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Abstract—In this paper, a joint optimization of link scheduling, routing and replication for delay-tolerant networks (DTNs) has been
studied. The optimization problems for resource allocation in DTNs are typically solved using dynamic programming which requires
knowledge of future events such as meeting schedules and durations. This paper defines a new notion of approximation to the optimality
for DTNs, called snapshot approximation where nodes are not clairvoyant, i.e., not looking ahead into future events, and thus decisions
are made using only contemporarily available knowledges. Unfortunately, the snapshot approximation still requires solving an NP-
hard problem of maximum weighted independent set (MWIS) and a global knowledge of who currently owns a copy and what their
delivery probabilities are. This paper proposes an algorithm, Max-Contribution (MC) that approximates MWIS problem with a greedy
method and its distributed on-line approximation algorithm, Distributed Max-Contribution (DMC) that performs scheduling, routing and
replication based only on locally and contemporarily available information. Through extensive simulations based on real GPS traces
tracking over 4000 taxies and 500 taxies for about 30 days and 25 days in two different large cities, DMC is verified to perform closely
to MC and outperform existing heuristically engineered resource allocation algorithms for DTNs.
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1 INTRODUCTION

E VERY aspect of modern mobile wireless networks
is dynamic. As radios are now attached to mov-

ing objects which may make planned, spontaneous,
or random movements, the mobility of these objects
governs the network state and presents diverse and
highly time-varying operating conditions. With increas-
ing density and mobility, the operating regimes of the
networks exponentially widen and network connectivity
may drastically change over time. Any network proto-
col operating in such regimes must adapt quickly to
the changing conditions, from highly dense networks
where link scheduling and interference mitigation are
important, to sparse networks where opportunities of
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contacts and their durations are important. A network
can be situated at any point in this space-time contin-
uum of the network design space [1] with a varying
temporal and spatial scale of changes. While DTNs are
traditionally regardes as sparse, disconnected networks
where mobility and carry-and-forward paradigm has
been adopted as the only means of communication, an
extended view of DTNs shown in [1] permits traditional
senses of MANETs and DTNs to coexist in the form
of disconnected islands in any proportion of time and
space.

DTNs need to solve performance issues arising from
varying time scales of network state changes such as
disconnection; channel quality degradation; and infor-
mation inconsistency caused mostly by node mobility
and inherent channel dynamics. Their network proto-
cols must thrive in environments with partial, incon-
sistent, incorrect and sometimes no information about
the network states and adapt to any point in the space-
time design space. The information about the state of
the networks, called metadata, includes routing tables,
routing metrics, past history of meeting or contacting
nodes, location information, files, and packets/bundles-
in-flight. As these protocols can work well even with
inconsistent, outdated and incomplete information, these
protocols relieve the network of the burden to maintain
consistent information; the network can now opt for
“best-effort” information sharing - changing its mode
of operation to “whenever convenient” from “however
possible at all cost.”

Traditional DTN studies for resource allocation have
focused on routing, forwarding and replications in
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sparse networks [2]–[8] whereas traditional MANET
studies for resource allocation have focused on inter-
ference, link scheduling and routing in dense networks
with no provisioning for disconnected islands. DTNs
jointly consider all these notions of resources, and its
resource allocation must be adaptive to the availability
of specific types of resources in time and space. In this
paper, we study a joint optimization problem of link
scheduling, routing and replications for a type of DTNs
where resources such as link budgets and opportunities
of meetings and their durations are critical resources, but
each node may have enough storage and battery power
to allow liberal replications and exchange of packets and
metadata whenever and where-ever the critical resources
are left unused. Such networks are typically driven by
vehicles, e.g., taxies and buses, in a large city. The in-
formation dissemination networks of taxies in Shanghai
in China [9] and BuCheon in South Korea [10] are key
examples of such networks.

DTN resource allocation has traditionally considered
only routing [7], [11] and/or replications [2], [8] but have
not tackled the issues of interference and link scheduling.
Therefore, when the network state changes to MANET-
like environments with a dense population of nodes,
such schemes produce sub-optimal performance or are
not even functional. Joint optimization of link scheduling
and routing can produce more adaptive DTNs. Fur-
thermore, dynamic programming has been the main
means of solving optimal resource allocation for DTNs
(e.g., [12], [13]). Unfortunately, dynamic programming
requires nodes to be clairvoyant – assumes knowledge
of future events such as contacts and their durations,
therefore precluding on-line solutions. The complexity
of dynamic programming and lack of efficient on-line
algorithms make such solutions impractical.

In this paper, we present an approximation technique,
called snapshot approximation, in DTNs and its optimal
solution, OPT which performs closely to the “clairvoy-
ant optimal solutions” but rely only on contemporarily
available knowledge of the networks. OPT dictates to
maximize the “contribution” of a packet being scheduled
at the current instance to improve the global utility. This
notion was considered in the name of per-packet marginal
utility in DTNs [14], but not in the context of joint
consideration of packet and link scheduling. However,
even maximizing contribution alone requires (i) global
knowledge of how the links are formed and who owns
a copy of a packet (as multiple copies are permitted)
and (ii) their delivery statistics, and also solving an NP-
hard problem of maximum weighted independent set
for link scheduling. Therefore, a low-complexity approx-
imating solution that leverages only contemporary and
local information are vital. To construct a theoretically
engineered, highly practical solution for snapshot ap-
proximation, we first apply a greedy resource allocation
that performs link scheduling, routing and replication
decision based on global information and propose an al-
gorithm Max-Contribution (MC). MC reduces complexity

for scheduling but still has major difficulty in obtaining
global knowledge on the list of nodes holding the same
packet and the overall link statistics. We propose an
on-line approximation algorithm of MC, so called Dis-
tributed Max-Contribution (DMC) that replaces the global
information with iterative computations of contemporar-
ily available information.

Our simulation studies are based on two detailed
GPS (Global Positioning System) traces of tracking the
movements of taxies, each equipped with GPS in dif-
ferent cities. A set of traces is with over 4000 taxies
moving around Shanghai, China [9] and another set
of traces is with over 500 taxies in San Francisco area
[34]. In the traces, taxies usually meet at intersections
and each taxi has 3 to 4 interfering taxies on average
with the maximum of 20, forming interference-rich but
frequently-disconnected islands of networks. As taxies
move according to the destinations of passengers, there
are no pre-defined schedules of taxi movement. How-
ever, we found that they have some notion of locality
and hotspots which can be exploited to enable effective
routing. Our trace-driven simulation study demonstrates
that DMC outperforms existing DTN routing protocols
that do not consider link scheduling or snapshot approx-
imation.

2 RELATED WORKS

In DTNs, when a source node has a packet to send to
a destination node, generally there are several options
for delivery which is often referred to as DTN routing.
The first option is holding the packet until the source
node meets the destination node. The second option
is repeatedly forwarding the packet to a node (i.e.,
relay node) which is more likely to deliver the packet
better than the previous holder until the current packet
holder meets the destination node. The third option is
repeatedly replicating the packet to a node (i.e., relay
node) whenever the node is determined to be helpful in
the delivery and all the nodes holding the packet carry it
until one of them meets the destination node. Obviously
third option has better chance to deliver a packet to a
destination but makes the network congested. Most of
the DTN research papers have focused on designing an
efficient routing algorithm that makes a good balance
between the number of copies in the network and the
delivery performance where the efficiency comes from
the judicious selection of relay nodes and the appropriate
number of copies of a packet in a network.

A common assumption in DTN research is that nodes
are sparsely distributed and packet delivery is instanta-
neous. This assumption greatly simplifies the problem.
Many popular DTN routing algorithms (e.g., Epidemic
routing [2], Prioritized epidemic routing [3], DataMule
[15], DREAM [4], PRoPHET [5], Knowledge-based for-
warding [6], Last encounter-time based forwarding [7],
Spray and wait [8]) are heuristically developed and engi-
neered under this assumption. Among many protocols,
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Delegation forwarding (DF) [16] in which a node is
allowed to copy a packet only to a node whose delivery
probability is higher than the maximum delivery proba-
bility that the packet has ever seen since it is first copied
from a source node, is demonstrated to have a good
balance between the performance and the cost.

Under the assumption, there have been a few theoret-
ical work [12], [13] for maximizing the delivery ratio as
well as minimizing transmission cost by controlling the
number of copies. Their solutions use dynamic program-
ming and provide simple threshold policies. Despite dy-
namic programming is useful in finding the best strategy
in average sense, if the solution is derived from imperfect
knowledge on future events (e.g., meeting process, time
varying list of neighbor nodes and the list of packets
queued in neighbor nodes), its performance cannot be
guaranteed in practice.

Recently, [14], [17] started to consider more practical
scenarios where link bandwidth could be not enough to
transmit all the packets during a contact period. They
modelled routing in a DTN as a resource allocation
problem and provided a heuristic packet scheduling al-
gorithm which decides an order to transmit the packets.
In specific, RAPID [14] explicitly pointed out that there
can be a situation where all packets queued in a node
cannot be transmitted to a node in contact during the
contact period and suggested a packet ordering metric
relying on per-packet marginal utility (i.e., estimated
increment in utility after a transmission) where utility is
defined as average packet delivery delay or packet deliv-
ery ratio. In RAPID, packets with the highest marginal
utility are sequentially transmitted until the contact is
disconnected by nodes’ mobilities. On a similar frame-
work, [18] added an optimal drop policy for a limited
buffer which drops packets in consideration of the per-
packet marginal utility. However far, only few work [19]
has jointly considered link and copy scheduling under
limited transmission opportunities in DTNs.

We can also broadly classify DTNs into two major
types: mobility-controllable and uncontrollable DTNs.
Most of the aforementioned work are in the category
of mobility-uncontrollable DTNs. Human-carried net-
works, also referred to as pocket-switched networks [20],
[21], are the most popular mobility-uncontrollable DTNs.
They focus mainly on the study of social relation-
ship [22], [23] and context such as spatio-temporal reg-
ularity in inter-contact patterns which directly influ-
ence the performance of DTNs. In the vehicle-carried
networks [24]–[27], another mobility-uncontrollable net-
works, mobility patterns of taxies/buses and their sim-
ulators including vehicular traffic models are studied.
In controllable DTNs, often referred to as message-ferry
networks, [28]–[33] mainly worked on designing move-
ment paths of controllable mobile objects (i.e., ferries)
to maximize the delivery performance of a network or
to save the total energy consumed in a network. A
controllable but stationary node (i.e., throwbox) was also
introduced in [34] to extend the capacity of DTNs.

In this paper, our focus is on mobility-uncontrollable
DTNs.

3 OPTIMAL RESOURCE ALLOCATION
3.1 System Model
Network and traffic model. We consider a network
consisting of a set N of n nodes that move and meet
intermittently. Two nodes v and w is said to meet if v is
within the communication range of w, and vice versa.
Every node is equipped with an infinite-size queue to
store packets. A node v can copy packets from its queue
to the node that v meets1. There is a set F of F sessions
(flows) that are identified by a pair source-destination
nodes. Associated with each session f, a file consisting
of a set Gf of equal-sized packets. We use the packet-
company m to refer to the original packet m and its
copies together. The source of a session f is responsible
for transferring the packets in Gf to its destination with
some QoS constraints.

Resource model. Time is assumed to be slotted, indexed
by t = 0, 1, . . . . The length of a time-slot is suitably
chosen to schedule one packet and nodes are stationary.
Then, network resources are represented by a finite set
S(t) ⊂ {0, 1}L of feasible link schedules, where L is
the number of all possible links. A feasible link schedule,
S = (Sl ∈ {0, 1} : l = 1, . . . , L) is a vector representing
a set of schedulable links without interference where
Sl = 1 if the link l is scheduled, and 0 otherwise. We also
use notation l ∈ S when Sl = 1. Denote by Π(t) ⊂ GL,
a set of feasible copy schedules where G = ∪f∈FGf .
A feasible copy schedule is a vector whose l-th element
represents a packet that can be potentially copied if link
l is scheduled. Note that a packet m can be copied from
v ∈ N to w ∈ N when v holds m but w does not. Note
that in a feasible copy schedule, two different packets
belonging to a single packet-company can be scheduled
over different links.

Interference and resource allocation. A set S(t) de-
pends on interference patterns among links. We gener-
ally model interference by a L × L symmetric matrix
I = [Iij ], where Iij = 1 means that links i and j
interfere with each other. The matrix I is able to model
various wireless systems, ranging from FH-CDMA (one-
hop interference) to 802.11 (two-hop interference2). For
ease of presentation, we assume that when a link is
established by the meeting between two nodes, the link
is configured to have a unit capacity, but it can be readily
extended to more general cases. Resource allocation at
each slot t consists of two parts: (i) link scheduling and
(ii) copy scheduling where a copy schedule π ∈ Π(t) and
a link schedule S ∈ S(t) are selected. Then, the element-
wise multiplication of two vectors, π × S, represents
which packets are served and copied over the links.

1. We also use the word ‘packet’ to refer to the copies of the original
packet, unless explicitly specified otherwise.

2. In the K-hop interference model, two links that are within K-hops
interfere with each other.
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3.2 Objectives and Challenges

General Objectives. The primary objectives of resource
allocation are delivery ratio maximization or delay min-
imization. Denote by the random variable, Nf (t, tdl), the
total aggregate number of delivered packets in flow f
to its destination over an interval [t, tdl], where tdl is
a given deadline (we henceforth omit tdl and just use
Nf (t) in all notations unless confusion arises). Similarly,
we also denote by Df (t) the total aggregate remaining
time in flow f from t to the delivery. Then, Nf (0) and
Df (0) correspond to the aggregate delivery ratio (until
the deadline) and the total delay of flow f, respectively.
The following four objectives are mainly considered.

R1. Max-Delivery max
∑
f∈F E[Nf (0)]

R2. Fair-Delivery max minf∈F E[Nf (0)]

D1. Min-Delay min
∑
f∈F E[Df (0)]

D2. Fair-Delay min maxf∈F E[Df (0)].

Optimization problem. Based on the above objectives R1,
R2, D1, D2, the optimal sequence of copy and link sched-
ules over time, {(π∗t , S∗t )}tdlt=0 should be found under the
constraint that π∗t ∈ Π(t), S∗t ∈ S(t),∀t, where Π(t) and
S(t) are the feasible sets of copy and link schedules at
time t, respectively. Since the solutions are broken down
into a sequence of scheduling steps over time, it can be
formulated by a dynamic programming (DP).

Hardness of full optimality. The above DP problem
requires a large dimensional search (i.e., curse of di-
mensionality) and knowledge of the future (i.e., in order
to decide (π∗0 , S

∗
0 ), we have to know Π(t) and S(t) for

t > 0). Due to such requirements, solving this problem
via practical, on-line, decentralized algorithms is non-
trivial. There are studies that use DP to develop optimal
solutions. However, those have been done in much
simpler models and assumptions, e.g., a model without
consideration of link scheduling [12], [13]. Our main
interest lies in proposing a practical on-line algorithm.
To that end, rather than pursuing the “full”-optimality
based on DP, we adopt a temporal greedy algorithm where
implementable algorithms may be temporally restricted
in terms of available information. In other words, we
only look at system states available contemporarily and
try to optimize a certain objective naturally interpreted
as a snapshot approximation to the original problem. It
is possible simply by temporally stretching the original
optimization problems over the entire time slots, and
investigating what needs to be optimized just using the
information available at time t. Throughout this paper,
we use the notion of ‘snapshot approximation’ to represent
temporally greedy decomposition of the original opti-
mization problems.

Snapshot objectives. We now elaborate the snapshot ap-
proximated problems for various objectives introduced
in the subsection 3.1.

(a) Max-delivery. We stretch the objective function over
the entire time-interval [0, tdl]. Then we have

max
∑
f∈F

E[Nf (0)]

= maxE
[∑
f∈F

(
Nf (t) +

t∑
i=1

∆Nf (i)
)]

(1)

where ∆Nf (t),Nf (t − 1) − Nf (t) corresponds to the
number of packets in f delivered over the interval
[t − 1, t]. Note that Nf (t) is decreasing in t. In Eq. (1),
the “max” operation is taken over a set of a sequence of
copy and link schedules over the entire time. From (1),
what we can do, given the available information at slot t,
is to maximize E[

∑
f ∆Nf (t)] i.e., maximize the average

increase in the total number of delivered packets over
[t− 1, t] across all sessions.
(b) Fair-delivery. Similarly to the above, we get

max min
f∈F

E[Nf (0)]

= max min
f∈F

(
E[Nf (t)] +

t∑
i=1

E[∆Nf (i)]
)

(2)

In contrast to max-delivery, we give higher priority to
the flows with the less average number of delivered
packets. Again, since only (E[Nf (t)], f ∈ F) is available
to resource allocation at slot t, we first choose a session
f? such that f? = f?(t) = arg minf∈F E[Nf (t)], and
allocate resource to maximize ∆Nf?(t).

(c) Min-delay. The structure of minimizing delay is
similar to maximizing that of the delivery ratio. Similarly
to ∆Nf (t), we define ∆Df (t),Df (t − 1) − Df (t) to be
a marginal decrease in delay of flow f over interval
[t − 1, t]. Note that this delay decrease is possible by
copying the packet in question to other nodes.

min
∑
f∈F

E[Df (0)] = minE
[∑
f∈F

inf
s
{Df (s) = 0}

]
= minE

[∑
f∈F

inf
s
{Df (0) =

s∑
i=1

∆Df (i)}
]
. (3)

At slot t, the first step to approximate the above using
the snapshot information, is to maximize ∆Df (t). Recall
that ∆Df (t) is random in terms of random mobility.
It means that the maximization of ∆Df (t) is feasible
(in the sample-path sense) only if the full information
about mobility (even including future) were given to
nodes, which is impossible due to limited knowledge
of mobility in the future. Thus, an alternative approach
is to take the expectation of ∆Df (t), i.e., E[∆Df (t)],
which we maximize at the snapshot. Thus, our snapshot
optimization problem is max

∑
f∈F E[∆Df (t)].

(d) Fair-delay. Similarly to fair-delivery, we have:

min max
f∈F

E[Df (0)] = min max
f∈F

E
[
inf
s
{Df (s) = 0}

]
= min max

f∈F
E
[
inf
s
{Df (0) =

s∑
i=1

∆Df (i)}
]
. (4)
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However, the issues of approximating sample-paths with
the expectation exist, which we handle similarly to
min-delay. Thus, our snapshot objective is to maximize
∆Df?(t) where f?,f?(t) = arg maxf∈F E[Df (t)].

4 SNAPSHOT APPROXIMATION

Towards practical, distributed algorithms, we take a
multi-step systematic approach. First, we develop an
algorithm, called OPT, that is provably temporal-greedy
optimal. We will show that OPT requires centralized,
intractable computations and the global knowledge of
network state. Next, we develop a centralized approxi-
mation heuristic to OPT, called, Max-Contribution (MC)
which provides an insight to the development of a dis-
tributed approximation to OPT, called Distributed Max-
Contribution (DMC) presented in Section 5.2.

4.1 Value and Contribution

We first introduce a notion of value. Associated with each
packet-company m is a value vm. A packet value quan-
tifies a per-packet metric defined according to the target
objective. For a given objective, the value of a packet-
company at a time slot is time-varying over slots and
depends on the mobility patterns of the nodes holding
the copies of the packet at that slot. For max-delivery
(R1), the value of a packet-company m is defined as the
delivery probability of any packet in m to be delivered
to its destination (vm = pm). For fair-delivery (R2), the
value of an m is basically defined as 0 except the value
of the packet-company associated with the flow of the
lowest expected delivery ratio. The value of that packet-
company is defined as the delivery probability. On the
other hand, for min-delay (D1), the value of an m is
defined as the expected delivery delay. Similarly to fair-
delivery, for fair-delay (D2), the value of an m is basically
defined as 0 except the value of the packet-company
associated with the flow of the longest expected delivery
delay. The value of that packet-company is defined as the
expected delivery delay.

Since all packets in the same company share the same
value, we interchangeably use the value of a packet and
the value of packet company that the packet belongs to.
For all objectives, as a measure of the improvement in the
value incurred by packet forwarding and replication, we
introduce the notion of contribution of a packet m, ∆vm
to be the increased amount of vm when m is forwarded
and copied in the network. Note that when multiple
packets in a packet-company are copied at the same time
in the network, the contribution is the sum of all the
contributions that each copy makes.

4.2 OPT: Solving Snapshot Approximation

We now describe the generic algorithm, OPT, that is
optimal for the four snapshot objectives, when value
vm is suitably defined. The key idea of OPT is to make

link/copy scheduling decisions (over slots) that maxi-
mize the expectation of the total increase in the packet
values over the entire network.

OPT

At each slot t, copy packets according to (π?, S?), which
is the optimal solution of

max
π∈Π(t),S∈S(t)

∑
m∈G(π,S)

∆vm(t), (5)

where G(π, S) is the set of all packet-companies sched-
uled by a pair of copy and link schedule (π, S).

Note that G(π, S) is a set. Thus, even in the case
when the packets in the same company m are scheduled
over different links, only the company index m is in
G(π, S). As an example, we now explain that OPT with
vm = pm is optimal for the snapshot max-delivery
objective, R1, where pm is the probability that at least
one packet in the packet-company m is delivered to the
destination. Recall that the snapshot objective for R1 is
to maxπ,S

∑
f E[∆Nf (t)].

Example 4.1 (R1. Max-Delivery): First, denote by Im(t)
is an indicator random variable recording whether at
least one packet in company m is delivered over [t−1, t]
or not. Let ∆pm(t) = pm(t)− pm(t− 1). Then, remarking
that ∆Nf (t) =

∑
m∈Gf Im(t), we get

max
π,S

∑
f

E[∆Nf (t)]

= max
π,S

∑
f

E
[ ∑
m∈Gf

Im(t)
]

= max
π,S

∑
m∈∪fGf

pm(t)

= max
π,S

∑
m∈∪fGf

(
pm(t)− pm(t− 1) + pm(t− 1)

)
= max

π,S

( ∑
m∈G(π,S)

∆pm(t) +
∑

m∈∪fGf\G(π,S)

∆pm(t)
)

+
∑

m∈∪fGf

pm(t− 1) (6)

= max
π,S

∑
m∈G(π,S)

∆pm(t) +K1(t) +K2(t− 1), (7)

where in (6) we divide the packet-companies into ones
that are scheduled and not by (π, S). K1(t) and K2(t)
correspond to the second and third term in (6). For a
fixed t, K1(t) is a constant as the packet-companies that
are not scheduled do not depend on (π, S). K2(t− 1) is
also a constant at time t. Finally, from ∆vm(t) = ∆pm(t)
by definition, the result follows.

Example 4.2 (D1. Min-Delay):

max
π,S

∑
f

E[∆Df (t)] = max
π,S

∑
m∈∪fGf

E[∆Df (t)]

= max
π,S

( ∑
m∈G(π,S)

E[∆Df (t)] +
∑

m∈∪fGf\G(π,S)

E[∆Df (t)]
)

= max
π,S

∑
m∈G(π,S)

E[∆Df (t)] +K(t). (8)
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Again, K(t) which does not depend on (π, S) is a
constant at time t. Thus, minimizing delay in a snapshot
is finding a set of the copy and link schedule which
maximizes the sum of improvement in expected delay.
Note that the improvement in the expected delay at time
t of a packet-company m is evaluated as E[∆Df (t)] =∫∞
s=0

spm(t− 1 + s)ds−
∫∞
s=0

spm(t+ s)ds.
We can show the similar examples for the objectives R2
and D2 which can be trivially extended from the R1 and
D1 respectively.

OPT is impractical for the following reasons:
1) Coupling between copy and link scheduling. vm jointly de-

pends on both copy and link schedules. For R1, when
two different packets in the same packet-company m
are scheduled over different links, the contribution of
m should jointly consider the two copies because its
delivery probability pm is determined by any copy in
m.

2) Global knowledge of values.3 All nodes holding any
packet in a packet-company m need to have the
same value vm, which is hard to achieve in a dis-
tributed environment. A vanilla method is to flood
the value change event, requiring heavy message
passing, thereby wasting resources.

3) Computational intractability. The OPT algorithm re-
quires the exhaustive search to find a solution in the
large-scale search space. Formally, the problem can
generally be formulated by an integer programming
with an exponential size of search space. In fact, for
a fixed π, the inner maximization of Eq. (5) over all
feasible schedules is a variant of an NP-hard wireless
scheduling problem (see [35] for details) that can be
reduced to the NP-hard MWIS (Maximum Weighted
Independent Set) problem

5 DISTRIBUTED MAX-CONTRIBUTION

5.1 Max-Contribution

Complex coupling between copy and link scheduling
happens when multiple copies of the same packet are
scheduled over different links simultaneously. In our
approximation, Max-Contribution, OPT is solved with the
set Π′(t) of copy schedules, where

Π′(t) = {π ∈ Π(t) | πi 6= πj ,∀i, j}.

Since Π′(t) ⊂ Π(t) for all t, it is clear that the contribution
computed from OPT is no less than that from MC. We
transform the original optimization problem into one
over a reduced constraint set. Then, as we discussed,
the optimal algorithm becomes much simpler, which
we in turn use to develop practical, on-line, distributed
algorithms later in Section 5.2.

From the use of Π′(t) instead of Π(t), the contributions
do not depend on the entire schedule, but only on the
corresponding link l (more precisely, its receiver node,

3. Throughout this paper, when we mention global knowledge, we
mean global knowledge of values.

rx(l)), because only node, say v, changes the contribu-
tion of a packet that it holds. This approximation enables
us to decompose copy scheduling from link scheduling,
and first solve the outer-maximization by, for each link l,
selecting the packet-company m?

l that has the maximum
contribution. For clarity, we now use a notation ∆vlm to
refer to the contribution of a packet in packet company
m when it is copied over link l.

Note that |Π′(t)| gets closer to |Π(t)| as |∪f Gf |/|(S(t))|
gets larger. Thus, MC is near-optimal when the offered
load in the network is high compared to the number of
schedulable links.

Max-Contribution

At each slot t,
Step 1. Contribution computation.

Each node computes the contributions of the
packets (or copies) in its buffer over its con-
nected links.

Step 2. Copy scheduling.
On each link l ∈ S(t), set the weight Wl(t) of
the link l to be maxm ∆vlm(t), and let

m?
l = arg max

m
∆vlm(t)

Step 3. Link scheduling.
Select the schedule S?(t) that satisfies

S?(t) = arg max
S∈S(t)

∑
l∈S

Wl(t), (9)

Step 4. Packet copying.
Replicate the packet (or the copy) m?

l over the
link l, for all l ∈ S?(t).

Unfortunately, Max-Contribution is still expensive to
implement even with decoupling between link and copy
scheduling. The need to have global knowledge of vm
remains, and the link scheduling problem maximizing
the sum weights of links is NP-hard, which, again, can
be reduced to the MWIS problem4.

5.2 Distributed Max-Contribution (DMC)
Copy scheduling. The main difficulty of MC is that all
nodes holding a copy of a packet company m should
have the same value of vm. DMC addresses such a
challenge through an on-line approximation technique
called fusion which is used to maintain the set of nodes
that currently own a copy of a packet m. Each node i
keeps track of a set of other nodes, Nm,i, that have a
copy of each packet m it currently holds. Nm,i is called
a node set of i for m. Along with a node set for m, node
i maintains the delivery probability of each member
in the set. It is initially empty and adds another node
j when node i forwards a copy of m to j. After the
forwarding happens, node j sets Nm,j = Nm,i. When

4. Under one-hop interference model, the link scheduling problem is
reduced to Weighted Maximum Matching (WMM) whose complexity
is O(L3).
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node i meets a node k with the same copy m, then nodes
i and k synchronize their node sets for m by taking
union of Nm,i and Nm,k. Whenever Nm,i is updated
either by forwarding the copy or by meeting another
node with the same copy, node i recomputes vm. If
the global performance objective is R1, vm is equal to
the probability, pm that any node holding any copy of
m meets the destination of m and delivers m. vm is
recomputed in the following manner. Denote the value
of packet m at node i by vm,i and the delivery probability
(i.e., meeting probability) of i with the destination of m
by qm,i. Then

vm,i(t) = pm,i(t) = 1−
∏

k∈Nm,i

(1− qm,k(t)). (10)

For making a copy schedule at time t, DMC performs
the following operations. When a node i with a packet m
meets other nodes, they first exchange the IDs of packets
whose copy they currently hold and then perform fusion
by synchronizing their node sets and corresponding
value information (i.e., delivery probabilities) and re-
computing packet values. After this process, a node
performs copy scheduling. For each packet m, node i
computes the marginal increase of packet value of m
when i is copied to each neighbor j. If j is already
holding m, then the marginal increase is zero. If it is
not, then the marginal increase is the difference between
the current value of m and the new value of m if m
is copied to j (i.e., recomputed value after adding j to
Nm,i). Node i picks the packet with the biggest marginal
value increase for scheduling. Denote such a packet by
m?
i,j where m is scheduled for copy for a link between

nodes i and j. We call m?
i,j(t) the candidate copy of node

i at time t.

Link scheduling. The scheduling algorithm that solves
Eq. (9), referred to as Max-Weight scheduling, has
been extensively studied to provide provable through-
put guarantee. Recent efforts on distributed scheduling
can provide us an array of candidate, low-cost algo-
rithm to Max-Weight. Examples include greedy, locally-
greedy, random pick-and-compare (see [35] the refer-
ences therein for the detailed algorithm description).
Such algorithms provide (partial) throughput perfor-
mance guarantee, where throughput is defined by the
achieved stability region. We can also adopt one of them
in our framework as a distributed heuristic. For our
simulation, we use a locally greedy algorithm which
schedules, at each time t, the transmission of a packet
whose marginal value increase is biggest among all
candidate copies of nodes that are in an interference
region at time t. Note that this type of greedy algorithm
is known to achieve constant fraction approximation to
the optimal max weight scheduling [36] and also shown
to be implementable in a CSMA fashion [37].

5.3 Extension
Exploiting physical broadcast. We have so far consid-
ered only unicast transmissions. Physical transmission

in wireless networks is broadcast. We can improve the
performance of DMC by exploiting overhearing through
broadcast. When a node i transmits a copy m to node
j, then another neighboring node k can overhear m.
Then we allow node k to carry the packet and performs
DMC with that. In this case, node i does not know
whether node k has received that packet or not (as no
acknowledgement is sent). Thus, node i does not update
its packet value for the reception of m by k. But this has
a tendency of improving the performance.

Cost and efficiency: Tradeoff. In networks, the number
of packets is an important concern especially when
transmitting a packet can be costly in terms of energy
consumption and storage. In such cases, DMC can be
adapted to keep the the number of copies in the network
in check. One way to accomplish that is to set a threshold
T such that a node does not schedule a packet to a node
whose delivery probability is less than T (meaning that
the node is not qualified for efficient delivery).

DF and DMC: Comparison. As briefly discussed in
Section 2, Delegation Forwarding (DF) [16] is known to
efficiently save cost while maintaining reasonable deliv-
ery ratio. DMC can be tunable so that it approximates
DF by setting a threshold value of DMC that equalizes
asymptotic number of copies in DMC with that in DF
as follows (whose formal derivation is presented in
Appendix in a supplement material):

T = θ(pm,i) = 1− a(1− pm,i)C , (11)

where

C =
log(2/a)−

√
(log(2/a))2 − 4 log (1− pm,i) log 2

2 log (1− pm,i)
,

and a is any positive constant satisfying C ≥ 0. Recall
that link scheduling under limited transmission opportu-
nities is not considered in DF. Our simulation comparing
the costs of DMC-threshold (i.e., DMC with a threshold)
to DF shown in Section 6 confirms that the cost of DMC-
threshold similar to that of DF.

6 PERFORMANCE EVALUATION

6.1 Node Delivery Probability from Real Traces
To evaluate performance, we use the GPS traces of
taxies in two cities: Shanghai [9] and San Francisco [38].
First, the traces in Shanghai are collected from over
4000 taxies, which is by far the largest vehicular GPS
traces publicly available. The location information of
each taxi is recorded every 40 seconds within an area
of 102km2 for 28 days (4 weeks). Second, the traces in
San Francisco are measured from 536 taxies recorded
every 30 seconds for 25 days. We consider a DTN appli-
cation where many infostations are randomly scattered
around the city in a uniform manner and using a mobile
network of taxies equipped with WiFi, data from one
infostation (i.e., source) is moved to another infostation
(i.e., destination). The infostations do not have an access
to infrastructure and they simply upload data in units of
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packets to passing-by taxies. These infostations are like
public bulletin boards or street advertisement boards.
Daily updated content from one location is delivered to
a set of destination infostations for display. In this paper,
we consider only unicast scenario.

People do not move randomly. Any mobile networks
whose constituent members are humans or vehicles
driven by them cannot be described as random move-
ment and there exists some regularity or periodicity in
their mobility [21], [39]. From the taxi traces, we also find
some regularity (1) in the patterns of locations each taxi
visits daily and (2) in the patterns of meetings among
taxies. Further, we find that taxies exhibit some biases
in choosing locations they visit and thus other taxies
they meet and that different taxies tend to have different
biases. The bias in regularity makes different taxies to
have different contributions in our framework. To illus-
trate this, we plot the CCDF (complementary cumulative
density function) of the inter-contact times (ICT) and
inter-visit times (IVT) of taxies in Shanghai traces in
Fig. 1. The aggregate ICT and IVT distributions are best
fitted with exponential distributions as depicted Figs. 1
(a) and (b) of semi-log scale. From Figs. 1 (c) and (d), the
same patterns are also verified for individual pairs This
is quite different from the human mobility pattern which
shows power-law inter-contact time distributions. The
exponential tail of vehicular ICT is also shown in [40].
Figs. 2 (a) and (b) demonstrate the pairwise intensity
values (λIV T and λICT ) of IVT exponential distributions
of the pairs between 100 destination locations and 100
taxies and ICT distributions among randomly chosen 100
taxies Figs. 2 (c) and (d) 5 show PDFs of all aggregated
λIV T and λICT values compared to PDFs of the values
obtained from an individual taxi. From the plots, we find
that different taxies show different biases in the locations
they visit and in the set of taxies they meet daily.

These characteristics of the Shanghai taxi network
allow us to extract scheduling metadata. In particular,
from the exponential distributions we fitted to each
individual taxi’s IVT and ICT, we can derive the node
delivery probability, qm,i of a node i to the destination
location, d(m) of a packet m which implies the maximum
potential delivery probability. More precisely,

qm,i(t) = max{q1
m,i(t), q

2
m,i(t), q

3
m,i(t), ...} (12)

where qkm,i denotes the delivery probability through k
hops. For example, 1-hop probability, q1

m,i(t) is the prob-
ability that node i directly meets the destination location,
d(m) during the interval [t, tdl]. For 2-hops or more, we
find the path with the maximum delivery probability by
comparing all combinations of the intermediate nodes.
Thus, the k-hop delivery probability is defined as follows
(note that nk denotes the k-th hop node and we replace

5. We excluded pairs meeting rarely (i.e., pairs with λIV T or λICT

values smaller than 0.00003 or 0.00005 respectively).
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Fig. 3. CDFs of average ICT values of all taxi pairs,
which are accumulated over different amount of days. We
observe that λ for all taxi pairs almost become constants
after aggregating ICT samples for more than two weeks.
This regularity enables us to compute qm,i(t) online.

n1 = i, nk+1 = d(m) for the ease of expression).

qkm,i(t) =

max
{n2,...,nk}∈Nk−1

{∫ td−t

tnk−1,nk

· · ·
∫ td−t

0

P[Tn1,n2
= tn1,n2

]

k−1∏
j=2

P[Tnj ,nj+1
= tnj ,nj+1

− tnj−1,nj
]

P[Tnk,nk+1
≤ (td − t)− tnk−1,nk

]dtn1,n2 · · · dtnk−1,nk

}
(13)

where N k and Tnj ,nj+1
denote the k-combinations of

node sequences from the node set N excluding the node
i itself and a random variable indicating the inter-contact
time or the inter-visit time between the j-th node and the
(j + 1)-th node (or location).

Feasibility of online computation of link statistics.
Whenever a node contacts other nodes, they first share
their metadata listing packet-companies they have and
their delivery probabilities to all destinations. Based on
this information, nodes calculates their contributions to
determine who is the best candidate to get replicated and
when the replication can be performed. Therefore, the
required computation on the fly is just the simple con-
tribution calculation, given node delivery probabilities,
qm,i(t). Similarly to previous work [14], [23], we compute
the probabilities using ICT and IVT distributions as
shown in Eq (12) and (13). It is true that the equations
can be too heavy to be computed on the fly if a node i
computes qm,i(t) from scratch whenever it is requested.
However, once the ICT and IVT distributions become
stabilized to have almost constant λ values for all contact
pairs, we can apply online approximation of link statis-
tics (i.e., qm,i(t)) by distributing the computation of Eq
(12) and (13) over time similarly to that of link state rout-
ing algorithms finding a shortest path. To enable this, a
node remembers only the best route information (i.e.,
the sequence of nodes resulting in the maximum node
delivery probability) to each of possible destinations
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Fig. 1. (a),(b) CCDFs of aggregate IVT distribution and aggregate inter-contact time ICT distributions of all taxies to
all candidate locations and to all other taxies. They are tested with exponential, Weibull and log normal distributions
by maximum likelihood estimation (MLE) and exponential distribution showed the best fit. (c),(d) CCDFs of IVT
distributions and ICT distributions of a taxi to locations and to other taxies. The maximum and minimum intensity
of the best fitting exponential distributions are given as λmin and λmax, respectively.
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Fig. 2. (a),(b) We plot the individual intensity values (λIV T and λICT ) of IVT and ICT exponential distributions from
100 taxies. IVT is plotted for 100 destination locations. A high intensity value of a particular location by a particular taxi
implies that a taxi has a high rate of visit to a particular location. Likewise, a high intensity value of a taxi with respect
to another taxi meets they tend to meet very often. Different taxies show different biases in the locations they visit and
in the set of taxies they meet. (c) We plot PDFs of λIV T from all taxi and 100 location pairs and location pairs of an
individual taxi. This verifies that visit rates are unevenly distributed over taxies. (d) We perform the same for λICT .

and compares the route with the new route established
through a node in contact for the same destination. When
the new route is determined to have better performance,
the node updates the route to remember with new one.
In Fig. 3, we showed that CDF of average ICT values
for all taxi pairs in Shanghai traces after aggregating

samples for different amount of days. As expected by
the regularity of mobility [41], [42], the CDF becomes
stabilized after around two weeks resulting in constant
λ values. We also verified that distributed computation
of qm,i(t) updated by the aforementioned method makes
the probability converged to that computed in offline
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through Fig. 4.
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Fig. 4. The CDF of node delivery probabilities for 150
nodes to a destination computed by our online update
method is compared to that from the exhaustive offline
computation method. After several iterations of updating
the best route, the node delivery probabilities of 150
nodes converged to the results from offline computation.

6.2 Setup, Metric and Tested Algorithms

We implemented a resource allocation simulator for a
DTN using MATLAB. Among over 4000 taxies in Shang-
hai traces, we selected relatively reliable 1486 taxies that
show less than 30% of unreliable GPS coordinates in a
day 6 before performing interpolation. For San Francisco
traces, we selected 536 taxies as they all show reliable
GPS coordinates. By default, we use the communication
range of WiFi, 300 meters. Also, we selected 100 can-
didate locations (uniformly distributed) and 32 random
pairs of S-D (source,destination) in the 100 candidate
locations for our simulation. We also vary the number of
packets per S-D pair to see the performance for different
traffic loads. We set the deadline (i.e., tdl) to be 24 hours.
We make resource allocation decisions every 30 seconds.
We also tested other intervals, and observed similar
trends. We repeated ten simulations; each time, we vary
S-D pairs randomly with different seeds.

We present the results for the max-delivery objective.
Two performance metrics are considered: (i) delivery
ratio and (ii) efficiency. Delivery ratio is the ratio of the
total delivered packets (counting only original packets)
within a designated time deadline to the total number
of packets that sources initially have. Efficiency is the
delivery ratio per unit cost where cost is simply the total
number of transmissions by transmitters.

We evaluate seven algorithms summarized in Table 1.
MC-Global uses the global view of packet values, but
solves link scheduling using local greedy link scheduling
of DMC. This is because solving the MWIS problem
for link scheduling at the scale of our network is too
time consuming. Some protocols do not have in their
design the specifications for link/copy scheduling and

6. Reliability information, DOP (dilution of precision) is included in
the traces

value updates. Thus, for fair comparison, we addition-
ally implemented the absent features. For example, link
scheduling has not been considered in DF and RAPID
in their papers. In random scheduling and forwarding,
links and packets are randomly selected out of the con-
nected links and packets that exist in either of two nodes
that meets. In DF, link scheduling requires prioritizing
the packets to copy, for which we apply the differences
of packet delivery probabilities (that are originally used
in DF for reducing cost based on thresholds). We used
“delegation” originally proposed in DF for value up-
dates, i.e., when a packet m is copied from v to w,
the delivery probability of w for m is also copied to
v. We intentionally use random (e.g., CSMA) for link
scheduling at RAPID to quantify the impact of the joint
copy and link scheduling. DMC-threshold and DMC-
Broadcast use the features of thresholding and broadcast
described in Section 4.

6.3 Metadata overhead
In this subsection, we analyze the amount of metadata
for sharing the information Nm. In order to track Nm,i in
a distributed way, when node i and j meet each other,
they exchange Nm,i and Nm,j for a packet m and all
other packets they hold. Thus, the size of meta data from
node i simply becomes O(nM), where n is the number
of nodes and M is the number of packet companies.

The impact of the overhead in the scale of O(nM) in a
practical scenario can be estimated as follows. In case of
Shanghai trace where the number of nodes is 1486 and
the total number of packet companies is 16000, according
to the evaluation result in Fig.7, the number of copy
events of DMC made until the deadline is about 800,000.
The number tells that the average number of packets
contained in each node is about 540 and the average
number of nodes having a certain packet is about 50.
If we encode the IDs of nodes and packets into bits, 11
bits and 14 bits will be occupied, respectively. Therefore,
the average size of a metadata to be exchanged in each
encounter can be estimated as 14bits×540×11bits×50 =
520kByte. In the same way, San Francisco scenario where
N is 536 and M is 3200 gives the average size of a
metadata as 125kB. In the case of making a resource
allocation decision at every 30 seconds with transmission
rate of about 1Mbyte/sec, the metadata of 520kB and
125kB would consume 1.7% and 0.4% of the given air
time, respectively. A faster link speed will contribute to
a smaller portion of air time. Based on this observation,
we proceed our simulation studies with the overhead
from the metadata exchange excluded.

6.4 Simulation Results
For max-delivery objective R1, Fig. 5(a) and (b) show the
delivery ratio and efficiency of scheduling algorithms
against the offered load (i.e., the amount of packets
injected to each of S-D pair) in Shanghai taxi traces.
The delivery ratio decreases as the offered load (the
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TABLE 1
Tested Algorithms (? corresponds to the items that we added for fair comparison)

Algorithm Link Copy Value Required Limitation
scheduling scheduling update knowledge

Random random random × × heuristic
DF [16] ?greedy ?difference. delegation local metrics heuristic

RAPID [14] ?random contribution global global metrics global knowledge sharing
MC-Global greedy contribution global global metrics global knowledge sharing

DMC greedy contribution fusion local metric local approximation
DMC-Threshold greedy contribution with threshold fusion local metrics local approximation
DMC-Broadcast greedy contribution with broadcast fusion local metrics local approximation
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Fig. 5. [Shanghai traces, R1] (a) and (b) Delivery ratio and efficiency of algorithms listed in Table 1 for varying offered
load to 32 S-D pairs with a radio range of 300 meters. Each value shows 95% confidence interval. We do not show
cost as it is implied in the efficiency. (c) and (d) Delivery ratio and Efficiency under a different radio range, 500 meters.
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Fig. 6. [San Francisco traces, R1] (a) and (b) Delivery ratio and efficiency of algorithms listed in Table 1 for varying
offered load to 200 S-D pairs. (c) [Shanghai traces, D1] Delay of algorithms for varying offered load to 32 S-D pairs in
Shanghai. (d) [San Francisco traces, D1] Delay of algorithms for varying offered load to 200 S-D pairs in San Francisco.

number of input packets) increases. MC-Global, DMC
and DMC-Broadcast show better deliver ratios than any
other protocols. DMC shows almost as good delivery
ratio as MC-Global. This indicates that the localized
information update, Fusion, can efficiently replace the
expensive global knowledge update used in MC and also
in RAPID. The main performance difference between
DMC and RAPID is about 10% to 15% under high load
and arises from use of more intelligent link scheduling
for DMC. We believe this effect will be more resounding
when the network density increases. DMC-Broadcast
shows the best delivery ratio in all offered loads. While
other algorithms copy a packet to a single relay node,
DMC-broadcast additionally copies a packet to all others
nodes in its neighborhood when replicating a packet

to the selected relay node. Hence, even though DMC-
broadcast lacks global knowledge, more copies gener-
ated in the network by DMC-broadcast allows it perform
better than MC-Global. Under 1500 packets, the offered
load is much higher than the capacity of the network
leaving many packets to miss the deadline. All protocols
suffer their performance. However, DMC-Broadcast still
outperforms by about 20-30% over DMC and 45% over
RAPID. Clearly opportunistic copying using broadcast
improves the performance substantially. DMC-Threshold
always does better than DF in efficiency which is known
to achieve good balance of the delivery ratio and the cost.
We confirm that the cost of DMC-Threshold and DF is
very similar, which is why DMC-Threshold shows better
efficiency. Among all tested algorithms, Random shows
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the worst performance in all cases. It was expected as it
does not exploit the characteristics of IVT and ICT shown
in Fig. 1 and Fig. 2. We test the performance in a denser
environment to see the impact of joint forwarding and
link scheduling. We vary the radio range from 300 meters
(see Figs. 5(a) and (b)) to 500 meters (see Figs. 5(c) and
(d)). We observe that the gap between DMC and RAPID
increases as the network density increases. They show
difference in the following two points: 1) DMC uses
more lightweight metadata dissemination called Fusion
than RAPID which uses flooding, and 2) DMC relies
on greedy link scheduling while RAPID uses random
link scheduling. In general, the effect of 1) is minimal
because the DMC and MC-Global performs similarly.
The performance gap between the two is likely to come
from 2). Denser network leads to increasing interference
in transmissions. Thus, we observe that the performance
gap reaches about two times. The performance of DMC
improves with the increasing radio range due to a higher
chance of meeting other nodes.

To reconfirm the performance of our proposed al-
gorithms, we repeat the same simulations for the San
Francisco taxi traces with a radio range of 300 meters.
For R1 objective, Figs. 6(a) and (b) show the delivery
ratio and efficiency of scheduling algorithms for vari-
ous offered loads, where we use taxies as sources and
destinations instead of infostations. The performance of
algorithms show similar order with that observed in
Shanghai traces. DMC-broadcast outperforms others and
DMC works as good as MC-Global. The performance
gap between DMC and RAPID is about 20% under high
offered load. To sum up, the overall performance gap be-
tween DMC and RAPID in San Francisco traces is larger
than Shanghai traces mainly due to the impact of link
scheduling. Indeed, the average number of interfering
neighbors in San Francisco traces are 3.5 which is much
higher than 2.1 observed in Shanghai traces.

Also, we compare the algorithms for the min-delay
objective D1 using the Shanghai traces. The delay of each
algorithm is tested against the offered load to randomly
chosen 32 S-D pairs under a radio range of 300 meters.
As shown in Fig. 6(c), DMC again closely follow the
delay performance of MC-Global. On the other hand,
Random is far from the other three algorithms and the
delay gap of RAPID and DMC becomes larger with
the increasing number of offered packets. We also test
the algorithms for D1 objective in San Francisco traces.
Fig. 6(d) shows the delay performance where DMC
closely follows MC-Global while RAPID and Random
show much larger delivery delays.

The overhead estimation from the algorithms in the
aspect of energy consumption and memory occupancy
boils down to counting the average number of packet
replications (i.e., transmissions). Fig. 7 plots the number
of replications over the amount of packets per SD pair
under the deadline of one day in Shanghai and San Fran-
cisco. This confirms that Random, RAPID, MC-Global
and DMC show almost the same number of replications
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Fig. 7. The number of copies of algorithms listed in
Table 1 for varying offered load to (a) 32 S-D pairs in
Shanghai and (b) 200 S-D pairs in San Francisco.
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Fig. 8. (a) The fraction of number of interfering nodes (IN)
experienced by transmitting nodes over time in Shanghai.
The average number of interfering nodes is 4.5. (b) The
fraction of number of interfering nodes (IN) in San Fran-
cisco. The average number of interfering nodes is 12.5.

simply because they all try to utilize the allowed air time
as much as possible. On the contrary, DF and DMC-
Threshold show less numbers of replications as they aim
to lower the overhead. In conclusion, MC and DMC
do not inflate the energy consumption and memory
occupancy compared to RAPID while DMC-threshold is
successful in suppressing such overheads to the level of
DF.

We further justify the need of link scheduling for
interference management by showing the existence of
contention for wireless channel. Fig. 8 shows the fraction
of the number of interfering nodes in (a) Shanghai and
(b) San Francisco traces over time. Recall that we assume
two-hop interference model and use the typical radio
range of WiFi, 300 meters. The blue region shown in
the bottom of the figures (i.e., ’IN=0’) indicates that the
portion of transmitting nodes which do not interfere
with other nodes. Other regions represent the portions
of transmitting nodes with the notated number of inter-
fering nodes. In both traces, we observe that less than
25% of transmitting nodes transmit packets without any
interference and more than 40% of nodes compete with
more than five interfering nodes. The reason why the
number of interfering nodes in San Francisco is much
greater than that in Shanghai is that most of taxis in San
Francisco move closer to each other as they mostly stay
in the downtown area. The statistics on the interfering
nodes clarifies the reason why MC and DMC obtain
performance gains over existing algorithms.
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7 CONCLUDING REMARKS

7.1 Discussion

In this paper, we proposed a resource allocation al-
gorithm OPT based on snapshot approximation and
provided approximated and distributed algorithms, MC
and DMC accordingly. Obviously, OPT is optimal in
a time frame but is not the optimal algorithm when
considering the entire time frames. We discuss about the
remaining challenges in developing the optimal DTN
resource allocation algorithm which may require a set
of following additional information.

Performance gap to the optimality. In order to achieve
the optimality via dynamic programming formulation in
DTNs with inference, what we need to model includes
the statistics on how long each connection would last,
how long each disconnection would last, how many
nodes would exist in the interference range when each
encounter happens, how many packets are queued in
each node, what would be the list of those packets,
and who are their destination nodes. Due to the severe
complexity involved in the optimality, our framework
in DMC only adopted the inter-connection time distri-
bution for calculating the delivery probability.

Quantifying the performance gap between DMC and
the optimality is mathematically intractable, but we at
least know when our approximation becomes close to
the optimality. The only difference from the optimal
backward induction of dynamic programming to our
solution is that we calculate the delivery probability us-
ing the inter-connection statistics whereas the backward
induction will calculate the probability with statistical
knowledge on interfering nodes, packet compositions in
those interfering nodes, and the allowed time durations
for the encounters. Given that Max Contribution tries to
maximize delivery probabilities of packets for a given
time slot (i.e., a given encounter duration), the fact that
the chosen sequence of scheduling by Max Contribution
is different from the sequence chosen by the backward
induction makes the performance gap. Therefore, if the
duration of each encounter is sufficiently long to allow
all the recommended forwarding irrespective of its se-
quence, our algorithm can work closely to the optimality.

Detailed statistics on contact patterns. In most of re-
search work in DTNs including our work, ICT distribu-
tions are accumulated over several weeks to capture reg-
ularity in mobility patterns of humans or human-driven
vehicles. According to [42], regularity can be observed
in both a daily scale and a weekly scale. Considering
human mobility behaviors in their daily lives, observing
a new regularity in hourly scale is also possible when
we condition a day of the week. Hence, predicting future
events statistically based on long-term aggregated traces
can lead to suboptimal resource allocations if a packet
is delivered from a source to a destination within much
shorter time scale than that of aggregated traces or vice
versa. Thus, the optimal DTN resource allocation needs

to leverage more detailed statistics on contact patterns,
adaptively to the time scale of packet delivery.

Statistics on the number of interfering nodes. When a
DTN has light traffic affordable within each of contact
durations, the dynamic programming approach intro-
duced in [12], [13] relying on the statistics of ICT, is
a good enough framework in developing the optimal
resource allocation algorithm. However, when the traffic
volume becomes heavy, new statistics on the number of
interfering nodes needs to be considered in the frame-
work resulting in substantial increment in complexity.
For example, when there are two paths of which the
first one meets the destination more frequently but has
extremely many interfering nodes when meeting and
the second one meets less frequently but the meet-
ing is exclusive, the optimal algorithm should jointly
consider the frequency of meeting and the chance of
being scheduled when meeting. Unfortunately, there are
only few observations on the interfering nodes and no
framework can handle this issue properly. However,
recent work [43] which applied mean field theory to
predict evolution of cluster sizes of mobile nodes can
be a theoretical foundation to this issue as the theory
is shown to predict the number of nodes in a cluster
(i.e., neighborhood) very closely to that in reality. We are
interested in combining mean field theory and resource
allocation problem over multiple time frames in DTNs
as our future work.

The effect of encounter duration. We characterize the
effective duration of each encounter during a time slot
by calculating the amount of time being in the range of
each other. As the traces are recorded at every 30 or 40
seconds, for the quantification, we estimated the detailed
positions via interpolation of the recorded positions.
Shanghai and San Francisco showed 17 and 10 seconds
of effective encounter duration out of a time slot of 30
seconds 7, respectively. Thus, to obtain more realistic
simulation results, the size of packet should be adjusted
accordingly.

7.2 Conclusion
The main contributions of this paper are three-folds.
First, we consider resource allocation for jointly opti-
mizing link scheduling, routing and replication. This
framework allows the developed solutions to be adap-
tive to various conditions of networks whether they are
dense with high interference or sparse with high rates of
disconnections. Second, optimal resource allocation for
jointly optimizing link schedule and replication-based
routing is a hard problem in DTNs because of dynamic
links and various control knobs of improvement for for-
warding and replications. Many existing techniques try
to focus on one or two knobs for improved performance
by applying intuition-driven heuristics. In this paper,

7. The effective encounter duration is defined as 0.1-percentile value
of all connection durations.
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we systematically approach the problem; we use the
snapshot approximation in temporal dimension, which
restricts nodes to use only contemporarily available
knowledge, and then approximate various components
in spatial dimension to reduce its complexity without
much loss in the performance. Our approach clearly
shows how we derive our heuristic solutions and pro-
vides some confidence over the expected performance.
Another contribution is that we demonstrate how our
developed solutions can be applied to solving real world
problems, such as information dissemination over a
network of over 1000 taxies, each equipped with a
WiFi radio, which is by far the biggest DTN network
being simulated using real traces. From the traces, we
extract statistical properties of taxi movements and apply
them to formulate parameter values to the input of our
algorithms. This work clearly demonstrates how our
solutions would perform in real network settings.
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