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A. Example in Section III-C

In what follows, we provide an example mentioned in
Section III-C, which shows that Γ∗(·) is neither supermodular
nor submodular.

Consider a graph G consisting of two disconnected com-
plete graphs G1 and G2, both of which has n nodes. Then, it
is easy to show that for any seed set C in G1, Γ∗(G1, C) = 0
(we explicitly express the parameter G1 if needed, but omit it
for the graph G for notational simplicity), when |C| ≥ 1−h

2 n,
similarly applied to G2, also. We first note that Γ∗(G1, ∅) =
Γ∗(G2, ∅), which corresponds to the diffusion exponent with-
out any seeding. Then from symmetry and disconnectedness
of G1 and G2, we observe that

Γ∗(∅) = Γ∗(G1, ∅) = Γ∗(G2, ∅).

We now consider a seed set C1 and C2 in G1, G2, respectively,
where |C1| = |C2| = 1−h

2 n + 1 (thus the diffusion exponent
of both subgraphs is 0). Then, we have:

Γ∗(C2)− Γ∗(∅) > Γ∗(C1 ∪ C2)− Γ∗(C1),

since in LHS Γ∗(C2) = Γ∗(∅) = Γ∗(G1, ∅), and in RHS
Γ∗(C1∪C2) = 0 and Γ∗(C1) = Γ∗(G2, ∅) > 0. This disproves
supermodularity of Γ∗(·).

Also, to disprove submodularity of Γ∗(·), we additionally
consider two seed sets C ′1, C ′2 in G1, G2, respectively, such
that Cl ∩ C ′l = ∅ with |Cl| = |C ′l | for l = 1, 2 (note that we
can do this for sufficiently large n since 1−h

2 < 1
2 ). Then, we

have:

Γ∗(C ′1 ∪ C ′2)− Γ∗(∅)
< Γ∗(C ′1 ∪ C ′2 ∪ C1 ∪ C2)− Γ∗(C1 ∪ C2),

since, in the above, every term except Γ∗(∅) (which is positive)
is 0. This also disproves submodularity of Γ∗(·).

B. Additional Experiment

We also use topology data set extracted from the collabora-
tion network among high energy physicists in Arxiv. The data
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(a) HEParxiv consisting of
12, 008 users and 118, 521
edges and having average
clustering coefficient 0.612
and degree distribution fit into
power law distribution with
exponent 1.44.
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(b) Threshold(20) with varying h in
HEParxiv.

Fig. 1. Blueprint of HEParxiv [1] and simulation result with HEParxiv.

set is originally obtained in [1] and it forms an undirected
graph where each node corresponds to an Arxiv account in
and an edge between two accounts indicates that they have
a joint work on high energy physics published in Arxiv. We
name the graph HEParxiv, whose graphical presentations are
given in Figure 1(a).

We plot Threshold(20) with varying h in Figure 1(b). As
you can see, PrPaS outperforms all other algorithms. We
note that HEParxiv has clustering coefficient 0.612 and degree
distribution fit into power law distribution with exponent 1.44.
Although both the clustering coefficient and the power law
exponent of HEParxiv are relatively high comparing to those
of PPfacebook [2] and PLfacebook [3] and PLfacebook,
the power law exponent of HEParxiv is particularly higher
than others. Hence, as we observed with PLfacebook, one
can also observe that GreedyCut outperforms Random due
to the dominance of the power law exponent comparing to the
clustering coefficient.
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