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On the Elasticity of Marking Functions
in an Integrated Network
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Abstract—Much of the research on network modeling and
analysis has focused on the design of end controllers and network
algorithms with the objective of stability and convergence of the
transmission rate. However, a network is typically composed
of a mixture of both controlled elastic flows and uncontrolled
real-time flows. In this paper, we study the effects of marking
elasticity (which characterizes how aggressively the marking
function responds to congestion) on queue overflow probability
for uncontrolled real-time flows.

First, we derive lower and upper bounds on the queue over-
flow probability at a router of a single bottleneck system. Using
this, we quantify the trade-off between stability for controlled flows
and queue overflow probability for uncontrolled real-time flows as
a function of marking elasticity. Next, we compare the capacity
required at a router with only FIFO scheduling versus a router
with priority scheduling (priority given to the real-time flows) for
supporting a given queue overflow probability. We quantify the
“scheduling-gain” of priority scheduling over FIFO scheduling, as
a function of marking elasticity. We show that this scheduling gain
decreases with more elastic marking functions.

Index Terms—Congestion control, queueing theory, stochastic
processes.

I. INTRODUCTION

T HERE has been extensive research on the modeling and
analysis of the controlled elastic flows in networks by

adopting differential equation based models of source con-
trollers and Active Queue Management (AQM) algorithms.
Much of this work has focused on the design of end host
controllers and control algorithms (marking functions) at the
intermediate routers for (global and local) stable end-to-end
operation over the Internet by using control theoretic tools (see
[1] and the references therein).

However, a network typically carries a mixture of traffic
ranging from controlled non-real-time elastic data traffic to un-
controlled real-time traffic (e.g., voice and multimedia traffic).
Uncontrolled real-time flows do not react to network feedback
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Fig. 1. Priority and FIFO scheduling disciplines.

and require guarantee of queue overflow probability (QOP)
as its Quality of Service (QoS), where the QOP requirement
stipulates that the probability of packet (from uncontrolled
real-time flows) loss should not exceed some threshold. From
the perspective of network control and management, real-time
flows are admitted into the network only if there are “sufficient”
resources to satisfy their QOP requirements. On the other hand,
non-real-time sources are always admitted into the network
on a best-effort basis, i.e., real-time sources are given higher
priority, and the remaining network resources unused by the
real-time sources are allocated to the non-real-time sources.

One of the simple architectures for providing differentiated
services in the integrated network with controlled and uncon-
trolled flows is that users can belong to one of two classes, and
routers in the network treat (schedule) packets from two classes
in a differentiated manner by adopting “priority” based sched-
uling algorithms (see Fig. 1(a) for an example).

In this paper, we consider a network where resources are
shared by uncontrolled real-time and controlled elastic flows,
and packets in the router are scheduled in a first-come-first-serve
manner (i.e., no differentiation) [see Fig. 1(b)]. Over such a
network, the behavior of uncontrolled real-time and controlled
flows are coupled together, and the QOP experienced by uncon-
trolled real-time flows will be affected by the behavior of con-
trolled flows (due to the flows sharing a common link). With
this setup, it seems reasonable to believe that by appropriately
designing an AQM mechanism (marking function) at interme-
diate routers, we can potentially provide the required QOP to
the uncontrolled real-time flows without any differentiation be-
tween real-time and non-real-time flows at the routers.

The intuition is the following: an “aggressive” marking
function will mark a larger number of controlled flow packets
when a burst of packets (which causes congestion) arrive. This
will cause the controlled flows to back-off, thus potentially
decreasing the delay or packet loss probability experienced by
real-time flows. In this paper, we study the trade-off between
packet marking [2] for controlled flows and the effect of this
marking on the QOP of uncontrolled real-time flows.

We first characterize the “aggressiveness” of a marking func-
tion by its elasticity.
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Fig. 2. Elasticity of marking functions.

Definition 1.1: Given any two marking functions and
, we say that is more elastic than if for any ,

we have

where is the equilibrium data rate at the router.Thus, the elas-
ticity of a marking function corresponds to how aggressively the
marking value changes as the arrival data rate exceeds the equi-
librium rate (see Fig. 2). However, note that the marking values
at the equilibrium rate are equivalent with both marking func-
tions, i.e., the link utilization at equilibrium is the same.

In this paper, we study and quantify the following two trade-
offs:

Stability-elasticity trade-off. This refers to the trade-off be-
tween QOP for uncontrolled real-time flows and stability
for controlled flows. The key trade-off we quantitatively
analyze is that the more elastic the marking function is, the
better is the QOP of uncontrolled real-time flows guaran-
teed. However, this also leads to the negative property of
less stability for controlled flows.
Scheduling-elasticity trade-off. This refers to the trade-off
between the scheduling algorithm at the router and the elas-
ticity of the marking function, with the performance metric
being the QOP achieved for real-time flows. This trade-off
is quantified by means of the following: Given the require-
ment of (a) long-term throughput (equilibrium rate) of con-
trolled flows and (b) QOP for uncontrolled real-time flows,
we compute the required link capacity at the router to sup-
port (a) and (b).

To satisfy the long-term rate (for controlled flows) constraint
(a), it is sufficient that the link capacity exceeds the sum of the
mean rates of uncontrolled flows and the equilibrium rates of
controlled flows (as long as the scheduling algorithm is work-
conserving). However, the magnitude of the excess capacity de-
pends on the given QOP (b) for real-time flows, the marking
function elasticity, as well as the scheduling algorithm. In partic-
ular, by giving absolute priority to the real-time flows (i.e., pri-
ority scheduling), this excess capacity can be minimized, as con-
trolled flows do not affect the QOP for the uncontrolled flows.
On the other hand, FIFO scheduling has the advantage of simple
implementation (no per-class scheduling required), but at a cost
of larger required link capacity. In this study, we quantify the
“scheduling-gain” (i.e., the difference in the link capacity re-
quired with priority scheduling versus that with FIFO sched-
uling) of priority scheduling over FIFO scheduling, as a func-
tion of the marking elasticity.

The parameters that impact the source dynamics for a con-
trolled flow are the round-trip delay, the elasticity of the marking

function, and the rate of adaptation at the controlled source.
In this paper, we first model the dynamics of controlled flows
by means of an instant adaptation algorithm, where the sources
react to network feedback with no delay and adapt immediately
to the equilibrium rate for a given network configuration. The
instant adaptation scheme enables us to separate the effect of
other parameters and to focus only on the elasticity of marking
functions [3], [4]. In Section IV, we extend the discussion to
a weighted proportional fair controller [5] with more complex
temporal dynamics.

A. Main Contributions and Organization

The main contributions of this paper are the following:
i) Using the instant adaptation model for source dynamics,

we derive lower and upper bounds of the QOP at a router,
where a single buffer is shared by controlled and uncon-
trolled real-time flows. Using these bounds, we quantify
the trade-off between stability for controlled flows and
QOP-guarantee for uncontrolled real-time flows as a func-
tion of the elasticity of the marking function. The results
indicate that some marking functions may be “uniformly”
better than others. In particular, among the marking func-
tions that we have compared, our bounds indicate that a
rate based version of REM [6] seems to provide the largest
local-stability region for any given QOP requirement.

ii) We next compare the capacity required at a router with
only FIFO scheduling versus a router with priority sched-
uling for supporting a given QOP requirement. We quan-
tify “scheduling-gain” of priority scheduling over FIFO
scheduling, as a function marking elasticity. We show that
this scheduling gain decreases with more elastic marking
functions. This indicates that by appropriately choosing
the marking function and by using only a FIFO queue at
the router, we can satisfy the QOP requirement of real-
time flows without much over-provisioning.

iii) We extend the results to the case with a weighted propor-
tional fair controller at the source, and study the trade-off
between stability and marking elasticity. Finally, we val-
idate our analytical results using simulations.

In the rest of this paper, we begin with a description of
the system model, parameterization of marking elasticity and
the problem statement in Section II. Next, in Section III, we
derive an upper and lower bound on the QOP, from which
we analytically show stability-elasticity trade-off and sched-
uling-elasticity trade-off with the instant adaptation algorithm.
In Section IV, we discuss the stability-elasticity trade-off with
weighted proportional fair controllers. In Section V, we provide
numerical results and simulation to validate our analysis, and
conclude in Section VI.

B. Related Work

The problem of determining the queue overflow probability
has been studied extensively for queues [7]–[11] in the context
of “open-loop” flows (i.e., there are no controlled flows). From a
technical viewpoint, our research differs in that we use a sample
path large deviations framework to analyze a system, where the
flows react to the link conditions via the congestion controller
dynamics.
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There has been much recent work on understanding the dy-
namics of Internet congestion controllers in the presence of un-
certainty (e.g., due to short flows, random flow initiations and
terminations, and real-time flows). The current literature can be
categorized by the time-scales we investigate.

First, from the viewpoint of the router, as the number of flows
and capacity increase, the time-scale of queue becomes faster.
In other words, the queueing dynamics become increasingly
faster (equivalently, the busy-period duration becomes increas-
ingly smaller) as the system scale size increases. In this regime,
by appropriately “slowing-down” time at the router, it has been
shown that the uncontrolled arrival processes can be modeled by
a Poisson process [12] (formally, using the Poisson limit of re-
newal processes [13]), and there has been much work [14]–[16]
in understanding the queueing dynamics (for instance, in the
context of buffer sizing) at this time-scale at the router. We refer
to this regime as the “fast time-scale regime,” as this regime cap-
tures the time-scale of the router dynamics.

The second important time-scale to consider is that of a
end-user. This time-scale is times “slower” than that of the
router dynamics, where is scaling parameter that determines
the number of flows, and the link capacity scaling. The reason
for this “slow-down” is that for every packet transmitted by
an end-user, there are packets that arrive at the intermediate
router (as there are flows in the system). From the viewpoint
of the end-user, over any fixed time-interval (i.e., time is not
scaled), one can view the queue as a multiplexer over a large
number of random (open-loop) flows, leading to a deterministic
limit in the large-number of flows regime. This is essentially
the regime that has been studied in [17], where the authors
have analyzed the fluid limit of the system from the viewpoint
of the controlled flows. In this limit, the open-loop flows (the
real-time flows in the context of this paper) appear as a constant
rate process (with the rate equal to the expected value of the
uncontrolled arrival process), and the closed-loop controlled
flows appear as a deterministic delay-differential equation.

The third time-scale is due to that of flow-level arrivals
and departures. In this time-scale, the major interest lies in
understanding the impact of real-time flows on elastic flows
by looking at the system dynamics at the flow-level time-scale
and considering dynamic flow arrivals/departures [18]–[21]. A
primary research objective at this time-scale is in characterizing
flow-level stability (i.e., conditions under which the number of
elastic flows remain finite).

Viewed in the above context, the work in this paper can be
viewed as trying to model the behavior of a real-time (open-
loop) end-user, at the time-scale of the end-user (i.e., the second
time-scale discussed above). However, unlike [17] where a de-
terministic fluid model has been studied (which is of interest
when studying the long-term throughput for a controlled flow),
we consider the tail probability for open loop flows, as the per-
formance metric here is the queue overflow probability of a
real-time flow.

Finally, related work also includes [22], where the authors
characterize queue fluctuations using a Central Limit Theorem
(CLT) based approximation. This can be interpreted as under-
standing (i) the variance properties of the router queue as op-
posed to tail behavior (i.e., the analog of the difference between
the large-deviations behavior of an “open-loop” queue and the

Fig. 3. System model.

diffusion approximation of the queue, however, in the context
of a closed-loop system), and (ii) the time-scale of the router
queue (see [22, Section 4]).

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

Consider the system shown in Fig. 3. We consider a single dis-
crete time queue with two types of flows: controlled flows and
uncontrolled flows. We use the terminology controlled flows to
refer to flows of data traffic which react and adapt their trans-
mission rates to feedback from the network. Uncontrolled flows1

refer to data flows that do not react to network feedback. Exam-
ples of such flows include real-time video/audio. The queue is
fed by independent identically distributed (over flows) sta-
tionary, ergodic uncontrolled flows, with each (discrete time)
flow being a bounded process, and by controlled flows (deter-
mined by a congestion control algorithm described later). The
buffer size is scaled with , and the link capacity of the cor-
responding queue is suitably scaled with so that the queue
is stable. Thus, the -th system has a buffer of size , and
a capacity of . For queue stability, we assume that

, where is the equilibrium rate of a controlled
flow, and is the mean rate of an uncontrolled flow. Further,
we assume that each flow experiences a round trip delay .

From the controlled flows’ point of view, the system we have
described above can be thought of as a closed loop system (with
delay) and feedback control is applied at the router based on ag-
gregate arrivals. A popular modeling and analysis methodology
for such closed-loop systems in the Internet context has been
through functional differential (or difference) equations based
fluid models [23], [24].

The router is modeled by a marking function (see Sec-
tion II-B) which signals congestion by marking flows, and
receivers detect the marks and inform the respective flow
sources to increase or decrease their transmission rate. We
model flows by discrete time fluid processes. We denote the
fluid rates of individual flows by , where

denotes the number of arrivals2 of controlled flow at

1Throughout this paper, we use the term “uncontrolled flows” and “real-time
flows” interchangeably.

2We use the terms “number of arrivals” and “arrivals” interchangeably. Fur-
ther, the term “arrival rate” corresponds to the number of arrivals per time-slot.
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time . In this paper, we consider two source rate adaptation
algorithms (e.g., [4], [17]), described as follows:

i) Weighted proportional fair controller.

(1)

where denotes the number of arrivals due to an un-
controlled flow at time . and are positive constants
which determine the rate at which each flow increases or
decreases its transmission rate, and the equilibrium point.

ii) Instant adaptation.

(2)

In the instant adaptation algorithm, congestion controllers
adapt to the fixed point of the difference equation in (1)
with no delay [3], [4]. In this scheme, as the rate of the
uncontrolled flow varies with time, the corresponding
equilibrium rate varies appropriately (as determined by
the elasticity properties of ). The instant adaptation
scheme tracks this variation of the equilibrium rate. This
allows us to focus purely on the properties of the marking
function and to ignore the effects of and .

B. Marking Function

The marking function, represents the fraction of flow
to be marked when the total arrivals to the associated router
with capacity is . In this paper, we study rate-based marking
functions, where the router marks incoming packets based on
the aggregate instantaneous arrival rate. Another class of widely
studied marking functions are those that mark the packets based
on the queue length (queue-based marking functions, e.g.,
RED [2]). Further, in [14], [15], the authors show that under
appropriate assumptions, a queue-based marking function can
be approximated by an equivalent rate-based marking function.
In this paper, we restrict our attention to rate-based marking
functions.

We consider the following form of marking functions:

if
if
if

(3)

where , , and . is as-
sumed to satisfy the following condition.

Assumption 2.1: We assume that is a increasing, Lip-
schitz continuous, differentiable function in the interval
with range , that satisfies . Assump-
tion 2.1 states that the fraction of packets marked depends only
on the ratio of the total arrival rate and the link capacity, which

TABLE I
EXAMPLES OF MARKING FUNCTIONS

is satisfied by typical marking functions such as those in Table I
(see [17], [25] for more details)3

In Table I, Type has the interpretation of the queue length
exceeding in an M/M/1 queue with arrival rate [25]. Type

can be used as a rate based model for REM (Random Ex-
ponential Marking [6]) for a suitable choice of [26]. Type
is a simple linear marking function. Type is a rate based ex-
ponential marking. Finally, type has the interpretation of the
fraction of fluid lost when the arrival rate exceeds a certain level,
called the “virtual capacity” [27].

Then, from Assumption 2.1, we present the individual flow
dynamics at time by

(4)

By summing over the flow index , we then have

(5)

where and are the average arrivals (over flows) at time
, i.e., , and .

Similarly, with weighted proportional fair controller,

(6)

C. Elasticity of Marking Function: Warping

In this section, we describe how to parameterize the elasticity
of marking functions by adopting “warped” marking functions.
A warped marking function has a parameter (denoted by ),
which determines the elasticity of the marking functions. The
family of warped marking functions enables us to alter the elas-
ticity of the marking function without altering the steady-state
utilization. Prior to describing warping, we first make the fol-
lowing additional assumption on the marking functions consid-
ered in this paper.

Assumption 2.2: is convex in over .
The typical marking functions in Table I satisfy Assumption

2.2.
Given any marking function satisfying Assumption

2.1 and 2.2, we construct a family of marking functions param-
eterized by the warping constant , , defined by:

3For notational simplicity, we will omit the second parameter � throughout
this paper unless explicitly needed.
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Fig. 4. Examples of warped marking functions: � � ��, � � �, and � � �.

where is the equilibrium rate at the router with capacity .
Equivalently, corresponds to the equilibrium utiliza-
tion at the router, for some fixed value of . Note that

which ensures that for each fixed nominal marking function
4and the corresponding family of warped marking func-

tions, , , the steady-state utilization of the
system is independent of . Then, for , we have

, if , and if .
In other words, corresponds to a family of marking

functions whose elasticity is varying with respect to the nominal
marking function . If , is more elastic, and if

, is less elastic from Definition 1.1. We can easily
check that for each , also satisfies Assumption 2.1
and 2.2. Fig. 4 shows the warped marking functions of Type
and Type for different values of .

D. Problem Statement

Our objective is to study the effect of the marking elasticity
(using the warped marking functions) on the queue overflow
probability (QOP) requirement of uncontrolled flows (i.e., the
bound on probability that the queue length exceeds a fixed
threshold). It is clear that the QOP for uncontrolled real-time
flows will be the “smallest” if such flows are always given strict
priority access at the routers (i.e., priority scheduling at the
router with priority for uncontrolled real-time flows). We will
later use priority scheduling as a reference model to assess the
performance of FIFO scheduling (used in Section II-C to study
scheduling-elasticity trade-off). With priority scheduling, we
assume that two separate queues are used to store data from the
controlled and uncontrolled flows, respectively.

We denote the sum of arrivals of uncontrolled and
controlled flows over the time interval by

and , respec-
tively5. We let , to denote the
total sum of controlled and uncontrolled arrivals over the same
time interval in the -th system.

We consider a discrete time framework, where we suppose
that the current time is 0, and the arrival process starts at time

4When � � �, we use � ��� �� and ���� �� interchangeably throughout this
paper. Further, for simplicity, we omit the second parameter � in ������ and
� �����, unless explicitly needed.

5Thus, � ��	 denotes the random variable corresponding to the number of
arrivals from the 	th controlled flow at time �, and a similar definition holds for

 ��	. Finally, we use upper-case letters and lower-case letters to denote random
variables and deterministic quantities, respectively.

. Thus, at the current time, the system is in steady state.
We denote the queue length at time 0 with FIFO and priority
schedulers by (for a queue of uncontrolled real-time flows)
and , respectively.

The steady-state behavior of the congestion controllers (i.e.,
routers accessed by a mixture of controlled and uncontrolled
flows) has been studied under fluid models [17], [28], and sta-
bility condition has been established [4], [17]. However, our
focus here is the transient behavior which leads to queue over-
flow, and the impacts of marking elasticity on the QOP of real-
time flows. Thus, in this paper, our objective is to compute the
QOP as a function of the time-scale of the transient phenomenon
as well as the marking function elasticity. We assume that for a
fixed finite , the system is stable before , i.e.,
and for and thus, the queue over flow prob-
ability is a function of , the marking function, and scheduling
policy. By the queue stability assumption (i.e., ),
the queue length at time is 0. Therefore, it suf-
fices to consider the arrival processes only at the time interval
over .

For a fixed , consider a following non-negative scaled
(deterministic) arrival vector over the interval :

. Then, from
Loyne’s formula on the queue length process, the queue length
at time 0 corresponding to an arrival vector can be
defined as:

(7)

Thus, the queue overflows probabilities of priority and FIFO
queueing are given by:

(8)

(9)

In the large regime, we derive asymptotic expressions
for the queue overflow probabilities using large deviation
techniques, which requires the application of the contraction
principle [29]. Intuitively, the contraction principle facilitates
computation of queue overflow proability by considering the
queue length at time 0 as a function of the uncontrolled arrival
process. For applicability of contraction principle, the queue
length at time 0 should be continuous with respect to the
uncontrolled arrival process, which we will prove later.

With the instant adaptation, we define the queue length at time
0 for the uncontrolled arrival by:

(10)
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where is determined by (5). Similarly, we use the no-
tation to refer to the queue length at time 0 with the weighted
proportional fair controller, i.e, is determined by (6).

In Section III, with the instant adaptation, we first prove that
is continuous under a suitable topology (which

allows the application of a LDP (large deviation principle) and
the contraction principle) in Theorem 3.1. Next, by computing

as a function of marking elasticity, we will investigate
and quantify stability-elasticity and scheduling-elasticity
trade-off. In Section IV, we extend the analysis to the weighted
proportional fair controller (using the queue length function

).

III. INSTANT ADAPTATION CONTROLLER

A. Continuity of Queue Length and Queue Overflow
Probability

We first prove the continuity of (with respect to the uncon-
trolled arrival process) that enables the application of the large
deviation results and the contraction principle.

We present a useful lemma, which is used to derive the queue
overflow probability and to prove that the queue length at time
0 is continuous with respect to the uncontrolled arrival process.
With and in (5), let us define a function

, where

Since , we have from (3) on . Thus, is
defined over . Also, from the definition of ,
and when . Intuitively, is the total average ar-
rival rate over flows (i.e., the sum of average uncontrolled and
controlled arrivals over flows) at time , and is the corre-
sponding uncontrolled arrival rate at time (see (5)).

Lemma 3.1: Suppose that we have a marking function of the
form (3) satisfying Assumption 2.1 and 2.2. Then, is invert-
ible and concave. Further, by defining , is a convex
function satisfying

Proof: Observe that is the average total sum of uncon-
trolled and controlled arrivals with respect to the uncontrolled
arrival . Note that since is continuous, is also contin-
uous. The formal proof is presented in Appendix.

Definition 3.1 (Uniform Norm): We define theuniform norm
[30], [36] for a vector as follows:

We now prove the following result:

Theorem 3.1: The queue length function (at time 0)
is continuous with respect to the uncontrolled ar-

rival process in the topology endowed with
uniform norm. Further, we have

(11)

where

(12)

Note that “ ” is the inner product of two vectors.
The proof is presented in Appendix.

B. Computation of Bounds on the Rate Function

This section focuses on computation of lower and upper
bound on , leading to upper and lower bound on asymp-
totic queue overflow probability, respectively (see (11)). First,
we add an additional assumption that the uncontrolled flows
are independent and identically distributed over time for com-
putational simplicity. The computation of for non-i.i.d
arrivals is left as future work. This i.i.d assumption ensures [29]
that for any fixed , we have

(13)

where , and is the
random variable denoting the number of arrivals from flow “1”
at time slot “ .”

From Theorem 3.1 and (13), the rate function is given by

(14)

where

Then, we have the following result on the upper and lower bound
on .

Theorem 3.2 (Upper and Lower Bound):

We first describe three useful lemmas. Lemmas 3.2, 3.3 and
Lemma 3.4 are used for the upper bound and the lower bound in
Theorem 3.2, respectively. The proofs of all these lemmas are
presented in Appendix.
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First, we show that we do not need to optimize over the entire
trajectories in the space . Instead, it is enough to optimize over
the trajectories over , defined by

(15)

Recall that is the average total sum of uncontrolled and
controlled arrivals with respect to the uncontrolled arrival .

Lemma 3.2: With defined as (15),

Next, let us define the space given by:

(16)

By showing that the space , we derive an upper bound of
, described in the following lemma.

Lemma 3.3: . Thus,

Lemma 3.4: Suppose that we have the following optimization
problem:

(17)

Also, suppose that is increasing and concave. Then, the vector
is an optimizer.

Proof of Theorem 3.2:
(i) Upper bound: From Lemma 3.2 and Lemma 3.3,

Since is increasing and convex, for , and from
the definition of (which is a convex set), we have the
optimum when for .
Then, the result immediately follows.

(ii) Lower bound: Since is monotone-increasing over
and from Jensen’s inequality, we have

Let (i.e., from Lemma 3.1).
Then, we have the following problem transformation:

where is defined as (17). Then, from Lemma 3.4 and the def-
inition of , the result follows.

C. Stability-Elasticity Trade-Off

Using the lower and upper bounds on the rate function
(i.e., ) derived in the previous section with the instant
adaptation source controller, we study the effect of elasticity
of marking functions on the stability (for controlled flows) and
QOP (for uncontrolled flows), and their trade-off.

Consider a fixed nominal marking function , and the cor-
responding family of marking functions .
Recall that with respect to a nominal marking function,
corresponds to a more elastic marking function, and cor-
responds to a less elastic marking function.

We adopt the following procedure to study the effect of the
marking elasticity on the system stability of the closed-loop con-
trolled sources and on the QOP of the open-loop uncontrolled
real-time sources:

(i) For a fixed , we compute the smallest QOP that can
be achieved for the uncontrolled real-time sources by as-
suming that the controlled source adapts and backs-off in-
stantly in response to congestion, i.e., the instant adapta-
tion controller is used for QOP analysis. Note that with
the instant adaptation scheme, the upper bound on the rate
function from Theorem 3.2 provides a lower bound on the
QOP. In other words, for a fixed value of and the cor-
responding marking function , we can get no less
QOP than that given by Theorem 3.2.

(ii) Using known local stability results for a weighed pro-
portional fair controller from [4], for a fixed , we
compute the maximum delay that can be tolerated before
the controlled sources go into local (and hence, global)
instability.

While (i) and (ii) use different controllers (instant adapta-
tion and proportional fair controller, respectively), our objective
here is to illustrate the effect of the marking elasticity (not spe-
cific controller mechanisms) on the QOP for the uncontrolled
real-time source. Thus, (i) corresponds to the “best-case” sce-
nario for the QOP of the uncontrolled real-time sources (due
to the fact that the controlled flows in (i) back-off instantly).
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With any other controller, there will be a lag associated with the
back-off of controlled flows, thus resulting in larger QOP for un-
controlled real-time flows than that with the instant adaptation
controller (see Section IV for the corresponding results when
the weighted proportional fair is used for both (i) QOP analysis
and (ii) stability analysis, respectively).

To discuss the stability analysis in (ii), we use the local
stability condition for a weighted proportional fair controller.
For each marking function , we determine the maximum
round-trip propagation delay that the system can tolerate
before going into local instability (and thus, global instability).
This is given by [4]:

(18)

Further, by definition of , we have

Thus, for each value of , the stability condition (18) reduces to

(19)

The trade-off between the QOP for the real-time flows and
the stability for the controlled flows is parameterized by , the
elasticity of the marking function. The more elastic the marking
function is, the worse is the stability behavior (as becomes
larger in (19)). On the other hand, increasing improves the
QOP behavior for the real-time uncontrolled flows. This can be
explained by applying the -elastic marking function to
the lower and upper bound of the rate function in Theorem 3.2,
and by observing that , , and
are increasing with respect to . For this reason, we refer to this
study as stability-elasticity trade-off.

From a network provider’s viewpoint, the operator would
choose a nominal operating load (equilibrium point) and a de-
sired QOP bound. Now, by choosing the appropriate warping,
the operator can choose the desired trade-off between QOP for
real-time flows and performance of controlled flows (i.e., the
amount of variability in the controlled flow rate due to delay).
To study this trade-off, we fix an nominal load , and study var-
ious marking functions with and without warping. In Section V,
we illustrate the results for various values of the nominal load

, marking functions, and network environments.
We comment that this loss of local stability phenomenon has

been studied in [31], [32]. However, our work differs in that we
explicitly consider the QOP of real-time flows and quantifies
its impact on the local stability region of elastic flows using a
mixture of control theoretic tools and large deviation principle.

D. Scheduling-Elasticity Trade-Off

In this section, we derive bounds on the link capacities needed
with priority and FIFO scheduling to support a QOP require-
ment for the real-time uncontrolled flows, which stipulates that
the QOP should not exceed some .

It is clear that the link capacity required for supporting a fixed
QOP with priority scheduling is the smallest (over all sched-
uling policies), since absolute priority is given to these real-time
flows, i.e., the controlled flows do not affect the queue dynamics

for the uncontrolled flows (see Fig. 1). Thus, the required ca-
pacity with priority scheduling does not depends on the marking
elasticity. On the other hand, with FIFO scheduling, the be-
havior of uncontrolled flows and controlled flows are coupled
together, and thus, the required link capacity for supporting the
given QOP is a function of marking elasticity, and it will be
larger than that with priority scheduling.

With this observation, our objective is to quantitatively study
the “scheduling-gain” (see Definition 3.2) of priority scheduling
over FIFO scheduling, as a function of marking elasticity, and
we show that this gain could be significantly reduced by in-
creasing marking elasticity.

To do so, we adopt the following approach:
(i) For a fixed marking elasticity, we first determine the

per-flow link capacities needed with priority and FIFO
scheduling (denoted by and , respectively) for
supporting a fixed QOP .

(ii) Using the analysis in (i) we define the following “normal-
ized scheduling-gain” of priority scheduling over FIFO
scheduling.

Definition 3.2 (Scheduling Gain):

(20)

Intuitively, quantifies the trade-off between the penalty
of choosing “sub-optimal” scheduling algorithm (i.e., FIFO
scheduling) in terms of QOP-guarantee and the elasticity of the
marking function (i.e., ). We will investigate the behavior of

as the marking elasticity parameter, , changes.
To discuss the analysis with priority scheduling in (i) (i.e.,

computation of the bound on ), we use well-known large de-
viation results [8]. In the large number of flows regime, defining

, the system would allow the QOP less than
if , where

Observe that this also leads to an effective bandwidth charac-
terization for a single server queue accessed by only uncon-
trolled flows [7], [8], where a sufficient condition for
(equivalently, to support a QOP of at most ) is

(21)

where is the log-moment generating function of a
random uncontrolled arrival at a particular time-slot, i.e.,

.
Next, for the analysis with FIFO scheduling (i.e., computa-

tion of ) in (i), we have the following proposition:
Proposition 3.1: With FIFO scheduling and with a fixed

marking elasticity , a sufficient condition for (i.e.,
to support the QOP ) is:

(22)

The proof is presented in Appendix.
We now apply (21) and Proposition 3.1 to study the effect of

marking elasticity on the scheduling gain of priority scheduling
(discussed in (ii)). Defining ,
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we observe that is increasing in , since is increasing
in for , and . This implies that we need
progressively less (to support a given QOP for the un-
controlled real-time flows and queue stability) with increasing
values of .

Further, from the definition of warped marking function dis-
cussed in Section II-C, for a fixed , we have

, as , and , as . Thus, from (22),
we have

(23)

Note that is the minimum required per-flow
link capacity with priority scheduling for supporting the given
QOP (which follows from (21)). Then, the results in (23) imply
that by increasing the marking elasticity, the scheduling gain
can be significantly reduced. We illustrate this by means of an
example.

1) Example 3.1: Consider a single bottleneck network
accessed by 100 uncontrolled and controlled flows (i.e.,

). Also, let the equilibrium rate for a controlled flow
and the mean rate of an uncontrolled flow to be 640 kbps
and 120 kbps, respectively. Assuming that each packet is of a
fixed size with 1000 bytes, the equilibrium rate of a controlled
flow is , and the mean rate of uncontrolled
flow is . We model each uncontrolled
arrival process by a ON-OFF process with ’ON’ probability
of 0.1, and ’ON’ rate of 150 pkts/sec. The queue buffer size
is 800 kbytes, which corresponds to 100 pkts (i.e., ).
We set the equilibrium marking probability to be 0.03 (i.e.,

). The QOP bound for uncontrolled flows
is set to be (i.e., ).
Then, the required per-flow link capacity with priority sched-
uling is . From
the equilibrium analysis of the congestion controller, we
have . Then, with
FIFO scheduling, to support the same QOP , we need the
per-flow link capacity
for . On the other hand, for , we need only

.
In terms of queue management and implementation, FIFO

scheduling is much simpler than priority scheduling. On the
other hand, it is clear that priority scheduling provides less QOP
to the uncontrolled real-time flows. However, the results in this
section imply that the scheduling gain due to priority sched-
uling may not become significant in the large scale networks
by adjusting the marking elasticity. In other words, the differ-
ence in the required capacities with FIFO and priority sched-
uling for a fixed QOP can be significantly reduced by increasing
the marking elasticity. For this reason, we refer to this as sched-
uling-elasticity trade-off.

This trade-off is graphically illustrated in Fig. 6 in Section V,
where we numerically present the trade-off.

IV. WEIGHTED PROPORTIONAL FAIR CONTROLLER

In this section, we consider the weighted proportional fair
controller described in (1). As in Section III, we again assume
that the uncontrolled arrivals are independent over time. How-
ever, the analysis with the weighted proportional fair controller
is more complicated than that with the instant adaptation due
to temporal coupling of the arrival process introduced by the
dynamics of each congestion controller, i.e., the total arrivals
to the router are not independent over time, even if the uncon-
trolled arrivals are. We begin this section with the proof of con-
tinuity of queue length (at time 0) function (i.e., ) with re-
spect to the uncontrolled arrival process in the system with con-
trolled flows governed by weighted proportional fair controller,
and using this, derive an upper-bound on the rate function to
study the stability-elasticity trade-off.

A. Continuity of Queue Length and Queue Overflow
Probability

We have the following theorem to show that the queue length
at time 0 is continuous with weighted proportional fair con-
troller and round-trip propagation delay .

Theorem 4.1: The queue length function (at time 0)
is continuous with respect to the uncontrolled ar-

rival process in the topology endowed with uniform
norm. Thus, we have

where

(24)

The proof is presented in Appendix.

B. Stability-Elasticity Trade-Off

In the previous section, we have shown the continuity of
queue length with respect to the uncontrolled arrival process.
This enables us to apply the contraction principle as in Sec-
tion III-B. In this section, we briefly study the stability-elasticity
trade-off by deriving an upper bound on the rate function in
the system with a “one-step” delay. Controllers with delay and
the scheduling-elasticity trade-off will be studied in Section V
using simulations.

In our analysis, we assume that the controller gain, , is small
enough to prevent the transmission rate of a controlled flow
from becoming negative (note that with a one-step delay, if is
large, the controller will be unstable irrespective of the marking
elasticity).

Theorem 4.2 (Upper Bound): Suppose that .
Then, we have

where .
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Proof: First, from Theorem 4.1, we have

(25)

Next, since for a fixed ,
, we have

(26)

Then, from (6), the fact that ,
implies that is deterministically fixed by the

following form of difference equation:

(27)

where the initial condition . Then, by solving
the difference (27), and by using ,

we have

The assumption that ensures that
, which eliminates the case when could be neg-

ative and has to be set to 0.
Finally, from (26), is upper-bounded by:

To understand the stability-elasticity trade-off, let us apply
the marking elasticity parameter to the upper bound on the
rate function. Then, we observe that for a fixed ,

is increasing in , since is increasing with respect to ,
for a fixed . Thus, from Theorem 4.2, we observe that as we
have an increasingly elastic marking function at the router, we
get the larger rate function (and thus, a less QOP). However,
from (19), increasing causes the maximum allowable delay
for stability to decrease. The above result points toward a sta-
bility-elasticity trade-off (however, note that the stability-elas-
ticity trade-off is based on an upper bound as opposed to the
exact values) with the weighted proportional fairness, in a qual-
itatively similar form to that observed in (19) with the instant
adaptation controller.

V. NUMERICAL RESULTS AND SIMULATION

A. Instant Adaptation

1) Stability-Elasticity Trade-Off: We first illustrate the sta-
bility-elasticity trade-off with the instant adaptation algorithm in

Fig. 5. Stability-elasticity trade-off with instant adaptation. ON-OFF (two state
Markov) uncontrolled arrivals, where ON-OFF ��� �� means that the ON rate is
� with probability � and the OFF rate is 0 with probability �� �.

Fig. 5. For each marking function in Table I, we plot the trade-off
between the largest allowable round-trip delay for stability and
(the lower bound on) QOP (computed by the upper bound of the
rate function in Theorem 3.2) as a parametric plot of .

Fig. 5 clearly illustrates the trade-off between the QOP of
real-time flows and stability of controlled flows for different
values of system parameters such as the total number, the rela-
tive volume of each type of flows, and the burstiness of real-time
flows.

The results indicate that some marking functions may
be “uniformly” better than others. In particular, among the
marking functions that we have compared, our bounds indicate
that a rate based version of REM (Type ) [6], [14] seems to
provide the largest local-stability region for any given QOP
requirement.

An intuitive explanation for this is the following: From
Theorem 3.2, it is clear that the QOP for the uncontrolled
real-time flows with FIFO scheduling depends on the marking
function behavior for arrival rates exceeding the per-flow link
capacity . In particular, the value of the rate function is
proportional to the marking function value for arrival rates
exceeding (i.e., , ). From Fig. 4, we
observe that among the example marking functions considered
in Table I (which are normalized to have the same fixed point
properties), the rate-based REM marking function seems to
have the maximum slope for , which in turn implies
a larger marking function value (as all the example marking
functions have the same ). To analytically construct uni-
formly optimal marking functions is an interesting problem for
future research.

2) Scheduling-Elasticity Trade-Off: To illustrate the sched-
uling-elasticity trade-off, Fig. 6 shows the required per-flow
link capacity with FIFO and priority scheduling to support a
given QOP, for different burstiness of real-time flows with the
type marking function. As discussed in Section III-D, the re-
quired link capacities for any QOP requirement should satisfy
queue stability condition, i.e., the link capacities should be large
enough such that the queue length is always finite. Thus, Fig. 6
plots the maximum over the capacities governed by the QOP
and queue stability condition.

We observe that for a small value , the difference between
the capacities with FIFO and priority queueing is large for all
QOP values. This is due to the fact that the controlled flows
back-off sluggishly. On the other hand, for more elastic marking
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Fig. 6. Scheduling-elasticity trade-off: � � �, � � ���, � � ���, � � ��,
and � � ��.

Fig. 7. Stability-elasticity trade-off with weighted proportional fair controller.

functions, the required capacities with both scheduling algo-
rithms are very close.

For a less bursty uncontrolled arrivals [Fig. 6(a)], in priority
scheduling, the queue stability condition (i.e., )
dominates the QOP condition [i.e., (22)], while for a more bursty
arrivals [Fig. 6(b)], the QOP condition is stronger than the queue
stability condition. In both cases, we observe that the required
capacity with FIFO can be significantly decreased (to a value
that is almost the same as that with priority scheduling) by in-
creasing the marking elasticity.

B. Weighted Proportional Fair Controller

1) Numerical Examples: Now, we study the trade-offs
with the weighted proportional fair controller using numerical
examples as well as simulation results. First, as numerical
examples, Fig. 7 illustrates the stability-elasticity trade-off
with the weighted proportional fair controller. We observe
that analogous to the instant adaptation case, as the QOP
requirement becomes more strict (i.e., less QOP), the stability
region is reduced. Also, importantly, we still observe that the
type marking function appears “uniformly better” than other
marking functions we have considered.

2) Simulation Results: To study the trade-offs with the
weighted proportional fair controller in a more practical sce-
nario, we use the ns-2 [33] packet simulator to validate our
analysis. The network topology used in the simulation is same
as that discussed in the analysis (see Fig. 3). The number of
uncontrolled and controlled flows (i.e., ) are set to be 100
throughout all the simulation results. The per-flow link capacity
of the bottle-neck link is 100 pkts/sec (i.e., total capacity is
100 100 pkts/sec). The buffer size of the bottle-neck link is
100 pkts. We use the fixed size of packets (1000 bytes). Uncon-
trolled flows are modeled by discrete ON-OFF processes, where
the burst-time and the idle-time are set to be 100 msec and

Fig. 8. Stability-elasticity trade-off: The trajectories in (b) show that for two
values of �, the average remains the same. However, there is a trade-off between
QOP and delay as observed in (a).

900 msec. The transmission rate in ON period is appropriately
set such that the specified mean uncontrolled rate is achieved in
different simulations. The parameter and with the weighted
proportional fair controller are set to be 1 and 5, respectively.

First, Fig. 8 shows the stability-elasticity trade-off for the
Type marking function. The equilibrium rate of a con-
trolled arrival process, the mean rate of an uncontrolled
arrival process are set to be 70 pkts/sec and 20 pkts/sec, respec-
tively. Fig. 8(b) shows the trajectories of average transmission
rates with two different marking elasticities, from which we
clearly observe that as we have larger (more elastic marking
function), the trajectory becomes more fluctuating, thus re-
sulting in less stable behavior. For the plots in Fig. 8(a), we
denote a flow to be stable if the transmission rate variance is
less than 10 pkts/sec. In Fig. 8(a), we observe that the stability
region becomes smaller, as we increase marking elasticity.
However, increasing marking elasticity implies lower QOP
with larger marking elasticity.

Next, Table II shows the scheduling-elasticity trade-off with
the weighted proportional fair controller. In this simulation, ( ,

) are set to be (70,25) pkts/sec, respectively. To see the sched-
uling-elasticity effect, for a fixed QOP , we experimen-
tally determine the required per-flow link capacity to satisfy
the given QOP. With priority scheduling, it is observed that the
queue stability condition is dominant; thus, the required capaci-
ties for different values are all equal to 95 pkts/sec. With FIFO
scheduling, we observe that the difference in the required link
capacity between and is about 10 pkts/sec
with all three types of marking functions. Further, the extra ca-
pacity that we need with FIFO scheduling to support the given
QOP is shown to be about 15 pkts/sec. This validates the ana-
lytical result that the required link capacity decreases with in-
creasing values of .

VI. CONCLUSION

In this paper, we first have quantified the trade-off between
stability for controlled flows and guarantee of queue overflow
probability (QOP) for uncontrolled real-time flows as a function
of marking elasticity. The results indicate that some marking
functions may be “uniformly” better than others, where, in par-
ticular, among the marking functions that we have compared,
our bounds indicate that a rate based version of REM seems
to provide the largest local-stability region for any given QOP
requirement.

Next, we have compared the capacity required at a router with
only FIFO scheduling versus a router with priority scheduling
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TABLE II
SCHEDULING-ELASTICITY TRADE-OFF: REQUIRED

PER-FLOW LINK CAPACITY FOR �� QOP

(priority given to the real-time flows) for supporting a given
QOP requirement. We have quantified the “scheduling-gain”
of priority scheduling over FIFO scheduling, as a function of
marking elasticity, We show that this scheduling gain decreases
with more elastic marking functions.

In this paper, we have considered only the weighted propor-
tional fair source controller. However, the dominant source con-
troller in the Internet is TCP (Transmission Control Protocol).
We conclude this paper by discussing possible extensions of our
results to TCP controllers. It is widely known that various types
of the source controllers addressed in literature can be modeled
in the utility maximization framework [34], where the TCP con-
troller corresponds to the utility function (with an appro-
priate setting of and ). In order to extend our study to TCP
controllers, we need to average TCP flows to get a one-di-
mensional averaged equation (analogous to (6) based on which
a large deviations problem can be formulated. This seems pos-
sible for a collection of TCP flows (modeled using the
utility function) in steady-state and with a common round trip
delay. Using the results in [25], in steady state, the controlled
flows (in this case, TCP flows) can be represented only by an
averaged equation. This will form the initial condition (i.e., at
time ), and we can then study transient behavior using a
large deviations formulation as in this paper. We plan to study
this in the future.

APPENDIX

Proof of Lemma 3.1: First, we prove is strictly in-
creasing (thus, invertible) by showing that ,

, . Since is non-zero increasing when
, we have

In addition, is the sum of two concave functions since
is concave from Assumption 2.2. Thus, is a con-

cave function.
Let us define . Then,

Applying this to (5), we have .
The convexity of follows immediately from the concavity of

.
Proof of Theorem 3.1: We note that the authors in [30], [35]

have proved that is continuous with respect to
in the topology endowed with uniform norm.

Note that is the function
(denoted by ) of , since is determined by

in the FIFO scheduling. Thus, from the definition of
, it suffices to show that the function is

continuous (in the topology endowed with uniform norm) to
prove that is continuous with respect to the uncontrolled ar-
rival . We will prove that for any given , and for
two uncontrolled arrival processes, and ,
such that , there exists a func-
tion such that , where

.
First, note that at each time , depends

on only . Then, for a given , from the assumption that
and the definition of uniform

norm, we have

Then, the finiteness of , there exists a finite non-negative con-
stant (which is a function of ), such that

, for all .
Now, observe that

(28)

Since is continuous with respect to from Lemma 3.1,
(28) is arbitrarily small for an arbitrary small . This completes
the proof. Then, the resulting rate function immediately
follows from [30, Theorem 9].

Proof of Lemma 3.2: Let us choose . Sup-
pose that , for a . It suffices to
show that we can find a new trajectory of no larger
cost (rate function) than such that , ,

.
Define a new trajectory , as follows.

if
if .

Then, we have constructed a new trajectory with cost as follows:
, and . In

addition, if , for , we can
inductively remove , and finally construct a new tra-
jectory , with no larger cost.

Proof of Lemma 3.3: It suffices to show that for any
, . We first have
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Also, since g is convex, we have

from Jensen’s inequality. This completes the proof.
Proof of Lemma 3.4: First, it is clear that we get the op-

timum when , since is increasing.
Second, we claim that , , where

. Suppose that for
some . Then, We should have for some ,
which contradicts the given condition.

Now, let ,
. Since , , we can

represent by the following linear combination of .

(29)

where and for . From (29)
and concavity of ,

This completes the proof.
Proof of Proposition 3.1: From Theorem 3.2, and the in-

creasing property of with respect to , we have the fol-
lowing lower bound on :

(30)

We let

Suppose that (22) is true, i.e., . Then, we have

(31)

Thus, from (30) and (31).
Proof of Theorem 4.1: Similar to Theorem 3.1,

is a function of (denoted by ), and it suffices to
show that the function is continuous in
the topology endowed with uniform norm. To do so, we prove
that for any two uncontrolled arrival processes, and

, such that , there ex-
ists a function such that ,
where .

First, similar to the proof of Theorem 3.1,
implies that ,

s.t.,

(32)

We now embed the discrete time trajectory of and
in “continuous time,” i.e., for , we let

, and use a straight-line approximation to in-
terpolate between the times , . Thus, we have the
following differential equation to represent the controlled flows
dynamics in the continuous time:

(33)

where .
Then, from [17, Lemma 3.2] and (33) (we can verify that the

assumptions needed for [17, Lemma 3.2] to hold are satisfied in
a manner identical to that in [17, Theorem 4.1]), we have

(34)

Then, from (32) and (34), we have

Recall that is the Lipschitz parameter of the marking function.
By letting , the result follows, since

is arbitrary.
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