρ,2k is tree or
not, it is not hard to show that

E
[
∆(ŝBP,kρ )

]
≥ E

[
max

{
∆(ŝMV

ρ ),∆(ŝKOS,k
ρ )

}]
− 3`r

n
((`− 1)(r − 1))

2k
,

where the last term goes 0 as n → ∞ if (`r)k = o(n). This
completes the proof of Theorem 2.

V. PROOFS OF LEMMAS

A. Proof of Lemma 1

We start with the conditional probability of error given A
in the following:

P[sρ 6= ŝ∗ρ(A) | A] = min {P[sρ = +1 | A],P[sρ = −1 | A]} .

This directly implies that

∆(ŝ∗ρ(A)) = E
[1

2
− P[sρ 6= ŝ∗ρ(A) | A]

]
=

1

2
E
[∣∣P[sρ = +1 | A]− P[sρ = −1 | A]

∣∣] . (20)

Then, by simple algebra, it follows that

∆(ŝ∗ρ(A)) =
1

2

∑
A

P[A] ·
∣∣P[sρ = +1 | A]− P[sρ = −1 | A]

∣∣
=

1

2

∑
A

|P[A, sρ = +1]− P[A, sρ = −1]|

=
1

2

∑
A

1

2
|P[A | sρ = +1]− P[A | sρ = −1]| ,

where for the last equality we use P[sρ = +1] = P[sρ =
−1] = 1/2.

Let φ+
ρ denote the distribution of A given sρ = +1, and let

φ−ρ be the distribution of A given sρ = −1, i.e.,

φ+
i (A) = P[A | si = +1] and φ−i (A) = P[A | si = −1].

Then we have a simple expression of ∆(ŝ∗ρ(A)) as follows:

∆(ŝ∗ρ(A)) = dTV(φ
+
ρ , φ

−
ρ ) , (21)

where we let dTV denotes the total variation distance, i.e., for
distributions φ and ψ on the same space Ω, we define

dTV(φ, ψ) :=
1

2

∑
σ∈Ω

|φ(σ)− ψ(σ)| .

Next we note that since ∂Vρ,2k blocks every path from the
outside of Gρ,2k to ρ, the information on the outside of Gρ,2k,
A \Aρ,2k, is independent of sρ given s∂Vρ,2k , i.e.,

P[sρ | Aρ,2k, s∂Vρ,2k ] = P[sρ | A, s∂Vρ,2k ] . (22)

Hence if we set ψ+
ρ,2k to be the distribution of A and s∂Vρ,2k

given sρ = +1 and similarly for ψ−ρ,2k, we have

∆(ẑ∗ρ(Aρ,2k)) = dTV(ψ
+
ρ,2k, ψ

−
ρ,2k) .

Noting that φ+
ρ and φ−ρ can be obtained by marginalizing out

s∂Vρ,2k in ψ+
ρ,2k and ψ−ρ,2k, it follows that

dTV(φ
+
ρ , φ

−
ρ )

=
1

2

∑
A

|φ+
ρ (A)− φ−ρ (A)|

=
1

2

∑
A

∣∣∣∣ ∑
s∂Vρ,2k

(
ψ+
i (A, s∂Vρ,2k)− ψ−i (A, s∂Vρ,2k)

) ∣∣∣∣
≤ 1

2

∑
A

∑
s∂Vρ,2k

∣∣ψ+
i (A, s∂Vρ,2k)− ψ−i (A, s∂Vρ,2k)

∣∣
= dTV(ψ

+
ρ,2k, ψ

−
ρ,2k) , (23)

which implies ∆(ẑ∗(Aρ,2k)) ≥ ∆(ŝ∗(A)).
We now study ∆(ẑ∗(Aρ,2k)) with different k. Observe that

∂Vρ,2k blocks every path from ∂Vρ,2k+2 to ρ, i.e., s∂Vρ,2k+2

is independent of sρ given s∂Vρ,2k . Thus, from (22), it follows
that

P[sρ | A, s∂Vρ,2k ] = P[sρ | A, s∂Vρ,2k , s∂Vρ,2k+2
] .

Therefore, ψ+
ρ,2k+2 and ψ−ρ,2k+2 can be obtained from ψ+

ρ,2k

and ψ−ρ,2k by marginalizing out s∂Vρ,2k+2
. Similarly to (23),

we have

dTV(ψ
+
ρ,2k+2, ψ

−
ρ,2k+2) ≤ dTV(ψ+

ρ,2k, ψ
−
ρ,2k) ,

which completes the proof of Lemma 1.

B. Proof of Lemma 2

The proof of Lemma 2 is analog to that of Lemma 1. Let
ϕ+
ρ be the distribution of A′ given sρ = +1 and ϕ−ρ be the

distribution of A′ given sρ = −1, i.e.,

∆(ŝ∗ρ(A
′)) = dTV(ϕ+

ρ , ϕ
−
ρ ).

Since ϕ+
ρ and ϕ−ρ can be obtained by marginalizing out A\A′

from φ+
ρ and φ−ρ in (21), using the same logic for (23), we

have

dTV(ϕ
+
ρ , ϕ

−
ρ ) ≤ dTV(φ+

ρ , φ
−
ρ ) ,

which completes the proof of Lemma 2.
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Fig. 1. A graphical representation of notations: ∂i, ∂iu, and ∂2i.

C. Proof of Lemma 3

We start with several notations which we use in the proof.
For i ∈ Vρ,2k, let Ti = (Vi,Wi, Ei) be the subtree rooted from
i including all the offsprings of i in tree Gρ,2k. We let ∂Vi
denote the leaves in Ti and Ai := {Aju : (j, u) ∈ Ei}. Define

Xi := P[si = +1 | Ai]− P[si = −1 | Ai] .

Here Xi is often called the magnetization of si given Ai. Sim-
ilarly, given Ai and s∂Vi , we define the biased magnetization
Yi:

Yi := P[si = +1 | Ai, s∂Vi ]− P[si = −1 | Ai, s∂Vi ] .

We note that Xi and Yi correspond to the messages of BP
from task i to i parent worker given different initialization at
leaf tasks, where Xi and Yi eventually calculate the marginal
probability of si given only Ai, or both Ai and sj for all
j ∈ ∂Vi, respectively. Thus, using the alternative expression
of ∆ in (20), one can check that

0 ≤ ∆(ẑ∗i (Ai))−∆(ŝ∗i (Ai)) =
1

2
E
[
|Yi| − |Xi|

]
≤ E[|Yi −Xi|] , (24)

where the expectation is taken with respect to Ai and s∂Vi .
In what follows, we fix 0 < t ≤ k and i ∈ ∂Vρ,2k−2t, where

we let ∂Vρ,0 = {ρ}. Let ∂i be the set of all the offspring of
i and ∂iu be the set of all the offspring of u in tree Ti, i.e.,
∂i := {u ∈ Wi : (i, u) ∈ Ei} and ∂iu := {j ∈ Vi : (j, u) ∈
Ei}. We further let ∂2

i := {j ∈ ∂iu : u ∈ ∂i} denote the set
of all the second offspring of i. (See Figure 1 for a graphical
explanation of the notations.) We note that if i ∈ ∂Vρ,2k is
leaf node in Gρ,2k, then Xi = 0 and |Xi − Yi| ≤ 1. Hence,
we will show that

E
[∣∣Xi − Yi

∣∣] ≤ 1

2|∂2i|
∑
j∈∂2i

E
[∣∣Xj − Yj

∣∣] , (25)

since this implies E
[∣∣Yρ −Xρ

∣∣] ≤ 2−k and completes
the proof of Lemma 3 with (24). We note that this implies
the convergence of the oracle estimator ẑ∗ and the BP es-
timator ŝBP in a strong sense that Xρ and Yρ converges to
the same random variable in L1-norm as k increases, i.e.,
Var[Xρ−Yρ] = O(2−k), where the signs of Xρ and Yρ are the
estimated labels of task ρ from the oracle and BP estimators,
respectively.

To show (25), we study certain recursions describing rela-
tions among X and Y . Define Au := {Aiu : (i, u) ∈ E}

and µu := (2pu − 1) ∈ [−1, 1] such that µ = E[2pu − 1] =
E[µu] > 0. Then fu in (4) can be expressed as follows:

fu(sNu) = E

[ ∏
j∈Nu

1 +Ajusjµu
2

| Au, sNu

]
,

where the expectation is taken with respect to µu given
Au, sNu . Using the above expression of fu and the fact that
P[sj | Aj ] =

1+sjXj
2 , we can write the marginal probability

of si given Au and X∂iu:

P [si | Au, X∂iu]

=
∑
s∂iu

fu(si, s∂iu)
∏
j∈∂iu

1 + sjXj

2

=
∑
s∂iu

E

[
1+Aiusiµu

2

∏
j∈∂iu

(1+Ajusjµu)(1+sjXj)
4 | Au, X∂iu, s∂iu

]

= E

[
1 +Aiusiµu

2

∏
j∈∂iu

1 +AjuµuXj

2
| Au, X∂iu

]
.

For notational convenience, we define g+
iu and g−iu as follows:

g+
iu(X∂iu;Au) := E

[
1 +Aiuµu

2

∏
j∈∂iu

1 +AjuµuXj

2
| Au, X∂iu

]
,

g−iu(X∂iu;Au) := E

[
1−Aiuµu

2

∏
j∈∂iu

1 +AjuµuXj

2
| Au, X∂iu

]
,

where we may omit Au in the argument of g+
iu and

g−iu if Au is clear from the context. We note that
g+
iu(X∂iu;Au) = P [si = +1 | Au, X∂iu] and g−iu(X∂iu;Au) =
P [si = −1 | Au, X∂iu]. Hence, using Bayes’ rule with g+

iu and
g−iu, we obtain the following recurrence for X:

Xi = hi(X∂2i) :=

∏
u∈∂i g

+
iu(X∂iu)−

∏
u∈∂i g

−
iu(X∂iu)∏

u∈∂i g
+
iu(X∂iu) +

∏
u∈∂i g

−
iu(X∂iu)

.

(26)

Similarly, we also have Yi = hi(Y∂2
i
).

For simplicity, we assume that i is not leaf or root node so
that

∣∣∂2i
∣∣ = (`− 1) · (r− 1). Also, without loss of generality,

we focus on the case where sj = +1 for all j ∈ Vρ,2k since
the true label sj is uniformly distributed and the choice of i(t)
in (25) is uniform. Let E+ denote the conditional expectation
given sj = +1 for all j ∈ Vρ,2k. Then, to complete the proof
of (25), using the mean value theorem we will show

E+ [|Xi − Yi|] ≤
1

2(`− 1)(r − 1)

∑
j∈∂2i

E+ [|Xj − Yj |] .

(27)

We first obtain a bound on gradient of hi(x) for x ∈
[−1, 1]∂

2i. Define g+
i (x) :=

∏
u∈∂i g

+
iu(x∂iu) and g−i (x) :=∏

u∈∂i g
−
iu(x∂iu). Then, using basic calculus, we obtain that

for j ∈ ∂iu,

∂hi
∂xj

=
∂

∂xj

g+
i − g

−
i

g+
i + g−i

=
2

(g+
i + g−i )2

(
g−i ·

∂g+
i

∂xj
− g+

i ·
∂g−i
∂xj

)



8

=
2g+
i g
−
i

(g+
i + g−i )2

(
1

g+
iu

∂g+
iu

∂xj
− 1

g−iu

∂g−iu
∂xj

)
.

Using the fact that for x ∈ [−1, 1]∂
2i, both g+

i and g−i are
positive, it is not hard to show that4

g+
i g
−
i

(g+
i + g−i )2

≤

√
g−i
g+
i

. (28)

We note here that one can replace g−i /g
+
i with g+

i /g
−
i in the

upper bound. However, in our analysis, we use (28) since we
focus on the case of si = +1 where plugging X∂2i or Y∂2i

into x in (28), hi(x), which is the magnetization Xi or Yi,
will be large thus g−i /g

+
i will be a tighter upper bound than

g+
i /g

−
i . Our analysis covers all the general cases because the

same analysis with g+
i /g

−
i will work with si = −1 conversely.

From (28), it follows that for x ∈ [−1, 1]∂
2i,∣∣∣∣ ∂hi∂xj

(x)

∣∣∣∣ ≤ ∣∣g′ij(x∂iu)
∣∣ · ∏
u′∈∂i :u′ 6=u

√
g−iu′(x∂iu′)

g+
iu′(x∂iu′)

,

where we define

g′ij(x∂iu)

:= 2

√
g−iu(x∂iu)

g+iu(x∂iu)

(
1

g+iu(x∂iu)

∂g+iu(x∂iu)

∂xj
− 1

g−iu(x∂iu)

∂g−iu(x∂iu)

∂xj

)
.

From the assumption on µu (or pu), i.e., E[µu] > 0 and
E[µ2

u] < 1, it follows that for all x∂iu ∈ [−1, 1]∂iu, g+
iu(x∂iu) >

0 and g−iu(x∂iu) > 0. Thus, for given r, we can find finite η,
which is a constant with respect to `, such that

max
x∂iu∈[−1,1]∂iu

|g′ij(x∂iu)| ≤ η < ∞.

Hence, we have∣∣∣∣ ∂hi∂xj
(x)

∣∣∣∣ ≤ η · ∏
u′∈∂i :u′ 6=u

√
g−iu′(x∂iu′)

g+
iu′(x∂iu′)

. (29)

Let E+
x,y denote the conditional expectation given X∂2i =

x∂2i, Y∂2i = y∂2i, and sj = +1 for all j. Then, using the
mean value theorem with (29), it follows that for given X∂2i

and Y∂2i, there exists λ′ ∈ [0, 1] such that

E+
x,y |hi(X∂2i)− hi(Y∂2i)|

≤
∑
u∈∂i

∑
j∈∂iu

|Xj − Yj | E+
x,y

[∣∣∣∣ ∂hi∂xj
(λ′X∂2i + (1− λ′)Y∂2i)

∣∣∣∣]
≤
∑
u∈∂i

∑
j∈∂iu

|Xj − Yj |

× η
∏

u′∈∂i\{u}

max
λ∈[0,1]

{
E+
x,y

[√
g−
iu′ (λX∂iu′+(1−λ)Y∂iu′ )

g+
iu′ (λX∂iu′+(1−λ)Y∂iu′ )

]}
. (30)

We note that each term in an element of the summation in the
RHS is independent to each other. Thus, from the symmetry
among {X∂iu}u∈∂i, it follows that

E+ [|Xi − Yi|]

4We can further obtain
g+i g
−
i

(g+i +g−i )2
≤ 3
√
3

16

√
g−i /g

+
i , but we use (28) for

simplicity.

≤
∑
u∈∂i

∑
j∈∂iu

E+ [|Xj − Yj |]

× η
(
E+

[
max
λ∈[0,1]

Γ(λX∂iu + (1− λ)Y∂iu)

])`−1

,(31)

where we define function Γ(x∂iu) for given x∂iu ∈ [−1, 1]∂iu

as

Γ(x∂iu) := E+
x,y

[√
g−iu(x∂iu)

g+
iu(x∂iu)

]
.

We may calculate Γ(x∂iu) as follows:

Γ(x∂iu) =
∑

Au∈{−1,+1}Nu
P+[Au] ·

√
g−iu(x∂iu;Au)

g+
iu(x∂iu;Au)

=
∑

Au∈{−1,+1}Nu
E

 ∏
j∈Nu

1 +Ajuµu
2

| Au


×

√√√√√E
[

1−Aiuµu
2

∏
j∈∂iu

1+Ajuµuxj
2 | Au, X∂iu = x∂iu

]
E
[

1+Aiuµu
2

∏
j∈∂iu

1+Ajuµuxj
2 | Au, X∂iu = x∂iu

] ,
where we let P+ denote the conditional probability measure
given that sj for all j. We bound the last term in (31) as:

Lemma 4. For given π such that µ := E[µu] > 0 and E[µ2
u] <

1, there exists constant C ′r,π such that for any ` ≥ C ′r,π ,

E+

[
max
λ∈[0,1]

Γ(λX∂iu + (1− λ)Y∂iu)

]
≤
√

1− µ2

4
< 1 .

Using the above lemma, we can find a sufficiently large
constant Cr,π ≥ C ′r,π such that if `− 1 ≥ Cr,π ,

η

(√
1− µ2

4

)Cr,π
≤ 1

2Cr,π(r − 1)
≤ 1

2(`− 1)(r − 1)
.

This implies (27) with (31) and completes the proof of
Lemma 3.

We now focus on the proof of Lemma 4. We first obtain a
bound on Xj and Yj for j ∈ ∂iu. The MAP estimator ŝ∗j (Aj)
of sj given Aj is identical to estimating sj = +1 if Xj is
positive and sj = −1 otherwise. From the definition of the
MAP estimator, it is straightforward to check

P[sj 6= ŝ∗j (Aj)] =
1− E+[Xj ]

2
.

In addition, as Lemma 2 states, the MAP estimator ŝ∗j (Aj)
outperforms MV with {Aju(jj′) : j′ ∈ ∂j}. Using Hoeffding’s
bound, the error probability of MV is bounded as follows:

1− E+[Xj ]

2
≤ P+[sj 6= ŝMV

j ] ≤ exp

(
− (|∂j| − 1)µ2

2

)
,

where Lemma 2 implies the first inequality. Similarly, ẑ∗j (Aj)
of sj given Aj and ∂Vi is identical to estimating sj = +1 if
Yj is positive and sj = −1 otherwise. Using Lemma 1 and
the Markov inequality, it follows that for small ε > 0,

P+[Yj < 1− ε] ≤ P+[Xj < 1− ε] ≤
2 exp

(
− (|∂j|−1)µ2

2

)
ε

,

(32)
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where we use Lemma 1 for the first inequality and the Markov
inequality for the second one.

Since 0 < E[µu] and E[µ2
u] < 1, we can find finite constants

η′ and η′′ such that for all x ∈ [0, 1]∂iu,

|Γ(x)| ≤ η′ and
∣∣∣∣∂Γ(x)

∂xj

∣∣∣∣ ≤ η′′ .
Let ε(`) := exp

(
− (`−1)µ2

4

)
≤ exp

(
− (|∂j|−1)µ2

4

)
. Then,

E+

[
max
λ∈[0,1]

{
Γ(λX∂iu + (1− λ)Y∂iu)

}]
≤
(
1− P+[Xj > 1− ε and Yj > 1− ε ∀j ∈ ∂iu]

)
× max
x∈[−1,1]∂iu

Γ(x)

+ P+[Xj > 1− ε and Yj > 1− ε ∀j ∈ ∂iu]× max
x∈[1−ε,1]∂iu

Γ(x)

≤
(a)

 ∑
j∈∂iu

P+[Xj ≤ 1− ε] + P+[Yj ≤ 1− ε]

× max
x∈[−1,1]∂iu

Γ(x)

+ 1× max
x∈[1−ε,1]∂iu

Γ(x)

≤
(b)

4rη′ε(`) + max
x∈[1−ε,1]∂iu

Γ(x)

≤
(c)

4rη′ε(`) + Γ(1) + ε(`)η′′ ,

where we use the union bound, (32), and the mean value
theorem for (a), (b), and (c), respectively. Since ε(`) decreases
as ` increases, it is enough to show Γ(1) ≤

√
1− µ2. Using

the Cauchy-Schwarz inequality, it follows that

Γ(1∂iu) =
∑
A∂iu

√√√√E

[
1 + µu

2

∏
j∈∂iu

1 +Ajuµu
2

| Au

]

×

√√√√E

[
1− µu

2

∏
j∈∂iu

1 +Ajuµu
2

| Au

]

+
∑
A∂iu

√√√√E

[
1− µu

2

∏
j∈∂iu

1 +Ajuµu
2

| Au

]

×

√√√√E

[
1 + µu

2

∏
j∈∂iu

1 +Ajuµu
2

| Au

]

≤
√

1 + µ

2

√
1− µ

2
+

√
1− µ

2

√
1 + µ

2
=
√

1− µ2

which completes the proof.

VI. EXPERIMENTAL RESULT

In this section, we evaluate the performance of BP using
both synthetic datasets and real-world Amazon Mechanical
Turk datasets to study how our theoretical findings are demon-
strated in practice.

A. Tested Algorithms

We compare BP and a variant of BP to two oracle algorithms
and several state-of-the-art algorithms in [8], [11], [14], each
of which are briefly summarized next.
A practical version of BP. We note that BP, named BP-
True in our plots, requires the knowledge of the prior on pu’s.

However, in practice, the prior is typically unknown. Thus,
we design a practical version of BP, which we call EBP
(Estimation and Belief Propagation) that has an additional
procedure that extracts the required statistics on the prior
of pu’s from the observed data. In EBP, starting with a
certain initialization5 of labels, it first estimates the statistics
of each worker’s reliability assuming the labels are true, and
updates the labels via BP using the estimated statistics as the
reliability distribution, over multiple rounds in an iterative
manner. We will focus on two versions of EBP with one
and two rounds, respectively, marked as EBP(1) and EBP(2),
which is motivated by our empirical observation that two
rounds are enough to achieve good performance, and the gain
from more rounds is marginal.

Oracle algorithm. Since computing the MAP estimate is
computationally intractable, we instead compute the lower
bound on the error rate, using the following estimator with
access to an oracle. We consider an oracle MAP estimator
which has an omniscient access to a subset of the true labels of
tasks to label each task. We consider the Oracle-Task that, to
estimate task ρ, uses the true labels of the only tasks separating
the inside and the outside of the breadth-first searching tree
rooted from task ρ in G. Then due to the exactness of BP on
a tree in Property 1 and Lemma 1, we can obtain the lower
bound in a polynomial time.

Tested algorithms for comparisons. For comparison to the
state-of-the-art algorithms, we test the majority voting (MV),
an iterative algorithm (KOS) [11]), the expectation maxi-
mization (EM) [8]) and an approach based on approximate
mean field (AMF) [14]). Specifically, as the authors in [14]
suggested, we run EM and AMF with Beta(2, 1) as the input
distribution on workers’ reliability.

We terminate all algorithms that run in an iterative manner
(i.e., all the algorithms except for MV) at the maximum of
100 iterations or with 10−5 message convergence tolerance,
all results are averaged on 100 random samples.

B. Performance on Synthetic Datasets

We first compare all the algorithms with synthetic datasets
generated by the set of random (`, r)-regular bipartite graphs
having 200 tasks from the configuration model [28], where we
vary either ` or r. We randomly choose worker’s reliability
pu from the spammer-hammer model with π(0.5) = π(0.9) =
1/2 and the adversary-spammer-hammer model with π(0.1) =
π(0.5) = 1/4 and π(0.9) = 1/2, whose results are plotted in
Figures 2(a)-2(b) and Figures 2(c)-2(d), respectively.

Optimality of BP. We observe that BP-True with the knowl-
edge of the true reliability distribution has the negligible
performance gap from the lower bound of Oracle-Task,
whereas other algorithms have the suboptimal performance
and their suboptimality gap depends on `, r and the reliability
distribution π (see Figures 2(c).). As discussed in [11], we
observe a threshold behavior at (`− 1)(r − 1) = 1/q2 where

5 In this paper, we initialize EBP with the labels from MV to deliver
more interpretations. However, better initialization such as EM and AMF with
Beta(2, 1) can be also considered in practical use of EBP.
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(c) ASH model with r = 5

MV
KOS
EM
AMF
EBP(1)
EBP(2)
BP-True
Oracle-Task
Oracle-Work

E
rr

or
 ra

te

0.05

0.1

0.2

0.5

Number of tasks per worker
0 5 10 15 20 25

(d) ASH model with ` = 5

MV
KOS
EM
AMF
EBP(1)
EBP(2)
BP-True
Oracle-Task
Oracle-Worker

E
rr

or
 ra

te

0.05

0.1

0.2

0.5

Number of workers per task
0 5 10 15 20 25

(e) SIM dataset
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(f) TEMP dataset

Fig. 2. The average fraction of incorrectly labeled tasks on the synthetic datasets and the real-world Amazon Mechanical Turk datasets; (a)-(b) the synthetic
datasets consisting of 200 tasks with the spammer-hammer (SH) model with π(0.5) = π(0.9) = 1/2; (c)-(d) the synthetic datasets consisting of 200 tasks
with the adversary-spammer-hammer (ASH) model with π(0.1) = π(0.5) = 1/4 and π(0.9) = 1/2; (a) Color-similarity comparison (SIM) dataset with 50
tasks and 28 workers obtained in [13]; (b) Temporal ordering (TEMP) dataset with 462 tasks and 76 workers obtained in [32].

for small ` and r MV outperforms KOS but for large ` and
r KOS is better. However, BP-true consistently outperforms
all other algorithms irrespective of the values of ` and r.

Near-optimality of EBP. Even without knowing the true
reliability distribution, EBP with just two rounds (EBP(2)) of
updating prior, achieves almost the same performance as BP-
True, as shown in Figure 2(d). However, MV, KOS, EM and
AMF use fixed priors6 which are different from the true prior.
Hence, such mismatches between the algorithmic and true
priors cause performance degeneration, which is particularly
significant when the true prior is the adversary-spammer-
hammer (see Figure 2(c).). Even though EBP is initialized
with the labels from MV, of which performance is poor, EBP
improves the accuracy by recursively updating the estimations
of prior and labels. Indeed, Figure 2(d) shows the recursive
improvement of EBP from MV to EBP(1) to EBP(2), where
two rounds of updates (EBP(2)) provide us the performance
close to optimality.

Tighter lower bound. We recall that a lower bound in
Lemma 1 (i.e., Oracle-Task) was tight enough to show the
exact optimality of BP, and this tightness is demonstrated in
all Figures. Note that a different lower bound is studied by
[11] to show just an order-wise optimality of KOS, which
is obtained by the Bayesian estimator with full information

6 MV and KOS can be interpreted as special cases of BP with deterministic
prior and Haldane prior, respectively, [14]. EM and AMF use Beta(2, 1) as
the prior.

on true workers’ reliabilities, marked as Oracle-Work in our
plots. Both Oracle-Work and Oracle-Task scale well with
respect to ` but only Oracle-Work does with r as well, thus
being a tighter lower bound (see Figures 2(b) and 2(d)).

C. Performance on Real Datasets

We use two real-world Amazon Mechanical Turk datasets
from [11] and [32]: SIM dataset and TEMP dataset. SIM
dataset is a set of collected labels where 50 tasks on color-
similarity comparison are assigned to 28 users in Amazon
Mechanical Turk. TEMP dataset consists of 76 workers’ labels
on 462 questions about temporal ordering of two events in a
collection of sentences of a natural language. In both datasets,
we use the reliability measured from the dataset as a true
workers’ reliability, and we vary ` by subsampling the datasets.
Figures 2(e) and 2(f) shows the evaluation results, where we
obtain similar implications to those with the synthetic datasets,
where EBP(2) is close to Oracle-Task and outperforms
all other the state-of-the-art algorithms. In particular, KOS
performs poorly for the TEMP dataset, because it is under
the regime for small `, i.e., before the threshold.

VII. CONCLUSION AND DISCUSSION

In this paper, we settle the question of optimality and
computational gap for a canonical scenario for the crowd-
sourced classification where the task assignment is random
(`, r)-regular bipartite graph. Here we discuss some interesting



11

potential extensions of our result. First the BP optimality can
be proved when the task assignment graph is irregular. Our
proof of the BP optimality uses the locally tree-like structure
in (13) and the decaying correlation in Lemma 3. These
properties hold as long as the numbers of workers per task are
finite. One can potentially generalize Theorem 1 to irregular
bipartite graphs, where each task is assigned to sufficiently
large but different number of workers and each worker is
assigned to large but different number of tasks. This extension
is important in practical setting where the workers decide how
many tasks to work on.

Second it would be interesting to tighten the constants in
the error exponent in (12) since the actual performance of
BP is better than predicted by this upper bound. The analysis
could be significantly tightened, if one can provide tighter
analysis of both the majority voting and the KOS algorithm.
Next, a tighter analysis of the oracle error rate is needed. We
provide an oracle estimator that is significantly tighter than the
naive oracle estimators presented in [11]. This strong oracle
can be numerically evaluated, as we do in our experiments.
However, it is not known how the error achieved by this oracle
estimator scales with problem parameters. A tight analysis of
this lower bound in a form similar to (12) would complete
the investigation of optimality of BP. Finally, it has been
observed in [11], [12] that there exists a spectral barrier at
(` − 1)(r − 1) = 1/q2, where q = E[(2pu − 1)2]. Below the
spectral barrier, we observe that the gap between the simple
majority voting and BP becomes narrower as we step away
from this threshold. It is of interest to identify where MV
is optimal, in order to provide guidelines on how to design
crowdsourcing experiments and which algorithms to use.

When we have more than two classes, our algorithm natu-
rally generalizes. However, the computational complexity in-
creases and the analysis techniques do not generalize. We need
to investigate other inference algorithms, perhaps those based
on semidefinite programming or expectation maximization,
and provide an analysis that naturally generalizes to multiple
classes. When there are k classes, characterizing the error rate
when k scales as nα for some parameter α is of interest. We
expect BP to be no longer optimal for some regimes of α.

One of the major drawback of the Dawid-Skene model is
that it does not account for tasks that have different difficulty
levels. In real-world crowdsourcing data, it is common to
see some tasks that are more difficult than the others. To
capture such heterogeneity, several generalized models have
been proposed [5]–[7], [16], [17], [32]–[34]. For these general
models, the questions of the error rate achieved by efficient
inference algorithms is widely open. Finally, in real crowd-
sourcing systems, adaptive design is common. One can decide
to collect more data on those tasks that are more difficult.
Tighter analysis of the error rate can provide guidelines
on how to design such adaptive crowdsourcing experiments.
Understanding such adaptive task assignments is an important
topic, as they are widely used in practice. Under the standard
Dawid-Skene model studied in this paper, it is known that
there is not much gain in using adaptive schemes [13]. The
main reason is that all tasks are inherently assumed to be
equally easy (or difficult) and there is not much gain in

identifying tasks with less confidence and assigning more
workers on those tasks. However, recent advances work in
[34] proves that under a more general variation of the Dawid-
Skene model, it is possible to significantly outperform non-
adaptive schemes (such as those studied in this paper), by
using adaptive task assignment schemes. Understanding the
optimality of BP under this more generalized Dawid-Skene
model is an interesting open problem. It is not even clear
how to run BP in this case, as both tasks and workers are
parametrized by continuous variables.
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