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Abstract—A variety of models have been proposed and ana-
lyzed to understand how a new innovation (e.g., a technology,
a product, or even a behavior) diffuses over a social network,
broadly classified into either of epidemic-based or game-based
ones. In this paper, we consider a game-based model, where each
individual makes a selfish, rational choice in terms of its payoff
in adopting the new innovation, but with some noise. We address
the following two questions on the diffusion speed of a new
innovation under the game-based model: (i) what is a good subset
of individuals to seed for reducing the diffusion time significantly,
i.e., convincing them to pre-adopt a new innovation, and (ii) how
much diffusion time can be reduced by such a good seeding. For
(i), we design near-optimal polynomial-time seeding algorithms
for three representative classes of social network models, Erdős-
Rényi, planted partition and geometrically structured graphs,
and provide their performance guarantees in terms of approxi-
mation and complexity. For (ii), we asymptotically quantify the
diffusion time for these graph topologies, further derive the seed
budget threshold above which the diffusion time is dramatically
reduced, i.e., phase transition of diffusion time. Furthermore,
based on our theoretical findings, we propose a practical seeding
algorithm, called PrPaS (Practical Partitioning and Seeding) and
demonstrate that PrPaS outperforms other baseline algorithms in
terms of the diffusion speed over a real social network topology.
We believe that our results provide new insights on how to seed
over a social network depending on its connectivity structure,
where individuals rationally adopt a new innovation.

Index Terms—Influence Maximization, Clustering, Random
Seeding

I. INTRODUCTION

People are actively using social networks to get new in-
formation, exchange new ideas or behaviors, and adopt new
innovations. Clearly, it is of significant importance to under-
stand how such information diffuses over time, where diffusion
by local interaction is the most prominent feature. Various
fields including computer science, economics, and sociology
have expressed their interests in understanding diffusion, e.g.,
[10], [45], [47]. People have first started to propose diffusion
models in social network with close relevance to studies with
long history on raging epidemic, e.g., SIRS model [28] or
interacting particle system, e.g., Ising model [20]. Examples
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of such epidemic-based diffusion model also include [15] and
[6], often referred to as independent cascade or linear threshold
models [26].

Different from epidemic-based models, people often make
strategic choices, i.e., an individual adopts a new technology
only if the new technology provides sufficient utility, which
increases with the number of neighbors who adopt the same
technology (i.e., coordination effect) [14], [19], [36], [38].
This is called game-based diffusion model, which is the main
focus of this paper. A recent work by Montanari and Saberi
[36] addressed the question of the equilibrium behavior as
well as the impact of topological properties on diffusion
speed. Under the assumption that individuals behave with
bounded rationality (i.e., noisy best response dynamic), it has
been proved that the number of innovation adopters increases
and the innovation finally becomes widespread. However, the
diffusion time can be significantly long so that in practice
the innovation often diffuses within only a small number
of individuals or even become extinct in practice. One of
the approaches to reduce the diffusion time is to seed some
individuals, i.e., convince a subset of individuals to pre-adopt
the new innovation, e.g., by providing some incentives to those
users.

The problem of maximizing the “degree of diffusion”
by properly selecting seeds has been popularly studied in
epidemic-based models, often referred to as influence max-
imization, whose major goal is to maximize the number of
infected individuals. However, in game-based models, as in
e.g., [36], the problem becomes completely different mainly
because diffusion is widespread at the equilibrium. Thus,
we study how to choose a constrained set of individuals to
accelerate the speed of diffusion, which we call diffusion speed
maximization.

Our main contribution is to (i) propose near-optimal seeding
algorithms depending on network structures, (ii) quantify how
much the diffusion time can be reduced by the algorithm
asymptotically, and (iii) develop a practical seeding algorithm
that works for real-world social networks. To this end,
we first formulate a diffusion speed maximization problem,
say P1, as minimizing the notion of typical hitting time
which measures the time when every individual adopts the
innovation. We discuss its computational challenges mainly
stemming from (i) MCMC (Markov Chain Monte Carlo) based
estimation and (ii) probabilistic feature of a typical hitting
time, which is neither algebraic nor combinatorial (see Section
III-C). Therefore, we transform the original problem P1 into a
combinatorial optimization, say P2, using the theory of meta-
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stability of Markov chains [43], which, however, turns out to
be computationally intractable as well as difficult to be reduced
to a classical NP-hard problem amenable to approximation.
For example, the influence maximization in epidemic-based
models becomes the submodular maximization in most cases,
whose greedy algorithm guarantees constant approximation
[26]. However, we found that the optimization P2 is not a
submodular problem (see our discussion in Section III-C).

Despite this hardness of P2, we propose polynomial-time
near-optimal algorithms for three representative classes of
social network models, Erdős-Rényi, planted partition and
geometrically structured graphs, and obtain their provable
performance guarantees in terms of approximation ratio as
well as complexity. We also analytically quantify the diffusion
time taken by the proposed algorithms, where more details are
elaborated in what follows:

◦ Erdős-Rényi and planted partition graphs. We show that
an arbitrary seeding and a simple seeding proportional to
the size of clusters are close to an optimal one with high
probability for the dense Erdős-Rényi and planted partition
graphs, respectively (see Theorems IV.1 and IV.2). The main
technical ingredient for this result is on our concentration
inequalities on the so-called ‘energy function’ (see Lemma
A.1), which provides the exact approximation qualities
of the random seeding via a solution of certain quartic
equations. Then it is provably almost optimal via obtaining
its approximate close-form solution.

◦ Geometrically structured graphs. For this graph class,
including planar and d-dimensional graphs, we design an al-
gorithmic framework, called PaS (Partitioning and Seeding),
and provide a condition, which, if met, provably guarantees
good approximation with polynomial complexity (see The-
orem IV.3). PaS consists of two phases: (i) partitioning the
graph into multiple clusters, and (ii) seeding within each
cluster. The proposed PaS framework relies on our finding
that the diffusion process in a graph is dominated by the
slowest diffusion process among the underlying clusters.
Thus, in the partitioning phase, a given graph should be
smartly partitioned into the clusters in which a seeding prob-
lem becomes tractable (via seeding the “border individuals”
among clusters). Then, to minimize the diffusion time, our
focus simply becomes a good seed budget allocation to each
cluster that minimizes the overall diffusion time. A greedy
algorithm is run to achieve the desired budget allocation in
the seeding phase.

The practical implications from our theoretical findings are
summarized in what follows: Erdős-Rényi, planted partition
and geometrically structured graphs represent (a) globally
well-connected, (b) locally well-connected with big clusters,
and (c) locally well-connected with small clusters, respec-
tively. First, for globally well-connected graphs like Erdős-
Rényi graphs, careful seeding is not highly required, because
the underlying topological structure such as high symmetry
and connectivity does not change significantly even after
seeding with a small budget. However, for locally well-
connected graphs, it is necessary to intelligently exploit their
clustering characteristics, where the network-wide diffusion

time is governed by both intra-cluster diffusion and inter-
cluster correlation. As is in sharp contrast to epidemic-based
models, in game-based ones, it turns out that in (b) intra-
cluster diffusion becomes the dominant factor, as opposed to
in (c) where inter-cluster correlation dominantly determines
the network-wide diffusion speed. Thus, as described in Sec-
tions IV-C and IV-D, for planted partition graphs, we focus
only on how to distribute the seed budget to each (big) cluster,
while for geometrically structured graphs, the seeds are mainly
selected from the border individuals to remove inter-cluster
correlation.

Using the new insights from our analysis, we develop a
practical seeding algorithm, called PrPaS (Practical Parti-
tioning and Seeding), and demonstrate that PrPaS outper-
forms other algorithms such as degree-based and random
seeding for a real-world social network graph made by a
facebook ego network having 4039 nodes and 88234 edges.
Interestingly, degree-based seeding, which generally works
well in epidemic-based models, performs worst out of all
tested algorithms, which shows that smart seeding should be
designed depending on how information diffuses over a given
network.

II. RELATED WORK

As discussed earlier, diffusion models in literature can be
broadly classified into: (i) epidemic-based [2]–[4], [13], [17],
[26], [28] and (ii) game-based [5], [14], [25], [48], depending
on how diffusion occurs, i.e., just like a contagious disease
or individuals’ strategic choices. In particular, game-based
diffusion models [5], [14], [25], [48] adopt a networked coor-
dination game where the payoff matrix appropriately models
the value of accepting new technology for the neighbors’
selections, and studied the equilibrium and the dynamics. Es-
pecially, Kandori et al. [25] proved that the noisy best response
dynamic converges to the equilibrium that the innovation
becomes widespread. In [21] and [22], the authors also studied
the stationary distribution using a mean field approximation
of the game model with finite rationality, called graphical
evolutionary game model. Recently, significant attention has
been paid to the study of convergence time. In [36], [42], it
was shown that in highly connected graph, the convergence
becomes slower as opposed to in epidemic models. In [23],
the authors showed that the external information such as
advertisement on a new technology may slow down diffusion,
again on the contrary to in epidemic models [4]. In practice, a
small set of influential nodes, called seeds, can be convinced
to pre-adopt a new technology, which can increase the effect
of diffusion. See [12] for motivation in viral marketing,
[40] in graph detection, and [29] in computer virus vaccine
dissemination. The problem of how to maximize the diffusion
effect for both diffusion models are summarized next, where
depending on the adopted diffusion model, different problems
can be formulated.
Epidemic-based model. In [26], [27], the authors addressed the
so-called influence maximization problem in linear threshold
(LT) and independent cascade (IC) models. In both LT and
IC models, each individual has only one chance to infect
its neighbors right after its infection. Thus, a main goal is
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to maximize the influence spread, i.e., maximize the number
of infected individuals. In [26], [27], it was first discussed
that the problem is computationally intractable because of #P-
completeness in measuring influence spread for a given seed
set and NP-completeness in finding the optimal seed set that
maximizes influence spread. Using the technique on the sub-
modular set function maximization in [39], they showed that a
greedy algorithm achieves at least (1−1/e−ε) of the optimal
influence spread where ε represents the inaccuracy of Monte
Carlo simulation for measuring the influence spread. Since
the Monte-Carlo based measurement does not tend to scale
with the network size, the authors in [9] proposed a scalable
method called MIA using a tree structure. In [18], a clustering
concept is proposed to reduce the computational complexity
in measuring the influence spread. In [8], Chen et al. proposed
modified LT and IC models by adding contact process, which
delays infection chance of the infected individual from its
infection. Using the modified models, the authors formulated
an influence maximization with time deadline and proposed
a greedy algorithm motivated by [26], [27]. In [16], Goyal et
al. generalized the influence maximization problem in LT and
IC models as an optimization problem with three dimensions:
influence spread, seed budget, and time deadline.

Game-based model. In [11], [25], [30], [38], the authors
considered only the best-response dynamics and studied the
conditions (of network topology and the payoff difference
between old and new technologies) on the existence of a small
seed set, referred as the so-called “contagion set,” under which
all individuals adopt new technology. In [32], a noisy best
response was considered with objective of maximizing the
influence spread by choosing a seed set assuming that there
exists a set of “negative individuals,” and a greedy algorithm
was proposed with simulation-based evaluations. As discussed
in [36], without negative seeding, it is guaranteed to converge
to a state where all individuals adopt the new technology. This
paper studies a problem of minimizing the convergence time
to such an equilibrium under a noisy best response dynamic.

III. MODEL AND FORMULATION

A. Network Model and Coordination Game

Network model. We consider a social network as an undi-
rected graph G = (V,E), where V is the set of n nodes and
E is the set of edges. Each node represents an individual (or
a user) and each edge represents a social relationship between
two individuals. We let N(i) be the set of node i’s neighbors,
i.e., N(i) = {j ∈ V | (i, j) ∈ E}. We simply use +1 and
-1 to refer to new and old technologies, respectively. We are
interested in how a new technology diffuses over the network.

Networked coordination game. We first consider the famous
two-person coordination game whose payoff matrix is given
by Table I, where an individual can choose one of new or
old technologies, +1 and -1. We make the following practical
assumptions on the payoffs. First, there always exists coordi-
nation gain, i.e., a > d and b > c. Second, coordination gain
becomes larger for the new technology, i.e., a− d > b− c.

The two-person coordination game is extended to an n-
person game over G. We let x = (xj ∈ {−1,+1} : j ∈ V ),

TABLE I
TWO-PERSON COORDINATION GAME

P +1 −1

+1 (a, a) (c, d)
−1 (d, c) (b, b)

and x−i = (xj : j ∈ V \ {i}) be the states (i.e., a strategy
vector chosen by the entire nodes) of all and those except for i,
respectively. Then, in n-person game over G, node i’s payoff
Pi(xi,x−i) for the state x is modeled to be the aggregate
payoff against all of i’s neighbors, i.e.,

Pi(xi,x−i) =
∑

j∈N(i)

P (xi, xj), (1)

where P (xi, xj) is the payoff from the two-person coordina-
tion game, as in Table I. For notational convenience, let −1 =
(resp. +1) denote the state where every user adopts −1 (resp.
+1).

B. Diffusion Dynamics

Seed set. We consider a continuous time model, where each
node updates its strategy whenever its own independent Pois-
son clock with unit rate ticks. Let x(t) = (xi(t) : i ∈ V ) ∈
{+1,−1}V be the network state at time t, representing the
strategies of all nodes at time t. We introduce the notion of
seed set C ⊂ V, where each node in C is initialized by +1
and does not change its strategy over all time, i.e., for any
i ∈ C, xi(t) = +1 for all t ≥ 0. Next, we describe how each
non-seed individual updates its strategy.

Best response. As is well-known in game theory, in the
best response dynamics, each (non-seed) individual selects a
strategy that maximizes its own payoff: a node i chooses +1,
if

(a− d)|N+(i)| ≥ (b− c)|N−(i)| (2)

where N+(i) and N−(i) denote the sets of node i’s neighbors
adopting +1 and −1, respectively. Noting that for a given state
x, Pi(+1,x−i)−Pi(−1,x−i) represents the payoff difference
between when node i chooses +1 and -1, the best response of
node i is sign(Pi(+1,x−i)−Pi(−1,x−i)), simply expressed
as:

sign

(
hi +

∑
j∈N(i)

xj

)
, (3)

where hi = h|N(i)| and h = a−d−b+c
a−d+b−c

Noisy best response: Logit dynamics. In practice, individuals
do not always make the “best” decision. We model such
behavior by introducing small mutation probability that non-
optimal strategy is chosen, often called noisy best response. A
version of the noisy best response we focus on in this paper
is logit dynamics [5], [34], [35], [37] that individuals adopt
a strategy according to a distribution of the logit form which
allocates larger probability to those strategies delivering larger
payoffs. More formally, for the given state x, non-seeded node
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i chooses the strategy yi ∈ {−1,+1} with the following
probability:

Pβ(yi|x) =
exp(βyiKi(x))

exp(βKi(x)) + exp(−βKi(x))
. (4)

where

Ki(x) =
1

2

(
hi +

∑
j∈N(i)

xj

)
.

Note that (a − d + b − c)yiKi(x) is the payoff gain for the
strategy yi instead of −yi from (3) and (a − d + b − c) is
removed just for convenient handling of other quantities later.
Here, the parameter β represents the degree of user rationality,
where β = ∞ corresponds to the best response and β = 0
lets users update their strategies uniformly at random. When
the state changes according to the probability (4) and nodes’
independent Poisson clock ticks, the system can be viewed as
a continuous Markov chain with the state space SC = {z ∈
{−1,+1}V | zi = 1 if i ∈ C}, recall C is a given seed set.
The dynamics here is also called the Glauber dynamics in
the “truncated” Ising model [41], where the truncation occurs
due to the existence of hard-coded nodes (i.e., the nodes in
the seed set C). Then, it is not hard to see that this chain is
time-reversible with the following stationary distribution µβ :

µβ(x) ∝ exp(−βH(x)),

where

H(x) = −1

2

 ∑
(i,j)∈E

xixj +
∑
i∈V

hixi

+ (1 + 2h)|E|. (5)

In the above, the constant term (1 + 2h)|E| is not necessarily
needed to characterize the stationary distribution, but we add
due to notational convenience in our proofs. We note that
−H is often referred to as a potential function of the n-
person game described in Section III-A and H is called the
energy function in literature. Note that from the assumptions
on the payoff matrix P , h is strictly positive. Thus H has the
global minimum at all +1 state and the stationary distribution
concentrates on all +1 state.

C. Problem Formulation

Our objective is to find a seed set C (within some budget
constraint) which maximizes the speed of diffusion. To this
end, we define a couple of related concepts.

First, a random variable called the hitting time (to the state
where all users adopt +1) of our system with a seed set C
starting from the initial state y ∈ SC defined by:

T+(C,y) = inf{t ≥ 0 | x(t) = +1, x(0) = y}.

Using this, we next define the typical hitting time to be:

τ+(C) = sup
y∈SC

inf
{
t ≥ 0 | Pβ{T+(C,y) ≥ t} ≤ e−1

}
.

This means that with probability 1−1/e (> 1/2), every node
adopts the innovation +1 within time τ+(C). This typical
hitting time has also been used to measure the diffusion speed
for a similar model via close relation between hitting and

mixing of the Markov chain, e.g., see [36]. Our goal is to
solve the following optimization problem:

P1. min
C⊂V

τ+(C)

subject to |C| ≤ k,

where k is the given seed budget.

Computational challenges of P1. First, given a seed set C,
the computation of the typical hitting time τ+(C) is a highly
non-trivial task, primarily because the hitting time T+(C, ·) is
a random variable decided by the Markov chain of the logit
dynamics whose underlying space is exponentially large, i.e.,
|SC |. One can use the Markov Chain Monte Carlo (MCMC)
method for estimating τ+(C), which, however, takes at least
the mixing time of the Markov chain of the logit dynamic
that is typically exponentially large [36]. Even worse, a naive
exhaustive search for the optimization P1 requires computing
the typical hitting time 2Ω(n) times for k = Ω(n). Second,
the hardness of the optimization P1 also comes from the
probabilistic definition of the minimizing objective τ+(C),
which is neither algebraic nor combinatorial. Due to these
reasons, at a first glance, the optimization P1 is a highly
challenging computational task, similarly to other influence
maximization problems in epidemic-based diffusion models,
e.g., see [26]. It is not even clear whether the decision version
of the optimization P1 is in the computational class NP.

Problem formulation via a combinatorial optimization. To
overcome such difficulties, we use the known combinatorial
characterization of the typical hitting time τ+(C) from the
theory of meta-stability [36], [43], where it was proved that
for a given seed set C ⊂ V ,

τ+(C) = exp(βΓ∗(C) + o(β)), as β →∞, (6)

where we refer to Γ∗(C) as the diffusion exponent with respect
to the seed set C. In the above, Γ∗(C) is defined as

Γ∗(C) = max
w0∈SC

min
w:w0→+1

max
t<|w|

[H(wt)−H(w0)]. (7)

where the minimization is taken over every possible path
w = (w0, w1, · · · , wT = +1) such that for each t, wt and
wt+1 are same except for one coordinate. This implies that
Γ∗ dominates the exponent of diffusion time τ+(C) for large
β. Also, Γ∗ can be interpreted as the “energy barrier” along
the most probable path to +1. Two maximums in (7) choose
the largest energy difference along a path toward +1. Then
the (middle) minimum in (7) finds a path that has the smallest
energy barrier to the ground state +1 so that it is the most
probable. In [36], it is known that the minimization of (7) is
achieved just at a monotone path w0 ≺ w2 · · · ≺ wT , i.e., a
user is not allowed to take back from +1 to −1.

The formula (6) provides a tractable approach for bounding
τ+(C) through Γ∗(C) and motivated by this, we will focus
on the following optimization instead of P1:

P2. min
C⊂V

Γ∗(C)

subject to |C| ≤ k,

where it becomes identical to P1 as β →∞ from (6).
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Further challenges of P2. Note that it is still challenging to
compute Γ∗(C) for a given seed set C for the following two
reasons.
◦ First, there exist exponentially many monotone paths to

consider for the minimization in (7). Characterizations of
Γ∗(C) using ‘tilted cut’ and ‘tilted cut-width’ are known,
but they are also computationally intractable, e.g., see
Section 4.2 of [36]. Nevertheless, Γ∗(C) is defined as a
form of combinatorial optimization and potentially more
amenable to theoretical analysis than τ+(C).

◦ Second, in epidemic-based diffusion models, the influence
maximization problem [26], which maximizes the number
of infected individuals, could enjoy an algorithmic conve-
nience because of the key feature the objective function
turns out to be submodular. Similar convenient features may
also be applied to our case, which, if so, would facilitate our
analysis significantly. However, unfortunately our objective
function Γ∗(·) is neither supermodular nor submodular, as
proved by a counter-example in the supplemental material,
which motivates our study of a different kind of approxi-
mation techniques.

IV. MAIN RESULT

In this section, we describe our polynomial-time approxi-
mation algorithms for the seeding problem P2. Each algorithm
provides the guideline on which nodes should be seeded for
fast diffusion over a game-based diffusion model for each of
three graph classes, which is classified by the criterion on how
globally and locally well-connected nodes are. To this end, we
first introduce the following notion of “approximate solution”.

A. (γ, δ)-Approximate Solution

Definition IV.1. A seed set C ⊂ V with |C| ≤ k is called a
(γ, δ)-approximate solution of the seeding problem P2 if

Γ∗(C) ≤ γ · min
C′:|C′|≤δk

Γ∗(C ′),

where γ ≥ 1 and δ ≤ 1.

The parameters γ and δ measure the quality of an ap-
proximate solution, quantifying the degrees of suboptimality
in objective value and budget, respectively. One can observe
that the solution with (γ, δ) = (1, 1) corresponds to an
optimal solution. Thus the distance between (γ, δ) and (1, 1)
quantifies the performance loss of (γ, δ)-approximate solution
comparing to the optimal solution. In what follows, we present
the characteristics of approximate solutions in three graph
classes which have different topological structures in terms
of connectivity and the degree of clustering.

B. Erdős-Rényi Graphs

We first consider the popular Erdős-Rényi (ER) graph,
denoted by GER(n, p), which is a random graph on n nodes
such that every node pair has an edge with probability p.
Let λ = np, roughly corresponding to the average number of
neighbors per node. For ER graphs, we obtain the following
result, whose proof is presented in Appendix A.

Fig. 1. An instance of ER-graph (left) and planted partition graph (right).
Source: Lecture note of the network analysis and modeling course in Santa
Fe Institute [1].

Theorem IV.1. Consider an ER graph GER(n, p) with λ =

Ω(1). For the seed budget k = κn with κ <
(

1−h
2 −

h√
λ

)
,

every C ⊂ V with |C| = k is almost surely a (γ, δ)-
approximate solution as n→∞, where

δ = 1, γ = 1 +
2

√
λ

2(1−h2)

(
1−h

2 − κ
)2 − 1

(8)

and

Γ∗(C) = pn2
[

1−h
2 − κ

]2
+

+ o(pn2)1. (9)

Three interpretations from Theorem IV.1 are in order. First,
as in (8), for the relatively dense and (globally) well-connected
ER graph, formally for the case λ = ω(1), an arbitrary seed
set C is, somewhat surprisingly, an almost optimal solution,
i.e., (γ, δ) → (1, 1) as n grows. The near optimality of an
arbitrary seeding in the dense ER graphs mainly comes from
globally symmetric connectivities of nodes which makes the
influencing effect by each node indistinguishable. Therefore
no careful seeding mechanism is necessary for this globally
well-connected graph. Second, Γ∗(·) in (9) when κ < 1−h

2
implies diminishing return of adding more seed budget. Third,
one needs a seed budget larger than ( 1−h

2 )n in order to have
an order-wise reduction in Γ∗.

C. Planted Partition Graphs
Second, we consider a generalized version of ER graphs and

study the so-called planted partition graph 2, which we denote
by GPP(n, p, q,ω). It is a popular model, e.g., [7], for social
networks with big communities (also called clusters); Given a
disjoint partition of the clusters {V1, ..., Vm}, with

⋃m
l=1 Vl =

V, let the fraction of nodes in the graph that belongs to a
cluster l be ωl = |Vl|/n where ω = (ω1, ..., ωm) ∈ (0, 1)m.
For a pair of i, j ∈ V , an edge (i, j) exists between them with
probability p for the nodes i and j if i, j belong to a same
cluster, and with probability q < p, otherwise. We obtain the
following result, whose proof is presented in Appendix B.

Theorem IV.2. Consider a planted partition graph
GPP(n, p, q,ω) with q < p = Θ(1). For the seed budget
k = κn with κ < 1−h

2 and any small constant ε > 0, every
C ⊂ V such that

C ∈ arg min
{C′:|C′|≤k}

max
1≤l≤m

(
1− h

2
|Vl| − |C ′ ∩ Vl|

)
(10)

1Here [x]+ = max{x, 0}. We note that the quantification of Γ∗(C) in (9)
holds for all κ ∈ [0, 1].

2This is often referred to as the stochastic block model.
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is almost surely a (γ, δ)-approximate solution as n → ∞,
where

δ = 1, γ = 1 +
2

pξ2/(q + ε)− 3
(11)

and

Γ∗(C) = pn2ξ2 + o(pn2)3 (12)

with

ξ = min
{ν∈[0,1]m:|ν|1≤κ}

max
1≤l≤m

[
1− h

2
ωl − νl

]
+

.

In particular, for the homogeneous cluster size, i.e., ω =
( 1
m , ...,

1
m ),

ξ =
1

m

[
1− h

2
− κ
]

+

.

Theorem IV.2 provides a guideline on how to allocate
seeds, coming from solving a “simple” min-max optimization
(10) whose computational complexity is O(1) (m is a given
constant and only cardinality of C ′ ∩ Vl is necessary in
computing the min-max solution). Intuitively the resulting seed
set C in (10) allocates more seeds to bigger clusters, and
intra-cluster seeding does not have to be carefully chosen.
More formally, any seed set C with such an allocation is
an almost optimal solution, regardless of how to seed inside
each cluster if the graph is locally well-connected with big
clusters whose sizes scales with respect to n and the number
of inter-cluster edges is ignorable comparing to intra-cluster
ones, i.e., |Vl| = Ω(n) and p/q = ω(1). For locally well-
connected graphs with clusters, it is necessary to intelligently
exploit their clustering characteristics, where the network-wide
diffusion time is governed by both (a) intra-cluster diffusion
and (b) inter-cluster correlation. In locally well-connected with
big clusters such as GPP(n, p, q,ω), the intra-cluster diffusion
Γ∗ in each Vl dominates the inter-cluster correlation between
Vl and Vl′ with l 6= l′. Hence it suffices to focus on how
much seed budget is distributed to each (big) cluster depending
on its size. As in ER graphs, we obtain the quantification of
Γ∗ in (12), which implies that the minimum seed budget to
have the order-wise reduction of Γ∗ is 1−h

2 , and we have the
diminishing return of adding seed budget.

D. Geometrically Structured Graphs

Third, we consider locally well-connected graphs with small
clusters. Those graphs include geometrically structured graphs
such as planar and d-dimensional graphs. In these graphs, the
inter-cluster correlation dominantly determines the network-
wide diffusion speed, and hence seeds should be selected
with goal of removing the correlation. Different from the
earlier two types of graphs, we here take an approach that
rather than studying a particular type of graph, we first
propose an algorithm and then study a sufficient condition
that ensures good diffusion performance and is satisfied in the
well-known geometrically structured graphs such as planar and
d-dimensional graphs.

3We note that the quantification of Γ∗(C) in (12) holds for all κ ∈ [0, 1].

Input: Graph G = (V,E) and seed budget k
Output: Seed set CPaS

1. Partitioning phase.
Construct a partition {Vl : l = 0, 1, . . . ,m}, where V0

separates others, i.e., there is no edge between Vl and Vl′
for all l 6= l′ ≥ 1,

m⋃
l=0

Vl = V and Vl ∩ Vl′ = ∅ for all l 6= l′ ≥ 0.

Each component Vl becomes a cluster, i.e., m+ 1 is the
number of clusters found in this phase.

2. Seeding phase.
2-1. Seed V0, i.e., C ← V0.
2-2. Cluster selection.

Find the slowest cluster 1 ≤ l∗ ≤ m such that

l∗ ∈ arg max
1≤l≤m:|Cl|<|Vl|

Γ∗(Gl, Cl ∪ V0),

where Gl is the subgraph induced by Vl ∪ V0 and Cl is
the set of seeds in Vl, i.e., Cl = C ∩ Vl.

2-3. Seed selection in the selected cluster.
Find an optimal seed set D in Vl∗ with increased seed
budget such that

D ∈ arg min
D′⊂Vl∗ :|D′|=|Cl∗ |+1

Γ∗ (Gl∗ , D
′ ∪ V0) .

2-4. Update C ← (C \ Cl∗) ∪D, and repeat the steps 2-2,
2.3, and 2-4 whenever |C| < k.

3. Terminate. Output C.

Algorithm 1: PaS (Partitioning and Seeding) Algorithm

One of achieving the goal of removing inter-cluster correla-
tion would be to seed the border nodes among small clusters.
Motivated by this, we design a generic algorithm, called PaS
(Partitioning and Seeding) (see Algorithm 1 for a formal
description) for finding good seeds. As the name implies, PaS
has two phases: (i) partitioning and (ii) seeding, as elaborated
in what follows.
(i) Partitioning phase: In this phase, PaS finds a partitioning
with, a finite number of node clusters, where the number of
clusters are chosen appropriately, depending on the underlying
graph topologies. We call V0 separator cluster since after
removing V0, no edge exists between different clusters Vl, Vl′
for all l 6= l′ ≥ 1. Except for the separator cluster V0, which
will be used as the initial seed set, PaS will find the seeds
contained in each cluster by the seeding phase.
(ii) Seeding phase: In this phase, PaS runs in multiple rounds,
where it starts from the initial seed set V0 (step 2-1) and the
seed set C increases by one in each round, until the entire seed
set size becomes the target budget k. Let Gl and Cl be the
subgraph induced and the seed contained, by l-th cluster Vl,
respectively. The seeding phase consists of two sub-phases (a)
partition selection and (b) seed selection. In (a), PaS finds the
partition l∗ that has the slowest diffusion time with the current
seed set Cl (step 2-1). In (b), for the chosen partition l∗, we
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replace the existing seeds Cl∗ by completely new set of seeds
whose size increases by one. The new seed set is chosen such
that the diffusion time in cluster l∗ is minimized (step 2-2).
Finally, the temporary seed C is updated by a new seed set in
cluster l∗, which is repeated until |C| = k (steps 2-3 and 2-4).
The choices of partition {V0, V1 . . . , Vm} in step 1 determines
the performance and complexity of the PaS algorithm, where
we will consider different choices for different social networks
for rigorous analysis.

Now, we are ready to present the performance guarantees
of the PaS algorithm. To that end, we introduce a notation: El
is the edge set of the subgraph induced by Vl ∪ V0, where Vl
is the l-th cluster resulting from the partitioning phase.

Theorem IV.3. For given graph G = (V,E) and seeding
budget k = κn with κ ∈ (0, 1), suppose that {Vl : l =
0, 1, . . . ,m} in the partitioning phase of the PaS algorithm
has the following condition:

For some ε ∈ (0, 1),

|V0| ≤ εn and |Vl| = O(1), for all l = 1, ...,m. (13)

Then, the PaS algorithm outputs a (1, 1− ε
κ )-approximation

solution C such that

Γ∗(C) = O(1), (14)

and its seeding phase takes O(n2) time.

The proof of Theorem IV.3 is presented in Appendix C.
Theorem IV.3 implies that if there exists an algorithm finding
a ‘good’ partition (i.e., |V0|/n ≤ ε for some small ε > 0) with
small clusters (i.e., Vl = O(1)), as specified in the condition
(13), the PaS algorithm outputs an almost optimal solution.
Note that V0 corresponds to the set of border nodes among
clusters. This condition (13) does not always hold. However,
for the following classes of social networks, polynomial-time
algorithms are known for computing such a partition satisfying
the condition for any ε = Ω(1) [24].4

◦ d-dimensional Graph. A graph is called a d-dimensional
graph, denoted by GdD(n, d,D,R), if each node i can
be embedded to a position πi in Rd such that (i, j) ∈ E
implies that the Euclidean distance between πi and πj
is less than R and any cube of volume of B contains at
most D ·B nodes, where d,D,R = O(1).
◦ Planar Graph. A planar graph, denoted by GPL(n,∆),

can be drawn on the plane without intersection of edges
except nodes which is endpoints of edges and its maxi-
mum degree ∆ = O(1).

Therefore, we can state the following corollary of Theorem
IV.3.

Corollary IV.1. For a d-dimensional graph GdD(n, d,D,R)
or planar graph GPL(n,∆) and seeding budget k = κn with

4In fact, the author [24] considers polynomially-growing graphs and minor-
excluded graphs, where d-dimensional graphs and planar graphs are their
special cases, respectively.

(a) PPfacebook consisting of
4, 039 users and 88, 234 edges
and having average clustering
coefficient 0.6055 and degree
distribution fit into power law
distribution with exponent 1.18.

(b) PLfacebook consisting of
1, 899 users and 20, 296 edges
and having average clustering
coefficient 0.1385 and degree
distribution fit into power law
distribution with exponent 1.334.

Fig. 2. Blueprints of PPfacebook [33] and PLfacebook [44].

κ ∈ (0, 1), there exists a polynomial-time5 algorithm such
that it outputs a (1, 1−ε)-approximation solution C such that
Γ∗(C) = O(1) for any ε ∈ (0, 1).

We note that even if a geometrically structured graph
satisfying (13) has extremely slow diffusion without seeding,
where the diffusion time is exponentially increasing with
respect to graph size, i.e., Γ∗(G) = ω(1), the diffusion
time can be significantly reduced by seed set C from PaS
algorithm, i.e., Γ∗(C) = O(1). Further, if the graph is a d-
dimensional graph or planar graph, the amount of seeds for
having Γ∗(C) = O(1) is arbitrarily small, i.e., |C| = εn for
any given ε ∈ (0, 1). For example, consider a star-like graph
with a center node surrounded by (n−1) nodes with the center
node having degree (n−1) and the other n−1 having degree
1. Then, it is a planar graph which can be partitioned into n
partitions consisting of a node by letting the center node be
separator cluster V0. Hence, by seeding the center node only,
we have Γ∗(C) = 0 = O(1), while without seeding, we have
Γ∗(G) = 1−h

2 (n − 1) = Ω(n). In Section V, we will show
that PaS algorithm shows indeed a good performance for a
real social graph, showing its practical value.

V. PRACTICAL SEEDING AND SIMULATION RESULTS

In this section, we perform simulations using a real social
network graph and show how our theoretical findings can
be applied to the diffusion speed maximization in practice.
Guided by the implications drawn from the analytic results
based on three graph classes, we propose a practical, heuristic
seeding algorithm and show how it performs, compared to
other seeding algorithms.

A. Setup

Real-world social networks. We use two topology data sets
extracted from the social network among Facebook users
originally obtained in [33] and [44]. Each data set forms an
undirected graph where each node corresponds to a Facebook
account and an edge corresponds to a social relationship

5It is a polynomial with respect to n, but may be exponential with respect
to 1/ε.
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(a) Hitting time with varying seed
budget and h = 0.5 in PPfacebook.
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(b) Threshold(20) with varying h in
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(c) Hitting time with varying seed
budget and h = 0.5 in PLfacebook.

Degree
GreedyCut
Random
PrPaS

S
ee

d 
bu

dg
et

 fo
r h

itt
in

g 
tim

e 
= 

20

0

500

1,000

1,500

2,000

h (difference b/w old and new)
0 0.2 0.4 0.6 0.8 1.0

(d) Threshold(20) with varying h in
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Fig. 3. Simulation results on the performance of different algorithms in PPfacebook and PLfacebook.

(called “FriendList”) in Facebook. We name the graph from
[33] PPfacebook, and the graph from [44] PLfacebook,
whose graphical presentations are given in Figures 2(a) and
2(b), respectively. Namely, a clustering structure is more
observed in PPfacebook, whereas a power law degree dis-
tribution is prominent in PLfacebook6.
Parameters. We use β = 10 for the degree of rationality and
vary h from 0 to 1 to investigate the impact of the difference
between new and old technologies. We are interested in the
regime of users are sufficiently rational and hence we tested
various values of β larger than 10. They resulted in a similar
trend and thus we just report the case of β = 10 in this paper
due to space limitation.

Tested seeding algorithms. We compare the performance of
the following four algorithms, each of which is described in
what follows.

◦ Degree. This choose k nodes in the order of their degrees.

◦ GreedyCut. This runs k iterations where at each iteration
a node with the maximum number of edges is selected, and
then the node and its edges are removed from the temporal
graph.

◦ Random. This selects k nodes uniformly at random.

◦ PrPaS. This first identifies the partition, say {V1, ..., Vm},
from the given graph using the random-walk based approach
[46], and then generates a seed set C whose per-cluster
portion is kept equal, i.e., |C ∩ Vl|/|Vl| = k/n for l =
1, ...,m. In each cluster, seeds are selected uniformly at
random.

Inspired by our theoretical findings, we design PrPaS
(Practical PaS) which can work in general graph without
any prior information. and we will show its superiority by
comparing it to the first three baseline algorithms. According
to our analysis, we prefer a “good” partition consisting of
locally well-connected clusters. We employ the random walk
based partitioning scheme, borrowed from [46]. Then, with the
resulting partition, we just balance the fraction of seeds in each
cluster, so that the entire seed budget is allocated in proportion

6Our calculation states that the clustering coefficients of PPfacebook and
PLfacebook are 0.606 and 0.139, respectively, and the degree distributions
of those two graphs are fit into power law distributions with exponent 1.18
and 1.34, respectively.

to the cluster size. This can be regarded as a practical version
of PaS in Section IV-D in the sense that (i) it works without
explicit knowledge of h, which may be hard to be quantified
in practice, and (ii) partitioning based on simple random walks
is scalable and applicable to large-scale social networks. We
assume the case when h is unknown, thus exact computation
of Γ∗ inside each cluster is infeasible, which is reason why
we use per-cluster random seeding.

B. Results
We compare the algorithms by the minimum seed budget

with which the system hits the state +1 in a reasonable time.
For convenience, we call this minimum seed budget for a given
hitting time x, Threshold(x).

We first understand how hitting time changes with varying
seed budgets. As shown in Figures 3(a) and 3(c), we observe
that there exists a phase transition that the hitting time blows
up after some seed budget, which differs across the algorithms.
Due to space limitations we omit the results for other h values,
where we observe a similar behavior with different seed budget
leading to the hitting time blow-up. This phase transition is
due to the existence of “bottleneck clusters”, without which
diffusion would become fast. Hence, the seeding quality can
be evaluated by how efficiently such bottleneck clusters are
removed by the seeding. In our setting, we see that time 20 (a
horizontal line in Figures 3(a) and 3(c)) can be a reasonable
required hitting time to differentiate the tested algorithms.
Hitting time 20 may or may not be the required time by
seeders, because the absolute time should be computed by
the duration of unit time and unit time can be different how
actively individuals interact with each other over the given
social network.

To investigate how the tested algorithms perform, we choose
the time 20 as a given target hitting time, and compare
Threshold(20) for all tested algorithms with varying h, whose
results are shown in Figures 3(b) and 3(d). We first observe
that across all ranges of h, PrPaS has the lowest threshold
budget, performing significantly better than others. It is natural
that for significantly high h (e.g., larger than 0.7) the perfor-
mance difference is marginal because diffusion should occur
very fast irrespective of the quality of seeding . In addition,
PrPaS has linear curves of Threshold(20) with respect to h.
This coincides with the analysis of Γ∗(C) in Theorems IV.1
and IV.2 where an order-wise reduction of diffusion time
requires seed budget of 1−h

2 n at least.
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In PPfacebook having a cluster structure, Random outper-
forms Degree and GreedyCut, because uniformly random
seed selection allocates more seeds in larger clusters in the
average sense. PrPaS performs much better than Random
because PrPaS performs further optimization by considering
the clustering and connectivity structure of the underlying
graph. Conversely, in PLfacebook, seeding separator cluster
becomes more important rather than the balanced seeding
over clusters due to the skewed degree distribution. Hence
GreedyCut, which prioritizes selecting seeds who separates
graph, significantly outperforms Degree and Random. How-
ever PrPaS is superior to GreedyCut since PrPaS not only
finds separator cluster but also balances the portion of seeds in
each cluster. We provide additional experimental result with a
larger data set in the supplemental material due to the limited
space. The result also shows that PrPaS outperforms others.

VI. CONCLUSION

In this paper, we have addressed the following two questions
on the diffusion speed of a new innovation under a noisy
game-based model: (i) what is a good subset of individuals
to seed for reducing the diffusion time significantly, and
(ii) how much diffusion time can be reduced by such a
good seeding. For (i), we design near-optimal polynomial-
time seeding algorithms for three representative classes of
social network models, Erdős-Rényi, planted partition and
geometrically structured graphs. Our analysis first implies that
for globally well-connected graphs, a careful seeding is not
necessary. However, for locally well-connected graphs, their
clustering characteristics should be appropriately utilized for
strengthening the seeding effect, where seeding inside and
across clusters are of critical importance for the graphs having
a mixture of big and small clusters, respectively. For (ii),
we asymptotically quantify the diffusion time for these graph
topologies, further derive the seed budget threshold above
which the diffusion time experiences the phase transition of
diffusion time.
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APPENDIX

A. Proof of Theorem IV.1
We present the proof of Theorem IV.1 in this section. Con-

sider Erdős-Rényi graph GER(n, p) and seed budget k = κn.

We will first show that for κ <
(

1−h
2 −

h√
λ

)
and λ = Ω(1),

the following event occurs almost surely as n→∞:

L ≤ Γ∗(C)

λn
≤ U , for all C with |C| = k, (15)

where

L =

(
1− h

2
− κ
)2

− 2(1− h2)√
λ

,

U =

(
1− h

2
− κ
)2

+
2(1− h2)√

λ
.

The above inequality (15) implies that Γ∗(C) is highly con-
centrated on the interval [L,U ] for any arbitrary seed set C
such that |C| = k. From Definition IV.1 we should have
γ = U/L which directly implies (8) and (9) in Theorem IV.1
for λ = Ω(1). Hence we first focus on the proof of (15).

To begin with, recall the energy function H(x) in (7). For
convenience, we abuse the terminology and define the energy
function H(S) for a set S ⊂ V (not for a state x as in (7))
as:

H(S) = cut(S, V \S)−
∑
i∈S

h|N(i)|

where cut(A,B) is the cardinality of the set {(i, j) ∈ E | i ∈
A, j ∈ B} for two disjoint subsets A,B ⊂ V . Note that the
above definition coincides with the original definition (5) by
setting xi = 1 if and only if i ∈ S. Using this energy function,
one can express the function Γ∗(C) in (7) by:

Γ∗(C) = max
C⊂S0⊂V

min
S:S0→V

max
t<|S|

[
H(St)−H(S0)

]
, (16)

where for A ⊂ V , S : A→ V is a monotone sequence of sets,
A = S0, S1, ..., S|S| = V such that St−1 ⊂ St and St\St−1

is a vertex in V \A for 1 ≤ t ≤ |S|.
To show the concentration of Γ∗, we first show the concen-

tration of the energy function H , as stated in the next lemma
whose proof is presented in Appendix D.

Lemma A.1. Consider Erdős-Rényi graph GER(n, p) with
λ = np = Ω(1). The following events occurs almost surely as
n→∞:

|H(S)− a(|S|)| ≤ η(|S|),

where

a(s) = (1− h)s(n− s)p− hs(s− 1)p,

η(s) = (1− h)
√

2λs(n− s) + 2h
√
λs(s− 1).

In Lemma A.1, H(S) is bounded by a(|S|)± η(|S|) which
depends only cardinality of |S|. Thus, the paths, which are
taken in min of Γ∗, have same bounds if they have same start
S0. Hence we have following:

Γ∗(C)

λn
=

1

λn
max

C⊂S0⊂V
min

S:S0→V
max
t<|S|

[
H(St)−H(S0)

]
≤ 1

λn
max

|C|≤s1≤s2
a(s2) + η(s2)− a(s1) + η(s1) (17)

=O

(
1

n

)
+ max
κ≤σ1≤σ2

â(σ2) + η̂(σ2)− â(σ1) + η̂(σ1), (18)

where

â(σ) = (1− h)σ(1− σ)− hσ2,

η̂(σ) =
1− h√
λ

+
2h√
λ
σ.

In (17), we have max over |C| ≤ s1 ≤ s2 since C ⊂ S0 ⊂ St
for t < |S|. Also, in (18), the O( 1

n ) term is from O
(

1
n + 1

λn

)
since we have λ = Ω(1).

We bound a, η by â, η̂ for achieving an upper bound of a
succinct close-form for Γ∗(C)

λn . However, we note that one can
directly consider (17) and obtain a tighter (but of a complicated
form) upper bound for Γ∗(C)

λn . Now it is not hard to check the
maximum in (18) is(

κ−
(

1− h
2
− h√

λ

))2

+
2(1− h2)√

λ

at σ1 = κ and σ2 =
(

1−h
2 + h√

λ

)
if κ ≤

(
1−h

2 −
h√
λ

)
.

This implies that Γ∗(C)
λn ≤ U . The proof of the lower bound

Γ∗(C)
λn ≥ L can be obtained similarly. This completes the proof

of (15) and hence that of Theorem IV.1.

B. Proof of Theorem IV.2

In this section, we present the proof of Theorem IV.2.
Consider a planted partition graph GPP(n, p, q,ω) with p/q =
Ω(1), and a seed set C ′ with budget k < 1−h

2 n satisfying
the condition (10) in Theorem IV.2. Then, the quantification
of Γ∗(G′, C ′) is directly derived from the following lemma
stating that where Γ∗(G′, C ′) and minC Γ∗(G′, C) is located,
where the proof is provided in Appendix E.

Lemma A.2. For every C ′ satisfying the conditions in Theo-
rem IV.2, the following holds almost surely as n→∞,∣∣∣∣Γ∗(G′, C ′)n2

− ξ2p

∣∣∣∣ ≤ 1

2
n−0.4∣∣∣∣ min

C:|C|≤k

Γ∗(G′, C)

n2
− ξ2p

∣∣∣∣ ≤ 1

2
n−0.4. (19)

Thus, we focus on the proof of (11). To do so, it suffices to
show that the following events occur almost surely as n→∞:

Γ∗(C ′)− Γ∗(C∗)

Γ∗(C∗)
≤ 2

p
(q+n−0.4)ξ

2 − 3
(20)
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where

ξ = min
{ν∈[0,1]m:|ν|1≤κ}

max
1≤l≤m

(
1− h

2
ωl − νl

)
,

and C∗ is an optimal seed set, i.e., C∗ ∈
arg minC:|C|≤k=κn Γ∗(C). This is because when p/q = ω(1),
i.e., q = o(1), we have n−0.4 becomes arbitrarily small as
n→∞, thus the result follows.

We first let Gl be the subgraph induced by each l-th cluster
Vl, and El be the edges of Gl. We also let E0 = E \∪ml=1El,
which corresponds to the set of inter-cluster edges. Consider
the “split graph” G′ = (V,E′ = E \ E0), i.e., G′ is a graph
removing the inter-cluster edges from G.

It is easy to have the following, which states that the
difference of Γ∗ between G and G′ is bounded by the number
of inter-cluster edges: For every C ⊂ V ,

|Γ∗(G,C)− Γ∗(G′, C)| ≤ 2|E0|. (21)

To check the above, for A,B such that A ⊂ B ⊂ V , we
calculate H(B)−H(A) as below:

H(B)−H(A)

= (1− h) · cut(B \A, V \B)− (1− 3h) · cut(A,B \A)

+ 2h · edge(B \A) (22)

where edge(S) is number of edges among nodes in S, i.e.,
edge(S) = |{(i, j) ∈ E|i, j ∈ S}|. Note that in (22), three
edge sets counted by cut and edge are disjoint. Thus, from
removing an edge, change in value of (22) is at most max(1−
h, |1 − 3h|, 2h) ≤ 2 because of 0 < h < 1. Also, we have
S0 ⊂ St in the expression of Γ∗ in (16). Hence we have (21)
since G′ is the graph where E0 is removed from G.

Since the number of inter-cluster edges are stochastically
dominated by a random variable with the binomial distribution
B
(
n(n−1)

2 , q
)

, we have:

P
[
|E0|
n2
≤ q

2
+

1

4
n−0.4

]
→ 1 as n→∞, (23)

where note that E[|E0|] = q n(n−1)
2 .

Now, combining (21), (23), and Lemma A.2, leads to:∣∣∣∣Γ∗(C ′)n2
− ξ2p

∣∣∣∣ ≤ (q + n−0.4) (24)

Furthermore, the following occurs almost surely as n→∞:

Γ∗(G,C)− Γ∗(G,C∗)

n2

(a)

≤ Γ∗(G,C ′)− Γ∗(G′, C∗)

n2
+

2|E0|
n2

(b)

≤ Γ∗(G′, C ′)

n2
− min
C:|C|≤k

Γ∗(G′, C)

n2
+

4|E0|
n2

(c)

≤ n−0.4 +
4|E0|
n2

(d)

≤ 2(q + n−0.4), (25)

where (a) is from (21), (b) is from (21) and the inequality:
minC Γ∗(G′, C) ≤ Γ∗(G′, C∗), (c) is from Lemma A.2, and
finally (d) is from (23). Then, noting the the bound Γ∗(C′)

Γ∗(C∗) ≤
ξ2p−2(q+n−0.4)
ξ2p−3(q+n−0.4) , (20) is a direct implication of (24) and (25).
This completes the proof of (11).

C. Proof of Theorem IV.3

This section provides the proof of Theorem IV.3. It is not
hard to check the complexity of the seeding phase is O(n2) for
the following reason: In the seeding phase, we have total k =
O(n) iterations. In each iteration, the number of clusters in the
partition satisfying P1 is O(n)(= m). Further, the subphases
of partition selection take O(m) and O(1) times, respectively,
because using |Vl| = O(1), l = 1, . . . ,m, we can compute
the value Γ∗ in each subgraph Gl in O(1) time (note that the
nodes in V0 are already seeded).

We henceforth focus on the approximation quality of the
output from the PaS algorithm and the quantity of Γ∗ which
the output has. To this end, we will use the following lemma
whose proof is given in Appendix F.

Lemma A.3. For every seed set C such that V0 ⊂ C ⊂ V ,

Γ∗(C) = max
l=1,...,m

Γ∗(Gl, Cl ∪ V0),

where Cl = C ∩ Vl.

In addition, due to |Vl| = O(1), it is not hard to check

Γ∗(Gl, C
PaS
l ∪ V0) = O(1)

which implies (14) with Lemma A.3. Hence, we will focus
only on the quality of CPaS.

To begin with, one can observe that the output CPaS of
the PaS algorithm minimizes Γ∗ in each subgraph Gl for the
budget allocation vPaS

l = |CPaS ∩ Vl|, i.e.,

CPaS
l ∈ arg min

{Cl⊂Vl:|Cl|≤|CPaS
l |}

Γ∗(Gl, Cl ∪ V0), (26)

where CPaS
l = CPaS∩Vl. Recall that Gl is the subgraph induced

by Vl ∪ V0. In addition,
From Lemma A.3 and (26), we have that

Γ∗(CPaS) = max
1≤l≤m

min
{Cl⊂Vl:|Cl|≤|CPaS

l |}
Γ∗(Gl, Cl ∪ V0). (27)

Now we state the following key lemma, where its proof uses
the above characterization of Γ∗(G,CPaS) and is presented in
Appendix H.

Lemma A.4. Given graph G = (V,E) and budget k, the
output CPaS of the PaS algorithm satisfies that

CPaS ∈ arg min
C:|C|≤k,V0⊂C

Γ∗(C).

From Lemma A.4, it follows that CPaS is a (1, 1 − ε
κ )-

approximation solution, since

Γ∗(CPaS) = min
C:|C|≤k,V0⊂C

Γ∗(C)

≤ min
C:|C|≤k−|V0|

Γ∗(C)

≤ min
C:|C|≤k(1− ε

κ )
Γ∗(C),

where we use |V0| ≤ εn, k = κn and the monotone property of
Γ∗, i.e., for all A,B such that A ⊂ B ⊂ V , Γ∗(B) ≤ Γ∗(A).
This completes the proof of Theorem IV.3.
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D. Proof of Lemma A.1

Consider a subset S ⊂ V, where let s = |S|. For i ∈ S,
we can split N(i) into two disjoint sets as N(i) =

(
N(i) \

S
)⋃(

N(i)∩S
)
. Using this separation, H(S) in (16) can be

written as:

H(S) = (1− h)cut(S, V \S)− h
∑
i∈S
|N(i) ∩ S|. (28)

In the ER graph, note that cut(S, V \S) and 1
2

∑
i∈S |N(i)∩S|

follows the binomial distributions B(s(n−s), p) and B(s(s−
1)/2, p), respectively. Then, from the Chernoff’s bound, we
have

P

[∣∣cut(S, V \ S)− ps(n− s)
∣∣ ≥√2λs(n− s)

]
≤ 2 exp(−n), (29)

P

[∣∣1
2

∑
i∈S
|N(i) ∩ S| − ps(s− 1)/2

∣∣ ≥√λs(s− 1)

]
≤ 2 exp(−n). (30)

Thus, by applying the union bound to (29) and (30) and using
(28), it follows that

P
[∣∣H(S)− a(s)

∣∣ ≥ η(s)
]
≤ 4 exp(−n), (31)

where a(s) and η(s) are defined in Lemma A.1. Finally, we
complete the proof using the above inequality:

P

[ ⋂
S⊂V

[∣∣H(S)− a(|S|)
∣∣ ≤ η(|S|)

]]
≥ 1− 4 exp(−n) · 2n

→ 1 as n→∞,

where we use the union bound and (31) for the first inequality.

E. Proof of Lemma A.2

We first note that each subgraph Gl is an ER graph
GER(ωln, p) where its Γ∗(Gl, ·) was already studied in Ap-
pendix A. Hence, from (18) with p = Θ(1), we have
η̂(σ) = O(n−0.5) = o(n−0.4).7 Thus, for any Cl ⊂ Vl we
have almost surely as n→∞:

Γ∗(GER(ωln, p), Cl)

n2

=

{ (
1−h

2 ωl − νl
)2
p+ 1

2n
−0.4 if νl ≤ 1−h

2
1
2n
−0.4 otherwise,

where νl = |Cl|
n . Also, we note that |Vl| = ωln = Ω(n). Using

the above, we have that almost surely as n → ∞, for every
Cl ⊂ Vl,

Γ∗(Gl, Cl)

n2
=

(
max

(
1− h

2
ωl − νl, 0

))2

p+
1

2
n−0.4.

(32)

Since G′ consists of disconnected subgraphs G1, ..., Gm, we
provide the following which implies that the value Γ∗ in the

7Here we have λ = np = Θ(n).

entire graph is decided by the maximum of the corresponding
values in subgraphs: for every seed set C ⊂ V ,

Γ∗(G′, C) = max
l=1,...,m

Γ∗(Gl, Cl). (33)

The proof of (33) is almost identical to that of Lemma A.3,
and we omit it for brevity.

Now observe that for every C ⊂ V with |C|n ≤ κ ≤ 1−h
2 ,

there exists l such that |Cl|n = νl ≤ 1−h
2 ωl. Thus, from (32)

and (33), it follows that for every C ⊂ V such that |C| ≤ k ≤
1−h

2 n,

Γ∗(G′, C)

n2
=

(
max

1≤l≤m

(
1− h

2
ωl − νl

))2

p+
1

2
n−0.4,

(34)

where νl = |Cl|
n .

Therefore, it suffices to show the following:∣∣∣∣ max
1≤l≤m

(
1− h

2
ωl − ν′l

)
− ξ
∣∣∣∣ ≤ 1

2
n−0.4 (35)

where ν′l =
|C′l |
n .

Since we consider C ′ satisfying (10),
max1≤l≤m

(
1−h

2 ωl − ν′l
)

and ξ are the same except
that the min is taken over ν consisting of continuous vl
in ξ but we have the discreteness of ν′l = |C′∩Vl|

n . Due to
this discreteness, ξ and maxl=1,...,m

f(Gl,C
′
l)

n have at most
1
n difference which is less than n−0.4 as n → ∞. This
completes the proof.

F. Proof of Lemma A.3

We use proof by induction with respect to the number of
clusters, i.e. m. The following claim states formally the base
case m = 2, where its proof is presented in Appendix G.

Proposition A.1. For given G = (V,E), consider a partition
{Vl : l = 0, 1, 2}, where there exists no edge between V1 and
V2, ⋃
l∈{0,1,2}

Vl = V and Vl ∩ Vl′ = ∅, for all l 6= l′ ≥ 0.

Then, it follows that for any seed set C such that V0 ⊂ C ⊂ V ,

Γ∗(C) = max
l=1,2

Γ∗(Gl, Cl ∪ V0),

where Gl = (Vl ∪ V0, El) is the induced subgraph by Vl ∪ V0

and Cl = C ∩ Vl.

We now consider two subgraphs G1 = (V1 ∪ V0, E1) and
G-1 = (V-1 ∪ V0, E-1) where

V-1 = ∪ml=2Vl and E-1 = ∪ml=2El.

Note that the separator V0 also partitions G into G1 and G-1
which are the subgraphs induced by V1 and V-1, respectively.
Then, from the construction of G-1 and Proposition A.1, for
any seed set C such that V0 ⊂ C ⊂ V , we have

Γ∗(C) = max {Γ∗(G1, C1 ∪ V0),Γ∗(G-1, C-1 ∪ V0)} ,

where C-1 = C ∩ V-1.
Observe that V0 also partitions G-1 = (V-1 ∪ V0, E-1) into

two subgraphs G2 = (V2 ∪ V0, E2), G-2 = (V-2 ∪ V0, E-2)
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where V-2 = ∪ml=3Vl and E-2 = ∪ml=3El. Then, one can also
apply Proposition A.1 to G-1 again: for any seed set C such
that V0 ⊂ C ⊂ V-1,

Γ∗(G-1, C-1 ∪ V0) = max {Γ∗(G2, C2 ∪ V0),Γ∗(G-2, C-2 ∪ V0)} ,

where C-2 = C ∩V-2. Thus, we have, for any seed set C such
that V0 ⊂ C ⊂ V ,

Γ∗(C) = max

{
Γ∗(G-2, C-2 ∪ V0),max

l=1,2
Γ∗(Gl, Cl ∪ V0)

}
.

This provides the proof of Lemma A.3 for the case m = 3.
One can repeat this procedure to complete the proof of Lemma
A.3.

G. Proof of Proposition A.1

For notational convenience, we will use the following def-
initions: for subset S0 ⊂ V and monotone sequence of set
S ∈ S0 → V , we define

Γ(G,S) = max
t≤|S|

[H(G,St)−H(G,S0)] (36)

Γ̃(G,S0) = min
S:S0→V

Γ(G,S).

Then, from the definition of Γ∗, we can write

Γ∗(G,C) = max
C⊂S0⊂V

Γ̃(G,S0) = max
C⊂S0⊂V

min
S:S0→V

Γ(G,S).

With the given partition, the following simple equality can be
derived using (28) for any subset S such that V0 ⊂ S,

H(S) = H(G1, S ∩W1) +H(G2, S ∩W2). (37)

where we let W1 = V1 ∪ V0 and W2 = V2 ∪ V0.
Let C denote a seed set such that V0 ⊂ C ⊂ V . Also, let

C1 = C ∩V1 and C2 = C ∩V2. To complete the proof of this
proposition, we will show that the followings hold:

max
l=1,2

Γ∗(Gl, Cl ∪ V0) ≤ Γ∗(C), (38)

Γ∗(C) ≤ max
l=1,2

Γ∗(Gl, Cl ∪ V0). (39)

Proof of (38). For a subset X ⊂ V such that C ⊂ X , define

Pl(X) = {S′ : X ∩Wl →Wl},
Ql(X) = {S : X ∪Wl → V }.

Then, we have

Γ̃(X ∪W2)

= min
S∈Q2(X)

max
t≤|S|

[(H(St)−H(S0))]

= min
S∈Q2(X)

max
t≤|S|

[(H(G1, St ∩W1) +H(G2, St ∩W2))]

− [H(G1, S0 ∩W1) +H(G2, S0 ∩W2))] (∵ (37))
(a)
= min

S∈Q2(X)
max
t≤|S|

[H(G1, St ∩W1)−H(G1, S0 ∩W1)]

(b)
= min

S′∈P1(X)
max
t≤|S′|

[H(G1, S
′
t)−H(G1, S

′
0)]

= Γ̃(G1, X ∩W1) (40)

In the above, (a) holds since H(G2, St ∩W2) = H(G2,W2)
for all t, which comes from the fact that V2∪V0 ⊂ St. (b) holds
since there is a one-to-one correspondence between P1(X)

and Q2(X); i.e., S′ can be induced from S by S′ = (S0 −
V2, .., St − V2, ..., V − V2(= W1)) and vice versa. Similarly,
one can show that

Γ̃(X ∪W1) = Γ̃(G2, X ∩W2). (41)

Since C ⊂ X ⊂ V , it follows that

Γ∗(C) = max
C⊂S0⊂V

Γ̃(S0)

≥ max
l=1,2

Γ̃(X ∪Wl) = max
l=1,2

Γ̃(Gl, X ∩Wl)

where the last equality holds from (40) and (41).
Now by taking the maximum of maxl=1,2 Γ̃(Gl, X ∩Wl)

over all X such that C ⊂ X ⊂ V , we conclude that

Γ∗(C) ≥ max
C⊂X⊂V

max
l=1,2

Γ̃(Gl, X ∩Wl)

= max
l=1,2

max
C⊂X⊂V

Γ̃(Gl, X ∩Wl)

= max
l=1,2

Γ∗(Gl, Cl ∪ V0).

This completes the proof of (38).
Proof of (39). Let S∗0 and S∗ be an optimal subset of V and an
optimal monotone sequence of sets for G, i.e., C ⊂ S∗0 ⊂ V ,
S∗ : S∗0 → V , and

Γ∗(C) = Γ̃(S∗0 ) = Γ(S∗).

In addition, let S1 : S∗0 ∩W1 → W1 and S2 : S∗0 ∩W2 →
W2 be an optimal monotone sequences of sets for G1, G2,
respectively. Then we have

Γ∗(G1, C1) = Γ̃(G1, S
∗
0 ∩W1) = Γ(G1, S

1),

Γ∗(G2, C2) = Γ̃(G2, S
∗
0 ∩W2) = Γ(G2, S

2).

Now, construct S1 ∪ S∗0 : S∗0 → S∗0 ∪ V1 and S1 ∪ S∗0 :
S∗0 ∪ V1 → V such that

S1 ∪ S∗0 = (S1
0 ∪ S∗0 ..., S1

t ∪ S∗0 , ...S1
|S1| ∪ S

∗
0 ),

S2 ∪ V1 = (S2
0 ∪ V1..., S

2
t ∪ V1, ...S

2
|S2| ∪ V1).

Since the end of S1∪S∗0 and the start of S1∪S∗0 are the same
(note that S1

0 ∪S∗0 = S∗0 , S1
|S1|∪S

∗
0 = S∗0 ∪V1 = S2

0 ∪V1 and
S2
|S2|∪V1 = W2∪V1 = V .). and V0 ⊂ S∗0 , we can construct a

new monotone sequence of sets T : S∗0 → V by concatenating
S1 ∪ S∗0 and S2 ∪ V1:

T = (S∗0 ,S
1
1 ∪ S∗0 , S1

2 ∪ S∗0 , ..., S1
|S1| ∪ S

∗
0 ,

S2
1 ∪ V1, S

2
2 ∪ V1, ..., S

2
|S2|−1 ∪ V1, V ).

Thus, we have

Γ(T ) = max

(
max
t≤|S1|

H(S1
t ∪ S∗0 ), max

t≤|S2|
H(S2

t ∪ V1)

)
−H(S∗0 ).

Using the construction of T with (36) and (37), it is not hard
to check that

max
t≤|S1|

H(S1
t ∪ S∗0 ) = Γ(G1, S

1) +H(S∗0 ) (42)

max
t≤|S2|

H(S2
t ∪ V1) =

Γ(G2, S
2) +H(G1,W1) +H(G2, S

∗
0 ∩W2).(43)
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Furthermore, using (42), (43) and (37), we have

max
t≤|S1|

H(S1
t ∪ S∗0 )−H(S∗0 ) = Γ(G1, S

1
1) (44)

max
t≤|S2|

H(S2
t ∪ V1)−H(S∗0 )

= Γ(G2, S
2) +H(G1,W1)−H(G1, S

∗
0 ∩W1). (45)

Recall that the state that all players choose +1 has the
minimum of H(·). Hence on the subgraph G1, H(G1, ·) has
the minimum at W1, i.e., H(G1,W1) = minS⊂W1

H(G1, S).
Thus, we have

H(G1,W1)−H(G1, S
∗
0 ∩W1) < 0.

Combining (44) and (45) leads us to:

Γ(T ) ≤ max(Γ(G1, S
1),Γ(G2, S

2))

= max(Γ̃(G1, S
∗
0 ∩W1), Γ̃(G2, S

∗
0 ∩W2))

≤ max(Γ∗(G1, C1 ∪ V0),Γ∗(G2, C2 ∪ V0)),

where the last inequality is due to C ⊂ S∗0 . Since T and S∗

are monotone sequences of sets from S∗0 → V , we have

Γ(S∗) ≤ Γ(T ) ≤ max
l=1,2

Γ∗(Gl, Cl ∪ V0),

where the first equality holds by the definition of S∗. This
completes the proof of (39) and hence completes the proof of
Proposition A.1.

H. Proof of Lemma A.4

We use proof by contradiction. To this end, suppose that
there exists C∗ 6= CPaS such that, |C∗| = k, V0 ⊂ C∗ ⊂ V
and

Γ∗(CPaS) > Γ∗(C∗). (46)

Let CPaS
l = CPaS ∩ Vl and C∗l = C∗ ∩ Vl. Then, from C∗ 6=

CPaS, there must exist l′ such that

|CPaS
l′ | > |C∗l′ |. (47)

The above inequality implies that the PaS algorithm selects
the cluster l′ (in step 2-3) more than |C∗l′ | times, where we
say that it does for the |C∗l′ | + 1 time at the t-th iteration of
the seeding phase. This means that at the end of the (t−1)-th
iteration, the set of seeds in the cluster l′ has cardinality |C∗l′ |
and the largest Γ∗ among clusters, i.e., |CPaS

l′ (t− 1)| = |C∗l′ |,
and

Γ∗(CPaS(t− 1)) = Γ∗(Gl′ , C
PaS
l′ (t− 1))

= min
Cl′⊂Vl′ :|Cl′ |≤|CPaS

l′ (t−1)|
Γ∗(Gl′ , Cl′ ∪ V0)

= min
Cl′⊂Vl′ :|Cl′ |≤|C∗l′ |

Γ∗(Gl′ , Cl′ ∪ V0) (48)

where CPaS(t−1) denotes the intermediate seed set at the end
of the (t − 1)-th iteration of the seeding phase. Therefore, it
follows that

Γ∗(CPaS)
(a)

≤ Γ∗(CPaS(t′ − 1))

(b)
= min

Cl′⊂Vl′ :|Cl′ |≤|C∗l′ |
Γ∗(Gl′ , Cl′ ∪ V0)

≤ Γ∗(Gl′ , C
∗
l′ ∪ V0)

≤ max
1≤l≤m

Γ∗(Gl, C
∗
l ∪ V0)

(c)
= Γ∗(C∗),

where (a) is from the fact that the PaS algorithm keeps
reducing Γ∗ at every iteration, (b) is due to (48), and (c) uses
Lemma A.3. This conflicts to (46), and completes the proof
of Lemma A.4.
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