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Abstract—Aggregate traffic loads and topology in multi-hop
wireless networks may vary slowly, permitting MAC protocols to
‘learn’ how to spatially coordinate and adapt contention patterns.
Such an approach could reduce contention, leading to better
throughput. To that end we propose a family of MAC scheduling
algorithms and demonstrate general conditions, which, if satis-
fied, ensure lattice-rate-optimality (i.e., achieving any rate-point
on a uniform discrete-lattice within the throughput-region). This
general framework enables the design of MAC protocols which
meet various objectives and conditions. In this paper, as instances
of such a lattice-rate-optimal family, we propose distributed,
synchronous contention-based scheduling algorithms that (i) are
lattice-rate-optimal under both the SINR-based and graph-based
interference models, (ii) do not require node location information,
and (iii) only require three-stage RTS/CTS message exchanges for
contention signaling. Thus, the protocols are amenable to simple
implementation, and may be robust to network dynamics such
as topology and load changes. Finally, we propose a heuristic,
which also belongs to the proposed lattice-rate-optimal family
of protocols and achieves faster convergence, leading to a better
transient throughput.

I. INTRODUCTION

Since the seminal work [2] on throughput maximiza-
tion in wireless scheduling, there has been significant in-
terest in distributed MAC scheduling algorithms with prov-
able throughput-guarantees over wireless multi-hop networks.
The problem is to find “throughput-optimal” algorithms —
scheduling algorithms that stabilize the system whenever pos-
sible, subject to the constraints on the sets of simultaneously
schedulable links. Since the centralized algorithm in [2],
referred to as the Max-Weight algorithm, requires high com-
plexity (typically, exponential complexity), distributed algo-
rithms such as Maximal/Greedy scheme (e.g., [3]–[7]), Pick-
and-Compare (e.g., [8], [9]), and queue-length based random
access (e.g., [10], [11]) have been proposed, which stabilize
networks for arrival rates within (the entire or some fixed
fraction of) the throughput region with polynomial complexity.
Such algorithms have been primarily analyzed in the context of
graph-based interference models, and still rely on significant
message passing to compute the schedule.

The research mentioned above has the following two as-
pects that need improvement and motivate our study. First,
in wireless multi-hop networks with limited bandwidth, a
simple signaling procedure is of great importance to ease
implementation and reduce overheads. Second, in spite of
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extensive work assuming a graph-based interference model,
it is more realistic to model interference relationships based
on SINR (Signal-to-Interference-Noise-Ratio) that consider
aggregate interference even from far-field transmissions, e.g.,
path-loss based interference with a minimum SIR requirement
for successful packet decoding at receivers. However, there is
little work on stabilizing algorithms (whenever possible) that
both work under the physical interference model and require
simple control signaling because of complex interference cou-
pling over links and aggregate interference. Even if we admit
that both interference models have their proponents, it would
be useful to develop a unified scheduling framework, which
allows the development of stabilizing distributed scheduling
algorithms for both models and needs inexpensive signaling.

Most algorithms that we have discussed so far (e.g., Max-
Weight and Pick-and-Compare, etc.) for ensuring throughput-
optimality do so by means of scheduling a collection of links at
each time-slot, and this collection of links is chosen based on
the current queue-lengths. As the queue-lengths keep changing
(even with stationary, ergodic traffic), these algorithms re-
compute the schedule periodically. To recompute the schedule
(per-time-slot or periodically) requires the network to solve a
global optimization problem which relies on heavy messaging.

We consider an alternate rate-based framework, which im-
plicitly deals with traffic having a fixed long-term arrival rate.
We assume that the each node knows its local offered load
on its outgoing links. Given this “extra” information, our
objective is to determine a schedule in a distributed manner
that can support a “quantized” version of these rates if at all
possible. Note that once a schedule has been determined, we
can continue to reuse this schedule as long as the offered load
does not change. Thus, our framework differs from queue-
based scheduling, where a schedule has to be periodically
recomputed even for statistically stationary traffic. We term
such scheduling algorithms to be lattice-rate-optimal, meaning
that the algorithm achieves any rate-point on a discrete-lattice
(that can be chosen to be as fine as desired) within the
throughput-region, given that nodes know their local offered-
load on outgoing links (a more precise description is deferred
to Section II-B).

Note that lattice-rate-optimality is a rate stability require-
ment and is thus weaker than queue stability. Lattice-rate-
optimality only guarantees that the long-term departure rate is
the same as the long-term arrival rate (as long as the quantized
arrival rates lie on a discrete-lattice within the throughput-
region), and does not guarantee ergodicity of queues (in the
case of Markovian arrivals, positive recurrence of queues) in
the system. Further, the notion of throughput-optimality in the
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context of queue stability [2] does not assume any knowledge
of arrival rates and is thus different (and a stronger notion)
from lattice-rate-optimality.

In this paper, we develop a lattice-rate-scheduling frame-
work as described above, and propose its distributed instances
for both the graph-based and physical interference models
that: (i) are lattice-rate-optimal, (ii) do not require node loca-
tion/explicit path-loss information, and (iii) have a very simple
signaling mechanisms. Thus, they are amenable to simple
implementation. The instance of the proposed family of lattice-
rate-optimal algorithms, which we call RCAMA (Randomized
Contention Aware Multiple Access), uses the simple multi-
stage RTS/CTS exchanges. The signaling mechanism enables
each node to ‘learn’ its neighborhood’s contention patterns in
an autonomous manner and possibly also adapt to changes
in traffic load and network topology well. We are able to
prove that with the additional local information at nodes (local
offered loads) only a rate-stability requirement leads to a dis-
tributed, lattice-rate-optimal algorithm with only three stages
of simple contention signaling per time-slot under the physical
and graph interference models, respectively, irrespective of
network size (thus, resulting in much less signaling than a
queue-based scheduler such as Max-Weight).

Note that under the physical interference model, even
centralized scheduling algorithms require knowledge of the
exact topology (i.e., node locations, path-loss coefficients,
and network connectivity) to achieve some form of (rate or
throughput) optimality. This global information is needed to
compute the amount of interference generated by simultane-
ously activated nodes, which in-turn is needed for comput-
ing a “good” schedule. However, somewhat surprisingly, our
algorithm achieves lattice-rate-optimality without centralized
geographical information. To the best of our knowledge, this
paper is the first to propose a distributed scheduling algorithm
under the physical interference model that has any form of
rate-optimality properties.

In practice, depending on the types of services supported
by the network, information on the offered load can either be
explicitly given to the nodes or be measured by the nodes.
If we have a guaranteed-service network based on a resource
reservation signaling (e.g., RSVP [12]), the amount of load
could be known a priori by nodes in the path of a reserved
flow. However, in a typical best-effort service network, the
amount of load is not explicitly provided to the nodes, but
the nodes could measure/estimate offered load over a suitable
time-period. The main motivation for RCAMA is that although
individual (end-to-end) traffic loads may change quickly, the
aggregates on some congested links may, in many relevant
applications, change more slowly and locally. Similarly, node
mobility (that leads to changes in topology and load) might
be slow enough to permit a MAC scheduler to learn and
exploit the offered traffic characteristics so as to quickly
realize “good” schedules. Because the loads may exhibit some
variation, or measurements may be noisy, a node may use an
upper estimate for it.

Breaking the conventional belief that highly complex signal-
ing (whether it is polynomial or exponential) is unavoidable
for some form of rate-optimality does not come free – this

requires some costs to be paid in our case, such as need of local
knowledge on average load, convergence time, and granularity
of supported load. We will also discuss how such performance
metrics scale as we vary the system parameters to evaluate
these costs. As mentioned earlier, our scheduling framework
and the proposed algorithms can be applied to both physical
and graph interference models with slight modifications. How-
ever, scheduling problems are generally more challenging in
the physical interference model. Thus, we restrict our attention
to the physical model in this paper, and we refer the readers to
our technical report [13] for graph based interference models
and other details.

The main contributions and organization this paper are as
follows:
1) In Section II, we describe the system model.
2) In Section III, we first propose a scheduling framework

(DRS: Dynamic Randomized Scheduling), that provably
achieves any rate-point on a uniform discrete-lattice within
the throughput region (i.e., lattice-rate-optimal). To that
end, we give two key conditions in the DRS family, which,
if satisfied, ensure that an algorithm in the family is lattice-
rate-optimal. We further study their rate of convergence to
optimality.

3) In Sections IV and V, as an instance of the DRS fam-
ily, we propose a synchronous contention-based algo-
rithm, RCAMA (Randomized Contention-Aware Multiple
Access), where multi-stage contention signaling in con-
junction with randomized time-slot selection is used. We
prove lattice-rate-optimality of RCAMA, by showing that
RCAMA satisfies the two conditions in 2).

4) In Section VI, we propose an adaptive variation of
RCAMA, ARCAMA (Adaptive RCAMA) for the purpose
of better adaptation to load/topology changes and faster
convergence to optimality. ARCAMA again satisfies the
two conditions in 2) and adaptively biases slot selection
probabilities based on the past contention histories. In
Section VII, we show via simulation that only a short
duration of memory is required to increase performance,
resulting in good adaptation to load/topology changes.

5) In Section VIII, we review the related work, and conclude
the paper.

II. SYSTEM MODEL

A. Network and Traffic Model

We assume that time is slotted. A time-slot duration is
suitably chosen to accommodate the transmission of one fixed-
size packet. We model the wireless multi-hop network by a
graph G(L, V ), where L and V denote a set of directed links
and nodes, respectively. We abuse the notation L and V to
also refer to the number of links and nodes, respectively. We
assume that for any link between two nodes there is a counter-
part in the opposite direction. We denote a directed link from
node i to node j by i→j. For concreteness, the wireless system
under study has a single frequency/code and each node is time-
synchronized and has a half-duplex radio.

We assume a fixed power model, where a transmitter uses
the power P for data transmission, and SINR (Signal-to-
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Interference-Noise Radio) is considered to determine success
or failure of a transmission.

A message from i to j is decodable, if

GijP

ηj +
∑

k∈VI(i) GkjP
≥ γ, (1)

where γ is the minimum SINR threshold required for message
decoding, VI(i) is the set of nodes transmitting simultaneously
with i (thus interfering the transmission over the link i→j) on
a given time-slot, Gij is the propagation loss from i to j,
and ηj is the thermal noise power at j. The SINR threshold
γ depends on the desired bit rate, bit error rate, and design
parameters such as modulation, coding, and so on.

In practice, in addition to interference, wireless links are
prone to errors due to many other factors (e.g., fading). This
leads to high packet loss rate detrimental to upper-layer perfor-
mance. Thus, in many MAC protocols, reliability is provided
by acknowledging transmissions and possibly retransmitting.
Thus, we say that a transmission over i→j is successful, if
both the data message from i to j and the corresponding ack
message from j to i are decodable at j and i, respectively,
where the ack message from j will be sent only when the
data message is decodable at i.

A link schedule, or simply a schedule A = (Al ∈ {0, 1} :
l = 1, . . . , L), is a 0-1 vector representing the set of scheduled
links, where Al = 1 if the link l is scheduled for attempted
transmission, and 0 otherwise. A link schedule A is said to be
successful, if all transmissions scheduled by A are successful.
We denote the collection of all successful schedules by A.
A scheduling algorithm chooses a sequence of link schedules
(which are not necessarily successful), (A[s] : s = 0, 1, . . .),
where A[s] is the link schedule on time-slot s. We denote
by Dl[t] the number of arrivals over the link l with its mean
E[Dl[t]] = ρl. The vector ρ = (ρl : l ∈ L) is said to be the
load in the system. As mentioned earlier, we assume that each
link knows only its own load.

B. Performance Metric: Lattice-Rate-Optimality

Our objective is to develop scheduling algorithms that
achieve lattice-rate-optimality, i.e., rate-stabilize the system
whenever possible for any load which can be quantized to
lie on a discrete-lattice within the throughput region where
nodes have knowledge of their local, long-term arrival rates
on outgoing links (more precise definition will follow shortly).

The throughput region Λ is defined by the set of all loads
ρ = (ρl : l ∈ L) that are stabilized by some scheduling
algorithm, where stability means that the long-term departure
rate per queue is the same as its long-term arrival rate, i.e.,
rate stability. Then, it is well-known that the throughput region
can be characterized by the following (see e.g., [2])1:

Λ =

{
B | B =

∑
Ai∈A

βiAi, 0 ≤ βi ≤ 1,

|A|∑
i=1

βi ≤ 1

}
,

where Ai is the i-th schedule in A.

1When queue stability is considered, then the throughput region is the
interior of Λ.

We define a weaker notion of throughput region ΛF that is
the lattice-sampling of Λ with adjacent points having distance
1/F for some positive integer F :

ΛF =

{
B |B=

∑
Ai∈A

βiAi, βi=
ki

F
,

|A|∑
i=1

ki≤F, ki∈{0,1,...,F}

}
.

Note that Λ = CL(∪F=1,...,∞ΛF ), where CL(Z) is the closure
of a set Z.

For a given F, the load ρ is said to be F -lattice-feasible if
ρ ∈ ΛF . A scheduling algorithm is said to be F -lattice-rate-
optimal2 if it stabilizes the system for any F -lattice-feasible
load, where each node has local knowledge of the long-term
(aggregate) arrival rates on its outgoing links. For a F -lattice-
feasible load ρ ∈ ΛF , let θ = ρF. Then, the vector θ ∈
ZL

+ can also be used to represent load measured over a F
slots. Henceforth a group of F time-slots is said to be a frame
throughout this paper, and we use ρ and θ interchangeably
unless it generates confusion.

III. DYNAMIC RANDOMIZED SCHEDULING

A. Frame-Based Scheduling

We consider “frame-based” scheduling algorithms, where
scheduling patterns are determined on a frame-by-frame basis
(i.e., F time-slots)3. Thus, frame-based scheduling considers a
frame schedule (FS) that is a consecutive sequence of F link
schedules, represented by a L × F matrix with 0-1 elements,
C = [cls]l∈L,s∈F with θl =

∑F
s=1 cls for a given load θ. The

l-th row vector cl· of C = [cls] is said to be a slot schedule
over l in a frame. Recall that a column vector c·s is a link
schedule on slot s. For a given load θ, a frame schedule is
said to be feasible, if all of F link schedules (column vectors)
are successful for all l ∈ L. It is clear that θ is F -lattice-
feasible, if and only if there exists a feasible frame schedule
C = [cls]. For notational simplicity, we remove dependency
of C on F and θ, unless explicitly needed. Also, throughout
this paper we implicitly assume that the lattice-parameter is
fixed by F.

In our framework, F is a system-wide parameter that is
assumed to be known to every node in the network a-priori.
Recall that we assume that a node has knowledge only of the
local load (i.e., mean arrival rate) on each of its outgoing links.
Under such an assumption, we aim at designing frame-based
algorithms (hopefully having small control overhead) that find
a feasible frame schedule within a finite time, and sustains the
schedule thereafter, for any given feasible load.

It can be easily shown that such a frame-based scheduling
is F -lattice-rate-optimal, since after finding a feasible frame
schedule within a finite time, each link can serve the packets
successfully at least with the same rate as the input arrival
rate, i.e., achieves lattice-rate-stability. By serving the network
with the (distributedly determined) feasible frame schedule for
a sufficiently large amount of time, the system can stabilize
the offered load.

2For simplicity, we just use “rate-optimal” and “feasible load” to refer to
“F -lattice-rate-optimal” and “F -lattice-feasible”, unless explicitly needed.

3Thus, we henceforth use a term ‘time-slot s’ to refer to the s-th time-slot
inside a frame. We typically use ‘s’ and ‘t’ to index a slot and a frame.
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Different from a large class of queue-based scheduling
algorithms mentioned in Section I, queue length information
does not have to be exchanged in our frame based scheduling.
Achieving lattice-rate-optimality is possible, because we have
local knowledge of (mean) arrival rates, whereas queue-based
scheduling is oblivious of the arrival statistics. However,
queue-based scheduling typically requires messaging with
high complexity, which is the cost of unawareness of arrival
rate. In addition to the cost of using the arrival rates, our
scheme guarantees only lattice-rate-optimality instead of the
“true” throughput region Λ.

B. Dynamic Randomized Scheduling

Now, out of many possible frame-based algorithms, we
focus on a class of randomized algorithms that choose FSs
(frame schedules) in a randomized manner possibly based on
the past histories, e.g., transmission success/failures in the past
frames. Randomization has potential advantages in a sense that
a simple random access-type of algorithms can be modified
and utilized in our framework.

Algorithms may be able to define and use additional system
control states. As an example that is particularly useful in our
paper, we define transmission priority matrix as follows: for
a given frame schedule C, we define a transmission priority,
R = [rls]l∈L,s∈F , where

rls =


1 if cls = 1 and high priority,

0 if cls = 1 and low priority,

NULL if cls = 0.

As seen in Section IV, this priority state can be used to give
preferential chances to some links in performing contention
signaling.

To measure the “distance” between two FSs C = [cls] and
C ′ = [c′ls] (under the same topology and load), we define
a distance function d to be the total number of different
elements, i.e.,

d(C,C ′) ,
L∑

l=1

θl −
L∑

l=1

F∑
s=1

clsc
′
ls. (2)

Recall that a frame schedule is a 0-1 matrix. Note that
d(C,C ′) = 0 implies C = C ′.

Now, we formally define a family of randomized algorithms
satisfying two conditions, which provably guarantees lattice-
rate-optimality.

Definition 3.1: A dynamic randomized scheduling (DRS)
algorithm randomly chooses a sequence of frame schedules
and priority matrices (C[t], R[t] : t = 0, 1, . . .), and satisfies
the following two conditions:
C1 Finite Sustenance Condition. If C[i] is feasible, C[t] =

C[i], ∀t > i, with probability 1.
C2 Finite Improvement Condition. If C[i] is not feasible, for

any feasible FS C?, there exists a t (which may depend on
C?) with i < t < ∞, such that d(C[i], C?) > d(C[t], C?)
with positive probability.

The finite sustenance condition means that if a FS converges
to a feasible one, it has to be sustained thereafter. The

1 2 ...... ...... F

Frame

i F-1

Stage 1

RTS CTS Data

Stage m

randomly
adapt

randomly
adapt

FS FS FS FS FS FS FS....... ....... ........................ .......

same schedules same schedules

load/topology
changes

load/topology
changes

converged optimal
schedule

converged optimal
schedule

time-slot

AckRTS CTS

Fig. 1. Frame and slot structure of RCAMA

finite improvement condition is such that before converging
to a feasible FS, a sequence of FSs over frames tend to
become “closer” to a feasible FS with positive probability. As
mentioned earlier, a state (C[t], R[t]) at frame t may depend
on the states of the previous, say m, frames. In this case we
say that a DRS algorithm has history m. Note that in a DRS
algorithm without priority, R[t] is not in use.

Theorem 3.1: For any fixed feasible load and topology, any
DRS algorithm satisfies the following:

(i) It converges to a feasible FS within a finite time.
(ii) Let τ(C) be the convergence time to a feasible FS for

a given initial frame schedule C. Then, ∀t ∈ Z+, there
exist constants 0 < K < ∞ and 0 < p < 1, such that
P[τ(C) ≥ tK] ≤ pt.

For notational simplicity, we remove dependence of τ, K,
and p on the considered scheduling. Recall that Theorem 3.1(i)
implies lattice-rate-optimality. The proof is presented in Ap-
pendix.

The finite sustenance and improvement conditions described
above enable us to verify rate-optimality of an instance of
the DRS family. In addition, it allows customization or en-
hancement of an algorithm with its rate-optimality maintained,
as long as the modified version satisfies those conditions. In
Sections IVand V, we develop a “base-line” DRS algorithm—
RCAMA—with history 1. We later discuss how such base-
line algorithms with history 1 can be extended to adaptive
versions with multiple frame histories for better adaptation to
load/topology changes and faster convergence to the optimal
schedule in Section VI. Our interests also lie in how the
constants K and p scale in RCAMA, which we will also
discuss later.

IV. RCAMA: OVERVIEW AND PER-FRAME OPERATION

A. Overview

The general frame and time-slot structure of RCAMA are
shown in Figure 1. A time-slot is divided into two parts: time
for contention signaling and time for data and ack transmission
(TR)4. We will describe RCAMA by dividing its behavior
into two different time-scales: (i) per-frame operation, where
each node randomly determines the slot-schedules for the TRs

4For notational simplicity, we use the term ‘TR’ to refer to the word
‘transmission’ throughout this paper.
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over its adjacent outgoing links, and (ii) per-slot operation,
where a node initiates a RTS/CTS-like contention signaling
to resolve contentions and implicitly learn contention patterns
in the neighborhood. In this section, we describe only per-
frame operation, and per-slot operations will be discussed in
Sections V. We first provide an overview of RCAMA.

The RCAMA is designed to ensure the following two
properties:

1) Persistence: A successful TR at a given time-slot at the
current frame persists on the same slot at the next frame.

2) Preemption: An unsuccessful TR can preempt a time-
slot (with positive probability) used by a persistent suc-
cessful TR.

As discussed earlier, it suffices to show that the system
converges to a feasible FS to achieve rate-optimality. By the
persistence property, once the system reaches a “good” (i.e.,
feasible) FS, it stays in that FS. Preemption property ensures
that there is no deterministic “winner-loser” relationships
among TRs, and enables the system to avoid deadlocks, i.e.,
being stuck in a “bad” FS. These two properties ensure that
the system has positive probability of visiting arbitrary FSs,
and finally reach a feasible FS, which is sustained thereafter.
We satisfy these two properties by assigning just two-level
priorities to scheduled TRs. More specifically, by assigning
high priority to unsuccessful TRs and low priority to persistent
successful TRs, respectively, we allow a newly scheduled
unsuccessful TR on a time-slot to beat existing successful
ones (which happens before convergence to a feasible FS).
Intuitively, the persistent and preemption properties connect
to finite sustenance and improvement conditions, respectively.
We will see these connections in the formal proof of rate-
optimality of RCAMA, described in Theorem 5.1.

In addition to provable rate-optimality, by using a low-
complexity contention signaling, the algorithm can quickly
adapt to load and topology changes by “learning” local
contention patterns. In other words, RCAMA does not need
any explicit mechanism to inform the nodes of such network
changes, and it automatically avoids the situation where mul-
tiple time-slots are commonly accessed by interfering links.
Further, application of non-uniform time-slot access proba-
bility for unsuccessful TRs enable the system to learn local
contention levels, and to distribute scheduled TRs at different
time-slots in a more efficient manner (see Section VI).

B. Per-Frame Operation: Randomized Slot-Selection

When each frame starts, each node (say, v ∈ V ) determines
the slot-schedules and contention priorities for the TRs over
its adjacent outgoing links. To do this, the following simple
rule is used:

Rule 4.1 (Slot and Priority Selection Rule):
(i) A successful TR on time-slot s at frame t−1 persists on

the same time-slot s at frame t, with priority set to be
low.

(ii) If a TR was unsuccessful at frame t − 1, a time-slot is
randomly selected from the time-slots not already taken
in (i), and its priority is set to be high.

Rule 4.1(i) corresponds to the persistence property. Preemp-
tion property is satisfied by Rule 4.1(ii) in conjunction with
the proposed multi-stage signaling (corresponding to per-slot
operation) in Section V.

1,Hl1

l2

l3

frame t-1 frame t

0,H

0,L

0,L

1,H

0,L

L

1      2     3       4      5      6      7      8 1      2      3      4      5      6      7      8

L

HH

H

H

1/0  :   transmission success/failure
H/L :   high/low priority

frame size = 8 slots

outgoing links of a node: l1, l2, l3 

θl1  = 3 θl2  = 2 θl3  = 1

Fig. 2. Example of randomized slot-selection

An example of Rule 4.1 is shown in Figure 2. Since at frame
t − 1, the TR over l1 on time-slot ‘1’ and over l2 on time-
slot ‘4’ were successful, these TRs are scheduled once again
with low contention priority at the same time-slot positions at
frame t. For the unsuccessful TRs over l1 on time-slots ‘2’
and ‘3’, we randomly choose two time-slots of the remaining
time-slots, which were not taken by previously successful TRs
(i.e., the node does not consider time-slots ‘1’ and ‘4’ in this
random selection). In the example, time-slot ‘2’ and ‘7’ are
selected, and they are scheduled with high contention priority.

We first observe that Rule 4.1 immediately satisfies the
following Property 4.1:

Property 4.1: For any time-slot s, and link l, there exists
a positive probability that cls[t − 1] = cls[t], irrespective of
cl′s′ [t − 1], l′ 6= l, s′ 6= s.

The above property holds, because any TR scheduled at
some slot s could be re-scheduled at the same slot s with
positive probability, whether it was successful or not at the
previous frame. Especially, for a successful TR, probability
that the same time-slot is chosen is ‘1’ from Rule 4.1(i),
whereas for an unsuccessful TR, the probability is at least
1/F from Rule 4.1(ii). We will use this property in the proof
of Theorem 5.1 on rate-optimality of RCAMA in Section V-A.

V. PER-SLOT OPERATION

Following the slot-schedules as explained in Section IV-B,
this section explains how, on each slot, nodes use RTS/CTS-
based contention signaling to resolve contentions (which is not
perfect sometimes), followed by data/ack TRs.

A. Per-Slot Operation: Three-Stage Signaling

The signaling consists of three stages, at each of which
a different set of links perform contention signaling. The
objective of signaling is to determine the links over which
data transmissions are attempted. However, note that since
success of data transmissions are decided based on the received
SINR, we cannot guarantee success of all attempted data
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transmissions. Our aim is to design multi-stage signaling, such
that the preemption property is met, and then together with
the persistence property given by randomized slot selection in
Section IV-B, the system achieves rate-optimality. The algo-
rithm for contention signaling is conceptually and pictorially
described in Figure 3.

Step 1 Signaling for the links in H
Step 2 Signaling for the links in H1

V and M
Step 3 Signaling for the links in H1

V (with power adjustment
for the links in H2

I ) and M2
V

Step 4 Data and Ack Transmissions for H1
V and M3

V

on a time-slot s and at frame t

High (H)

stage 1 valid high (H1
V) invalid high (H1

I)

Low (M)

valid high (H2
V) invalid high (H2

I) valid low (M2
V) invalid low (M2

I)stage 2

stage 3 valid and invalid high (H3
V) valid low (M3

V)

contention signaling

contention signaling

contention signaling (power adjustment for H2
I)

data transmissions occur

invalid low (M3
I)

Fig. 3. Per-slot operation: three-stage signaling

Prior to being elaborate on discussion of the per-slot op-
eration, we first define validity of a signaling: If a signaling
over some link, say i→j, is said to be valid, if j decodes
the RTS from i, and i decodes the CTS (in response to RTS)
from j. Clearly, validity of a signaling over a link depends
on signaligs over other links performed simultaneously at the
corresponding slot. Note that the validity of a signaling over
link l does not necessarily imply the success of TR over the
link, because success or failure is determined by the result of
data transmission, not that of signaling.

For ease of exposition, we first introduce some notations
here. We denote by H (resp. M) a set of links scheduled
(on a given time-slot) with high (resp. low) priority, where
H,M ⊂ L. At each stage, contention signaling is conducted
for high and/or low priority TRs. We use the notations Hi

V and
Hi

I to refer to valid and invalid high priority TRs at stage i,
respectively. Similarly, Mi

V and Mi
I are used for low priority

TRs. Now, in what follows, we explain the behaviors of all
stages in more detail.

Stage 1: Signaling is performed over only high priority TRs,
i.e., H, based on which H1

V and H1
I are determined. Note that

H1
V ∪H1

I = H. In our three-stage signaling, whatever happens
at the subsequent Stages 2 and 3, data TRs are attempted for
H1

V . However, their success is not guaranteed, because some
of low priority TRs in M (chosen following the results of
signaling procedures at the subsequent Stages 2 and 3) will
also perform data transmission, as we will explain shortly.

We will later show that for rate-optimality, it suffices to
guarantee the success of all TRs in H1

V (see Theorem 5.1). It
is highly related to the preemption property in DRS scheduling
algorithms. Thus, the objective of subsequent stages 2 and 3
is to ensure the success of TRs in H1

V .

Stage 2: Signaling is performed for the TRs in H1
V and M,

after which H2
V , H2

I M2
V , and M2

I are determined. Note that
H2

V ∪H2
I = H1

V , and M2
V ∪M2

I = M. The role of this stage
is to identity TRs in H1

V that are “severely” interfered by low
priority TRs, i.e., identify H2

I . Then, remarking our signaling
objective mentioned at Stage 1 of ensuring success of TRs in
H1

V , Stage 3 will be devoted to “kill” low priority TRs in M
that significantly interfere with TRs in H2

I . Note that we do
not need to care about TRs in M2

I , because they are already
invalidated, and “killed” at this Stage 2.

Stage 3: Now, it is a turn to test whether there exist TRs only
in M2

V that significantly interfere with TRs in H1
V . Thus,

signaling is performed for the TRs in H1
V and only M2

V . The
objective of Stage 3 is to invalidate low priority TRs, which
can cause the TRs in H2

I to fail (note that TRs in H2
V will be

successful even with interference by low priority TRs).
However, as we exemplify in Figure 4 shortly, there exists

some scenario that when the given constant power P is
used (see Section II), low priority TRs cannot be invalidated
whatsoever. To handle such cases, we allow only one excep-
tion in Stage 3, and employ signaling power adjustment in
RTS/CTS signaling for TRs of H2

I , i.e., the transmitters and
the receivers in H2

I adjust (and actually increase in most cases)
their signaling powers appropriately, such that some interfering
low priority TRs in M2

V are invalidated. In Section V-A, we
will explain how we adjust powers for the signaling at this
stage, such that rate-optimality is guaranteed.

Data/ack TRs: Data TRs occur for TRs in H1
V and

TRs in M3
V . ACK messages are sent back to the transmitters

by the receivers which can decode transmitted data.
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Fig. 4. Example of RCAMA

We exemplify the three-stage contention signaling in con-
junction with randomized slot selection in RCAMA in Fig-
ure 4, where we can intuitively understand need of priority and
convergence to a feasible FS. In absence of contention priority
and signaling power adjustment, the TR over A→B keeps
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failing with either choice of time-slot ‘1’ or ‘2’, since RTS
from A is not decodable at B due to interference from either
C or D, over frames. However, in RCAMA, from Rule 4.1,
the unsuccessful TR over A→B at frame ‘0’ is assigned high
priority at frame ‘1,’ and due to stages 2 and 3, B adjusts the
power for its CTS (destined to A and broadcast to D), such that
CTS from F is not decodable at D (see the frame 1 in (e)). The
same procedure can be applied when TRs over A→B and C→E
are assigned high and low on a same time-slot, respectively. By
this procedure, the system ultimately converges to a feasible
FS.

Now, Theorem 5.1 states that we can indeed achieve rate-
optimality if on all slots TRs in H1

V are guaranteed to be
successful, which we call High Priority Condition (HPC).

Theorem 5.1: For any given fixed topology and feasible
load, RCAMA satisfying HPC is a DRS scheduling. Thus,
by Theorem 3.1, it is rate-optimal. Further, the bounds on the
constants K and p in Theorem 3.1 are given by:

K ≤ 2nθ, and p ≤ 1 − (1/F )2n2
θ ,

where nθ is the total load in the network, i.e., nθ =
∑

l∈L θl.
The proof is long and is postponed to Appendix. It basically

proceeds by proving that finite sustenance and improvement
conditions are satisfied. Intuitively, by guaranteeing TRs in
H1

V , preemption property is ensured, which in turn implies
finite improvement condition. As we can see in the above, as
F increases, i.e., granularity of load representation increases
(meaning that our lattice-throughput-region becomes finer),
the convergence time becomes slower. Also, as the network
size grows with very high load, nθ increases, again resulting
in slower convergence. Note that the bounds representing the
worst-case convergence time to a feasible FS given above is
pessimistic. Thus, the actual convergence may occur faster.

As a next step, it remains to design signaling power adjust-
ment at Stage 3, such that the HPC is satisfied.

B. RCAMA-MAX

Theorem 5.1 enables us to develop the following simple,
distributed rate-optimal algorithm:

RCAMA-MAX: All the adjusted powers in the signaling of
Stage 3, conducted by TRs in H2

I , is set to be Pmax, where Pmax
is the amount of signaling power, such that it can invalidate
any other signaling.

The assumption that Pmax exists is reasonable for wireless
multi-hop networks deployed of a finite size. Then, the fol-
lowing proposition immediately follows:

Proposition 5.1 (RCAMA-MAX): For any fixed topology
and feasible load, RCAMA-MAX satisfies HPC, and thus is
rate-optimal from Theorem 5.1.

The proof is obvious, since at Stage 3, with Pmax, all the
low priority TRs become invalidated. TRs in H1

V may be
invalidated at Stage 3, but note that data transmission attempts
for TRs in H1

V are independent of the signaling results at Stage
3.

Remark 5.1: Note that under the physical interference
model, even a centralized algorithm needs information on node

locations and network connectivity to achieve rate-optimality.
Surprisingly, however, Proposition 5.1 implies that there exists
a distributed rate-optimal scheduling algorithm that does not
need such centralized topology information.

In spite of the provable rate-optimality and the fully dis-
tributed nature of RCAMA-MAX, it may not be a practical
algorithm, since for a large-scale multi-hop network, Pmax
should be very large. This is not a desirable feature leading to
low efficiency of energy utilization and poor transient through-
put. In other words, with RCAMA-MAX, every low priority
TRs will fail at all slots, and only high priority TRs surviving
Stage 1 will succeed, which happens before convergence to
a feasible FS. The main observation behind this limitation of
RCAMA-MAX is that we need to consider the “worst-case,”
i.e., the case when a large number of far field low priority
TRs interfere with a high priority TR (which was valid at
Stage 1). However, it is known that interference is dominated
by a small number of nearby transmissions mainly due to non-
linear signal power loss. Using this observation, in the next
section, we propose an enhanced algorithm, RCAMA-VIR,
which uses far lower powers than Pmax, but still guarantees
rate-optimality under reasonable assumptions.

C. RCAMA-VIR

The main idea in RCAMA-VIR is to use a sufficiently high
power (but not as large as Pmax in Stage 3 signaling), such that
low priority interferers of H2

I can be suppressed. This is done
by estimating (and developing bounds) on the interference
power.

In this section, we assume the following: (i) A receiver
can only measure the total received signal power (the desired
signal power plus interference) and know a boolean result
about the target SINR (i.e., the target SINR is larger than
the threshold γ or not)5; (ii) the propagation loss is modeled
by Gij = 1/d(i, j)α(i,j), where d(i, j) is the distance between
nodes i and j, and α(i, j) is an “effective” path loss exponent
(which may depend on the node-pair), for which each node
knows (lower and upper) bounds (i.e., α ≤ α(i, j) ≤ ᾱ); (iii)
the system is interference-limited6.

The transmitter s(l) and the receiver d(l) of link l ∈ H2
I

perform the following procedures:

RCAMA-VIR:
1) d(l) (s(l)) estimates the aggregate interference generated

by low priority TRs during RTS (CTS) slot, and assumes
that such interference is caused by the transmitter (re-
ceiver) of a single virtual low priority TR. (see Sec-
tion V-D for discussion on estimation of the aggregate
interference).

2) d(l) (s(l)) computes an upper-bound on the distance
to the transmitter (the receiver) of the virtual TR. This

5Note that we do not assume that the receiver is able to know the exact
SINR value as well as individual or even aggregate pure interference generated
by other transmissions.

6In this system, the link operates at a sufficiently high γ (SINR threshold),
so that the effect of thermal noise is negligible as compared to the interference.
However, this can be readily extended to the more general assumption that
0 ≤ ηj ≤ ε× (interference), where ε is the ratio of thermal noise to the total
interference.
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upper-bound is computed based on the bounds on the
path loss exponent (i.e., α ≤ α ≤ ᾱ), and the interference
estimation in (i).

3) By assuming that there is no power path-loss between
the virtual transmitter and receiver, d(l) (s(l)) computes
the adjusted CTS (RTS) power, required to invalidate the
virtual TR.

z1

zN

xA B

C1

CN

D1

DN

yN

H

L

L

y1

C’ D’
y’

H/L: Transmission Priority

xA B
H

(a) Real Network (b) Network seen by B 
      in RCAMA-VIR

virtual 
transmitter and receiver

Fig. 5. Example of RCAMA-VIR

An example of RCAMA-VIR is shown in Figure 5. We
have one high priority and N low priority TRs scheduled
on a same time-slot. The high priority TR is clearly valid
at Stage 1. At Stage 2, suppose that at Stage 2 an RTS over
A→B is not decodable due to the aggregate interference of
RTSs from Ci to Di, i = 1, . . . , N. Now, B assumes that its
RTS decoding failure is due to a single virtual low priority
TR. By estimating such aggregate interference, B computes
the distance from itself to C′ (the virtual transmitter). In the
CTS-slot of Stage 3, B sets the sufficiently large CTS power to
invalidate a CTS from D′ (the virtual receiver of C′), based on
the “worst-case” assumption that there does not exist a signal
power path-loss between C′ and D′.

Note that RCAMA-VIR may not be rate-optimal, when
many far field low priority transmissions are interfering a
high priority TR. However, we will show that RCAMA-VIR
achieves rate-optimality under reasonable assumptions (see
Theorem 5.2).

D. Estimation of Interference

Note that the major difference between Stages 1 and 2 is
the existence of low priority TRs. Thus, it is intuitive to use
measurement of the total received signal powers at Stages 1
and 2 and using their differences to estimate the interference
by low priority TRs.

Consider a TR l ∈ H2
I . We denote by R̂1

d(l) (resp. Ĉ1
s(l)),

the total received signal power on RTS (resp. CTS) slots at
Stage 1 by d(l) (resp. s(l)). Similarly, we use the notations
R̂2

d(l) and Ĉ2
s(l), at Stage 2. We also let Ir

d(l) and Ic
s(l) be

the exact aggregate low priority interference to d(l) and s(l).
To estimate the interference by low priority transmitters and
receivers, we use the values defined in the following: Îr

d(l) ,
R̂2

d(l) − R̂1
d(l) and similarly, Îc

s(l) , Ĉ2
s(l) − Ĉ1

s(l).
Using the above method for estimation, we have

Îr
d(l) ≤ Ir

d(l), Îc
s(l) ≤ Ic

s(l), (3)

since we have

Îr
d(l) = R̂2

l −R̂1
l

= R̂2
l (H1

V )+R̂2
l (M)−(R̂2

l (H1
V )+R̂2

l (H1
I))

= R̂2
l (M)−R̂2

l (H1
I)≤Ir

d(l) (∵R̂2
l (M)=Ir

d(l)), (4)

where R̂i
l(A) corresponds to the total received power by a

receiver of link l from RTS TRs in some set of links A during
stage i. Similarly, we also have that Îc

s(l)≤Ic
s(l).

In other words, our estimation is a lower-bound on the
exact interference by low priority TRs. This lower-bound
in the interference estimation and the bounds on the path
loss exponent lead to an upper-bound on the distance to the
transmitter/receiver of the virtual TR, which is used in the
proof of rate-optimality of RCAMA-VIR.

Theorem 5.2 (RCAMA-VIR): Suppose that there exists a
maximum distance of interference between nodes and a
maximum number of interferers, denoted by dint and Nint,
respectively. If 2α

√
Nint(dint)ᾱ/(2α) ≤ dmin, where dmin is the

minimum distance between two nodes, then RCAMA-VIR
satisfies HPC. Thus, it is rate-optimal from Theorem 5.1.

Theorem 5.2 implies that if the inter-node distance is
sufficiently large, i.e., node density in a plane is not too high
and nodes are distributed in a sufficiently uniform manner,
rate-optimality is provably guaranteed in RCAMA-VIR. The
proof is presented in Appendix.

Numerical Example 5.1: As a numerical example, consider
the case when dint = 2 × dmin (a typical setting in the IEEE
802.11 DCF by assuming that transmission rage is set to be
dmin) for different values of bounds on path-loss exponents
and Nint, given by:

dmin ≥ 2.5 m if ᾱ = α = 3, Nint = 2,
dmin ≥ 4 m if ᾱ = α = 4, Nint = 16,
dmin ≥ 8 m if ᾱ = 4, α = 3, Nint = 4.

As discussed earlier, due to non-linear path-loss exponents, the
number of interferers affecting other simultaneously scheduled
TRs seems to be quite limited, i.e., Nint is small, where
we have more relaxed condition on dmin, which still gives a
provable guarantee on performance.

VI. ARCAMA (ADAPTIVE RCAMA)

Note that RCAMA chooses new time-slots for unsuccessful
TRs with equal probability in the subsequent frames. In fact,
one can potentially increase the rate of convergence or adapt to
load changes more effectively by intelligently guessing which
time-slot is likely to be successful and by biasing the time-slot
access probability. As an example, a time-slot with consecutive
success is highly likely to be “safe”, so that it would be
beneficial to sustain the corresponding time-slot with higher
probability at the next frame than other time-slots. In this
section, we propose a general family of variations of RCAMA,
ARCAMA (Adaptive RCAMA) family (a subset of the DRS
family), which adaptively assigns different time-slot access
probabilities, depending on the past contention history. This
provides ARCAMA with a more efficient learning of local
contention patterns, leading to more robustness to network
changes. As shown in Proposition 6.1 below, such variations
of RCAMA inherit all rate-optimal properties.

To that end, each link is assigned its own slot weight vector,
and the individual nodes maintain slot weight vectors for its
adjacent outgoing links. This slot weight vector is updated
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every frame, mainly based on the transmission results (success
or failure) at the past frames. To increase/decrease the slot
weight vector, we define the time-slot status, which corre-
sponds to the result of past TRs on the corresponding time-
slots. Then, the slot access probability is set to be inversely
proportional to the current weight. This biased probability is
used for selecting time-slots for unsuccessful TRs. Also, by
setting a minimum and maximum for each weight, we can
avoid pathological cases (e.g., the time-slot access probability
could be arbitrarily small or close to ‘1’), i.e., there exist w̄ and
w, such that 1 ≤ w < w̄ < ∞ and ∀s ∈ {1, 2, . . . , F},∀l ∈ L,
and ∀t > 0, w ≤ wl

s[t] ≤ w̄, where we denote the slot weight
vector of link l at frame t by wl[t] = (wl

s[t] : s = 1. · · · , F, ).
Proposition 6.1: For any fixed topology and feasible load

and any positive integer m < ∞, in ARCAMA with history
m, Theorems 5.1 and 5.2 still hold.

We skip the proof for brevity, since it is analogous to those
for RCAMA.

VII. SIMULATIONS

A. Simulation Setup

We simulate wireless multi-hop networks with nodes which
are randomly distributed in a 1000 × 1000 meter-square area.
Thermal noise power at each receiver (i.e., ηj), the minimum
required SINR level (i.e., γ), and the transmit power level (i.e.,
P ) are set to be -90 dBm, 18 dB, and 15 dBm, respectively.
The frame size F is 10 time-slots.

We evaluate the performance of the RCAMA and AR-
CAMA by comparing them to the base-line RANDOM al-
gorithm. The RANDOM algorithm is a frame-based version
of slotted Aloha algorithm. In other words, for per-frame
operation, it selects slot-schedules (based on the requested
loads) in a purely random manner at each frame similar to
RCAMA except for absence of priority. Then, for per-slot
operation, it just uses a single-stage RTS/CTS signaling to gain
access to the channel. We choose the RANDOM algorithm
as a base-line, since it is similar to a Aloha-like strategy (a
“standard” algorithm for link scheduling), and behaves like a
slotted version of a contention-based scheme.

TABLE I
WEIGHT INCREASE/DECREASE: SS (SLOT STATUS), t IS THE FRAME

INDEX.
SS at t − 3 SS at t − 2 SS at t − 1 INC/DEC

SUCC SUCC SUCC −D1

FAIL/IDLE SUCC SUCC −D2

FAIL FAIL FAIL +I1

SUCC/IDLE FAIL FAIL +I2

We use a simple weight maintenance algorithm based on
three frame contention history in ARCAMA, where we in-
crease (decrease) a weight more aggressively for back-to-back
failures (successes) on a slot over the past three frames. We
expect to see even better performance increase when more so-
phisticated maintenance algorithms are used. The intuition for
these choices is that more back-to-back successes at a time slot
indicate that the offered loads around the corresponding node
at that time-slot are relatively low (i.e., less “congested”), and

transmissions in that time-slot are likely to be successful in the
future. Similar intuition is applied for back-to-back failures.
We have three kinds of time-slot status: SUCC (FAIL), where
a transmission occurs and are successful (unsuccessful), and
IDLE otherwise. Table I shows the (additive) increase/decrease
parameters to adapt slot weights based on the past three
transmission result histories, respectively. The parameters are
chosen such that D1 > D2 > 0, and I2 > I1 > 0. We have
used D1 = I1 = 3, D2 = I2 = 1, in all simulation results,
where the maximum and minimum weights (i.e., w̄ and w)
are set to 30 and 1.

B. Simulation Results

Different signaling power adjustment schemes. First, we
investigate the effect of different signaling power adjustment
schemes on the throughput performance and energy con-
sumption when there is no load or topology changes for
some time. Figure 6(a) shows the network topology and
link connectivity generated at random using the parameters
above. Figure 6(b) shows the performance of RCAMA and
ARCAMA algorithms for a normalized load by a randomly
chosen maximally feasible load7, which varies from 50% to
100%. We measure the aggregate normalized throughput by
the aggregate sum (over links) of the maximally feasible load
given initially, for every varying load over 3000 frames, The
varying loads are measured by its percentage of the maximally
feasible loads. Each point in the graph is the mean value of
50 simulation experiments with different random seed values.
In the simulation results, (A)RCAMA-NOR represents the
(A)RCAMA without signaling power adjustment at Stage 3.
Note that even RCAMA-MAX and RCAMA-VIR that are
provably optimal do not achieve rate-optimality (i.e., arrival
rate equals departure rate) in Figure 6(b), since out of 50 simu-
lations, there were some instances where 3000 frames were not
sufficient to ensure the convergence of the schedule (recall that
rate-stability occurs only after convergence of the schedule).
Similarly, Figure 6(c) shows the aggregate average power used
in contention signaling per one successful transmission for
different values of normalized load. Figure 6(d) shows a trace
of the used powers for different RCAMA versions when we
fix the normalized load to be 0.7.

From these simulation results, we observe the following:
(i) ARCAMA has better transient throughput than RCAMA,
(ii) With both ARCAMA and RCAMA, the algorithm with-
out power adjustment has greater transient throughput than
other rate-optimal versions with power adjustment (i.e.,
(A)RCAMA-VIR and (A)RCAMA-MAX), as well as better
energy saving. Note that, in practice, we may need lower
powers than those used by RCAMA-VIR, and the condition on
dmin in Theorem 5.2 can be relaxed. This is because RCAMA-
VIR is conservatively designed again by considering the point-
of-view from one single high priority TR and other low priority
TRs for the provable rate-optimality. In other words, we have
not considered the fact that other high priority TRs, which
were valid at Stage 1, also generate interference to interfering

7A load is said to be maximally feasible if the resulting system load becomes
infeasible with any load increase anywhere in the network.
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low priority TRs, and interference among low-priority TRs
still exists. In fact, as seen above from the simulation results,
RCAMA with no signaling power adjustment has a better
(transient) performance than RCAMA-MAX and RCAMA-
VIR even if it is not provably rate-optimal. Essentially,
overall high performance of RCAMA (which is significantly
larger than RANDOM, in particular) is due to accessing the
channel with two-level priority, which significantly reduces
contentions.

Adaptation to load changes. In this simulation, we inves-
tigate the effect of changes in load on the performance of
RCAMA-NOR and ARCAMA-NOR algorithm, again for the
network topology in Figure 6(a). We generate time-varying
loads by a random walk model, where we first start with
the load that is the link-by-link 60% of a randomly chosen
maximally feasible load. Then, at the beginning of each frame
we randomly choose Lch links and increase their link loads
by one slot with probability PI , decrease their link loads with
probability PD, or stay at the current load (i.e., no change)
with probability 1−PI−PD. For simplicity, in the simulation,
we set P̂ , PI = PD. Thus, higher values of P̂ corresponds
to a faster load change with time. Then, the mean load change
time (MLCT) over Lch links is 1/(2P̂ ) frames.

Figure 7(a) shows an example trace of normalized through-
put by the aggregate initial maximal feasible load over links
for MLCT= 25 frames and Lch = 5, where we observe that
ARCAMA algorithm tracks the actual load very well, resulting
in nice adaptation to time-varying load changes. Figure 7(b)
shows that the throughput (over 50000 frames) normalized by
the actual (time-varying) offered load for different values of
MLCTs (Lch = 1) varying from 25 to 100 frames, where the
error bars represent the maximum and minimum values of 10
simulations with different random seed values (i.e., different
load changing patterns). For a network with a link capacity
of 10 Mbps, and a frame-size of 10 (which corresponds to a
10 msec frame duration), this corresponds to a load change
ranging from once every 250 msec to once every 1 seconds.
We observe that with ARCAMA algorithm, the normalized
throughput is above 90%, whereas the RANDOM achieves
about 60%.

VIII. RELATED WORK AND CONCLUSION

In this section, we review the related work to our research
in addition to queue-based scheduling already mentioned in
Section I. In regard to scheduling research under the physical
interference model (which, however, have different objectives
from that of this paper) include [14]–[16]. The work of [14]–
[16] develops a mathematical programming formulation for
minimizing the frame size over a TDMA wireless multi-hop
networks, and proposes a distributed heuristic [14], [15] that
considers only closest interferers and a centralized heuristic
which is used as a benchmark [16]. The authors in [17] define
the “scheduling complexity,” i.e., minimum amount of time
required until every link is scheduled at least once, which is
studied in an asymptotic manner. In [18], [19], the authors
have focused only on computing maximum throughput under
the physical interference model by jointly considering routing,

MAC scheduling, and power control in an optimization frame-
work, but no practical, rate-optimal, distributed algorithm is
presented.

Power control only for signaling, which is similar to signal-
ing power adjustment in this paper, has been proposed with
the main objective of throughput improvement in literature
(e.g., see [20] and references therein). The approaches in
[20], however, do not consider the physical interference model
and they do not provide a study of provable performance
guarantees (i.e., no rate-optimal properties). The idea of using
multiple priorities was also used in Z-MAC [21]. However,
Z-MAC considers only the graph-based interference model,
and its major objective of multiple priorities is to solve
the hidden terminal problem with no provable throughput-
guarantee, whereas we use two-level priority to get both
provable convergence and throughput-guarantee.

To conclude, we have studied the problem of dynamic
MAC scheduling for a time-slotted wireless networks. We have
proposed a generalized frame-based scheduling framework—
DRS—achieving lattice-rate-optimality. As a simple instance
of the DRS family, we have proposed RCAMA that operates
based on randomized slot selection with synchronous multi-
stage signaling having two-level priority. The RCAMA works
under both physical and graph based interference models,
which shows the advantage of developing an algorithm starting
from a general framework. This general framework also allows
us to come up with a simple variation that allows faster
convergence—ARCAMA.

An issue that we do not directly address in this paper is the
behavior of the algorithms when the load is not feasible. To
handle such cases, we will need to combine admission control
strategies (long time-scale control) along with the MAC algo-
rithms (short time-scale resource allocation) to ensure that a
feasible solution exists.
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APPENDIX

Proof of Theorem 3.1(i): We prove the theorem for a DRS
algorithm with history 1, which can be readily extended to the
case with history m > 1.

It is easy to see that a sequence of (C[t], R[t]) over frames
forms a Markov chain with its state X[t] = (C[t], R[t]).
Denote by Pn(a, b) the n-step transition probability from the
states a to b. Then, to prove convergence to a feasible FS
within a finite time, from the standard Markov chain theory

with absorbing states (i.e., states with feasible schedules)
and the finite sustenance condition, it suffices to show that
there exists 0 ≤ n < ∞, such that Pn(X[0], X[n]) > 0,
where C[0] is infeasible and and C[n] is feasible. Note that
if C[0] is feasible, then the result immediately follows. We
prove the above by constructing a finite sequence of times:
0 = t1 < t2 < . . . < tj < ∞ for some j, such that (i)
P (X[ti−1], X[ti]) > 0, i = 1, . . . , j, (ii) C[tj ] in X[tj ] is
feasible, and (iii) d(C[ti], C[tj ]) > d(C[ti+1], C[tj ]), i =
1, . . . j − 1 (i.e., distance to a feasible C[tj ] is strictly de-
creasing). The (i), (ii), and (iii) are indeed true from the finite
improvement condition and the fact that d(A,B) is upper-
bounded for any two FSs A and B.

Proof of Theorem 3.1(ii): Let nθ =
∑L

l=1 θl be the total
number of loads in the network. Fix a feasible FS C?, and
consider any infeasible initial FS C , C[0]. Note that when
C is feasible, then τ(C) = 0, and thus the result immediately
follows. From the finite improvement condition and the fact
that the total number of FSs are fixed for a fixed F and L, we
can easily see that time to decrease d(C,C?) by 1 with positive
probability is uniformly upper-bounded by some frame time
T < ∞ over all infeasible initial C, and additionally such
positive probabilities are uniformly lower-bounded by some
probability q. Then, we have for some T < ∞ and 0 < q < 1,

P
[
d(C[T ], C?) = d(C,C?) − 1

]
≥ q. (5)

Note that T and q may depend on the considered scheduling
algorithm as well as the given C?.

The above also implies that with at least probability of
qd(C,C?), the system converges to C? within T × d(C,C?)
frames, because within at most T, the distance can decrease
at least by one. Note that convergence to a different FS could
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occur much earlier, since there could be multiple feasible FSs.
Further, note that for any initial FS C, its distance to C? is
upper-bounded by nθ, i.e., d(C,C?) ≤ nθ. Thus,

P[τ(C) ≤ Tnθ] ≥ P[τ(C) ≤ Td(C,C?)] ≥ qd(C,C?)

≥ qnθ , ∀ infeasible C. (6)

Now, consider the evolution of the FSs at frames
{0, Tnθ, 2Tnθ, · · · }, let i-th interval Ii = [iTnθ, (i+1)Tnθ),
i = 0, . . . , t − 1. Then, from (6),

P[τ(C) ≥ tTnθ] =

P
[
no convergence over Ii, i = 0, . . . , t − 1

]
≤ (1 − qnθ )t.

By letting p = 1 − qnθ , and K = Tnθ, we are done.

Proof of Theorem 5.1: The proof consists of two steps: prov-
ing the finite sustenance condition, and the finite improvement
condition.

1. Finite sustenance condition. Note that from Rule 4.1, the
time-slots for the scheduled TRs that were successful are
sustained in the same position at the next frame. Clearly, if all
the scheduled TRs were successful (i.e., C[t] reaches a feasible
FS), then the frame schedule at the current frame would be
same as that at the previous frame. Thus, the finite sustenance
condition is satisfied.

2. Finite improvement condition. Let the current frame be t,
and choose an arbitrary feasible FS C? = [c?

ls]. Since C[t] is
not feasible (otherwise the result immediately follows), there
exists some link l, such that the TR over l on some time-slot
s is not successful at this frame t. Let us denote the set of
such “unsatisfied links” by Lu[t]. Also, denote by Lg[t] the
set of links with “good” position w.r.t. C?, i.e., the set of links
whose slot schedules (i.e., row vector of a FS) are equal to
those in C?. We sometimes omit the frame index [t], if it is
clear from the text, for ease of presentation. We will show that
with positive probability, an l ∈ Lu can be moved in a slot,
such that the TR over l becomes successful.

Note that a link l may be in both Lu and Lg, since even
l ∈ Lg may be unsuccessful because of other links that are
scheduled at different slots from those specified by C?. Thus,
we first choose an l ∈ Lu \ Lg if Lu \ Lg 6= ∅ (Case 1), and
then choose l ∈ Lg, Lg ⊂ Lu, otherwise (Case 2).

Case 1: l ∈ Lu \ Lg. In this case, we again consider two
sub-cases based on whether c?

ls = 0 or 1 (i.e., whether the
unsuccessful TR over l on slot s is scheduled by C? or not).

(i) c?
ls = 0. Since l /∈ Lg, there is a slot s′ 6= s, such that

c?
ls′ = 1 and cls′ [t] = 0. Note that the slot schedules of l

in C[t] and C? must have the same number of 1’s. Now
from Property 4.1, there is a positive probability that at
frame t + 1 we have C[t + 1], such that the scheduled
transmission over l on slot s at frame t is moved to slot
s′, and all other scheduled transmissions at frame t+1 are
scheduled at the same slots as at frame t. If it happens,
we have d(C[t + 1], C?) = d(C[t], C?) − 1.

(ii) c?
ls = 1. We first let L′

s denote the set of scheduled links
on s by C[t], but not by C?, i.e., L′

s = {i ∈ L | cis =
1, c?

is = 0}. Then, again there are two sub-cases: (a)

there exists a unsuccessful link l′ ∈ L′
s, l′ 6= l, or (b) all

the scheduled links in L′
s are successful on s.

(a): Similar to (i), we can move the unsuccessful TR
over l′ on s to a time-slot s′ 6= s, on which a TR is
scheduled by C?, since L′

s ∩ Lg = ∅. Then, we have
d(C[t + 1], C?) = d(C[t], C?) − 1.

(b): In this sub-case, link l is in the “right” slot s w.r.t.
C?, and all other links scheduled in the wrong slot s
w.r.t. C? (i.e., L′

s) are nevertheless successful. To have a
decrease of distance to C?, somehow we have to kick out
some link in L′

s to other places, and then move any of
some other links (scheduled on this slot s by C?) to this
slot s. Now, we need the following claim whose proof
will be presented later:

Claim 8.1: Suppose that C[t + 1] = C[t] (which is
possible from Property 4.1). Then, there exists a link
l′ ∈ L′

s[t + 1], such that the scheduled TR over l′ on
s becomes unsuccessful at frame t + 1.

If Claim 8.1 is true, then, at the frame t+1, l′ corresponds
to Case 1(i). Thus, after two frames from t, we can
have d(C[t + 2], C?) = d(C[t], C?) − 1 with positive
probability.

Case 2: l ∈ Lg, Lg ⊂ Lu. Note that the fact we are in this
case implies that all the links in Lu \ Lg are satisfied, since
we always choose first an unsatisfied link in Lu \ Lg by
construction.

Then, using the same definition of L′
s as that in Case

1(ii), this case corresponds to Case 1(ii)(b), i.e., when all
the links in L′

s are successful on slot s. Thus, again based
on Claim 8.1, with a positive probability we have d(C[t +
2], C?) = d(C[t], C?) − 1. This completes the proof of
Theorem 5.1-1). Now, it remains to prove Claim 8.1.

Proof of Claim 8.1: By hypothesis (i.e., Case 1(ii)(b)), all
the scheduled links on s are successful except for l. In other
words, all the links in Lg ∪ L′

s[t] are successful except for l.
Note that c?

ls = 1 and l ∈ Lu. This implies that the aggregate
interference by TRs over the links in Lg that are scheduled on
s is not enough to make the TR over l on s unsuccessful, and
the TRs in L′

s[t] \ {l} necessarily contribute to the TR failure
over l.

Also, since C[t+1] = C[t] by assumption, all the scheduled
links on s except for l should have low priority at frame t +
1. Then, the HPC implies that the high priority valid TR at
Stage 1 (in fact, the TR over l should be valid at Stage 1) is
guaranteed to be successful, there must an unsuccessful TR
over a link in L′

s[t] at frame t + 1.

When it comes to the constants K and p from Theorem 3.1
for our RCAMA algorithm, we have:

K = Tnθ ≤ 2nθ,

where the second inequality comes from the fact that in all
cases in the first part of this proof, T ≤ 2. Also, in (5),
assuming that every scheduled link tries to move (randomly)
over T slots, whose probability is at least 1/F , we have:

q = (1/F )Tnθ ≥ (1/F )2nθ ,
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which implies that

p = 1 − qnθ ≤ 1 − (1/F )2n2
θ .

Proof of Theorem 5.2: To prove that RCAMA-VIR satisfies
HPC subject to the condition on dmin, it suffices to show that
for arbitrary high priority TR in H2

F , its success is guaranteed.
In this proof, we consider the case of RTS-decoding failure of
a high priority TR in H2

F . Similar proof can be applied to the
case of CTS-decoding failure.

We consider a high priority TR over over the link from A
to B, and a set of most dominant Nint low priority TRs over
Ci→Di with its distance zi, i = 1, . . . , Nint. Note that we
have more high and low priority TRs in the network. Suppose
that RTS from A to B fails due to the aggregate interference
by RTSs from Ci, i = 1, . . . , Nint. (see Figure 5 for a similar
scenario with only differences that more high and low priority
TRs are in the network and N is replaced by Nint). We denote
by yi the distance between the nodes B and Ci, i = 1, . . . , Nint.

First, from (4) we have that

Îr
d(l) ≤ Ir

d(l). (7)

Note that the exact aggregate interference by RTS messages
from C1, . . . , CNint is given by:

P ×
Nint∑
i=1

1
(yi)αi

, (8)

where αi is the path loss exponent from Ci to B. Then, from
(7) and (8), we have

Îr
d(l) ≤ Ir

d(l) ≤ P ×
Nint∑
i=1

1
(yi)α

. (9)

Denote by C′ and D′ the virtual transmitter and the receiver,
respectively. Now, let y′ = d(B, C′), which is computed by B
as follows:

(y′)αv =
P

Îr
d(l)

≥ 1/

Nint∑
i=1

1
(yi)α

, (10)

where αv is the path loss exponent from B to C′.
As described in the algorithm description, B assumes that

there is no signal power loss between C′ and D′. Based on
such assumption and y′, B will adjust its CTS message power
(denoted by P v

c ) enough to invalidate the CTS from D′ to C′.
From (10), this is given by:

P

P v
c /(y′)αv

≤ γ ⇒ P v
c ≥ P (y′)αv

γ
≥ P

γ
∑Nint

i=1 1/(yi)α
(11)

Let the path loss exponent from Di to Ci be βi. Then, the
SINR value at C′ for its CTS message from D′ will be:

P/(zi)βi

ZH + P v
c /(yi)αi

,

where ZH is the total received power at C′ by other high and
low priority TRs except for TRs over A→B and Ci→Di, i =
1, . . . , Nint.

Then, it suffices to show that with P v
c , all of Nint low priority

TRs over Ci→Di, i = 1, . . . , Nint are invalidated, i,e.,

P/(zi)βi

ZH + P v
c /(yi)αi

≤ P/(zi)βi

P v
c /(yi)αi

=
P (yi)αi

P v
c (zi)βi

≤ γ. (12)

Now, we have

P/(zi)βi

ZH+P v
c /(yi)αi

≤ P (yi)αi

P v
c (zi)βi

≤ P (dint)αi

P v
c (dmin)βi

≤ P (dint)ᾱ

P v
c (dmin)α

≤
γ(dint)ᾱ

∑Nint
i=11/(yi)α

(dmin)α
(from (11))

≤ γ
Nint(dint)ᾱ

(dmin)2α
. (13)

Thus, if 2α
√

Nint(dint)ᾱ/(2α) ≤ dmin, we have

Nint(dint)ᾱ

(dmin)2α
≤ 1.

Thus, (12) is proved, which completes the proof.
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