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Information Source Localization with Protector
Diffusion in Networks

Jaeyoung Choi*, Jinwoo Shin and Yung Yif

Abstract: Recently, the problem of detecting the information source
in a network has been much studied, where it has been shown that
the detection probability cannot be beyond 31% even for regular
trees if the number of infected nodes is sufficiently large. In this
paper, we study the impact of an anti-information spreading on
the original information source detection. We first show a nega-
tive result: the anti-information diffusion does not increase the de-
tection probability under Maximum-Likelihood-Estimator (MLE)
when the number of infected nodes are sufficiently large by pas-
sive diffusion that the anti-information starts to be spread by a
special node, called the protector, after is reached by the original
information. We next consider the case when the distance between
the information source and the protector follows a certain type of
distribution, but its parameter is hidden. Then, we propose the
following learning algorithm: a) learn the distance distribution pa-
rameters under MLE, and b) detect the information source under
Maximum-A-Posterior-Estimator (MAPE) based on the learnt pa-
rameters. We provide an analytic characterization of the source de-
tection probability for regular trees under the proposed algorithm,
where MAPE outperforms MLE by up to 50% for 3-regular trees
and by up to 63% when the degree of the regular tree becomes
large. We demonstrate our theoretical findings through numeri-
cal results, and further present the simulation results for general
topologies (e.g., Facebook and US power grid networks) even with-
out knowledge of the distance distribution, showing that under a
simple protector placement algorithm, MAPE produces the detec-
tion probability much larger than that by MLE.

Index Terms: Information Source Localization, Epidemic diffusion
model, Maximum Likelihood Estimator.

1. Introduction

NFORMATION spread is universal in many types of on-

line/offline and social/physical networks. Examples include
propagation of infectious diseases, technology diffusion, com-
puter virus/spam infection in the Internet, and tweeting and
retweeting of popular topics. Finding the source in those in-
formation spreads is one of the indispensable and useful tasks,
arising in many different contexts, e.g., detecting a malicious
agent, a patient zero, or an influential person, because pre-action
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can be taken by some authorities to limit the possible damages
due to spreading of such diffused objects that are harmful, if
spread in an uncontrolled manner. Since the seminal work by
Shah and Zaman [1], extensive research efforts have been made
[2-4], where the main focus has been on how to design an es-
timator and provide theoretical (positive and negative) limits on
the detection performance. However, for example, it is shown
[1] that in the regular tree topologies, the detection probabil-
ity cannot be above 31% under Maximum Likelihood Estima-
tor (MLE), and even worse, in other realistic topologies such as
power grid graphs, scale-free graphs and Internet Autonomous
System (AS) graphs, the detection probability is less than 5%
under a MLE-based heuristic.

In this paper, our interest lies in how much detection perfor-
mance can be improved by installing hidden agents, called pro-
tectors that spread “anti-information.” The role of these protec-
tors is to spread the information against the original one, vac-
cinate humans against infectious disease, or install security up-
dates against computer virus. Intuitively, the existence of pro-
tectors and their infection with anti-information seem benefi-
cial in detecting the original source, because they both block the
original information spread and the snapshot of both protected
and infected nodes, compared to that of only infected nodes,
discloses more information to the detector. However, under-
standing which nodes should be estimated to be the informa-
tion source and quantifying the detection performance in pres-
ence of protectors is far from trivial. In this paper, we assume
that initially there exists a single information source and protec-
tor, where the anti-information source responds passively in the
sense that it is initially dormant and becomes active and starts
to infect other nodes (with anti-one) only when the original one
reaches itself.

Our main contributions are summarized in what follows:

1) First, we show that under MLE, the protector’s anti-
information spread does not improve the detection probabil-
ity in regular trees under the passive diffusion. However, we
show that this is not the case if some statistical feature on
the distance between the two information sources is given.
In particular, we assume that the distance distribution is of a
specific type, where their parameters are unknown. In prac-
tice, the parameters can be learnt using certain prior records
on the information source or the diffusion snapshot. If such
prior records do not exist, one can use a learning algorithm
such as MLE to estimate the parameters (see Section IV for
more details). We study three example distance distributions,
Zipf, Geometric and Poisson, where the probability that the
protector is located decays with distance in all distributions,
but their decaying patterns are different.

2) Second, for a given quality in estimating the distribution
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parameters, we quantify how much the detection probabil-
ity increases in regular trees under Maximum-A-Posterior-
Estimator (MAPE) due to the usage of the protector’s anti-
information spreads. In particular, we show that the differ-
ence of the detection probabilities between MLE and MAPE
is up to 50% for the 3-regular tree and up to 63% for the
regular tree with infinite degree. This implies that if the pro-
tector is appropriately placed around the information source,
the detection probability significantly increases.

3) Finally, we design a MAPE-based heuristic for general
topologies such as Erdos-Rényi (ER) graph, small world
graph, scale-free graph, as well as a Facebook ego network
and a US power grid network, where we observe that the
prior information based on the protector significantly helps
to detect the information source.

Thus, we conclude that utilizing the anti-information is a simple
way of detecting the original source better, where in literature
several different approaches have been considered for a similar
purpose, e.g.multiple observations [2], suspect set [3] and Jor-
dan center-based [4] methods. We believe that ours shed new
lights on this area, being of broad interest in the future.

II. Related Work

The research on information source detection has recently re-
ceived significant attention. The first theoretical approach was
done by Shah and Zaman [1,5,6] and they introduced the metric
called rumor centrality, which is a simple topology-dependent
metric. They proved that the rumor! centrality describes the
likelihood function when the underlying network is a regu-
lar tree and the diffusion follows the SI (Susceptible-Infected)
model, which is extended to a random graph network in [6].
Zhu and Ying [4] solved the rumor source detection problem
under the SIR (Susceptible-Infected-Removed) model and took
a sample path approach to solve the problem, where a notion
of Jordan center was introduced, being extended to the case of
sparse observations [7]. The authors [8], [9] studied the prob-
lem of estimating the source for random growing trees, where
unlike aforementioned papers, they did not assume an underly-
ing network structure. The authors in [10] inferred the historical
diffusion traces and identifies the diffusion source from partially
observed cascades, and similarly in [11], partial diffusion infor-
mation is utilized. Recently, there has been some approaches
for the general graphs in [12, 13] to find the information source
of epidemic. All the detection mechanisms so far correspond
to point estimators, whose detection performance tends to be
low. There was several attempts to boost up the detection proba-
bility. Wang et al. [2] showed that observing multiple different
epidemic instances can significantly increase the detection prob-
ability. Dong et al. [3] assumed that there exist a restricted set
of source candidates, where they showed the increased detection
probability based on the MAPE (maximum a posterior estima-
tor). The authors in [14] introduced the notion of set estimation
and provide the analytical results on the detection performance.
Choi et al. [15,16] studied the effects of querying to finding the
source and showed how many queries are sufficient to achieve
a target detection probability. Opposite to finding the source,

n this paper, the terms “rumor" and “information" are used interchangeably.
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Fig. 1. Illustrative example of information spreading model for the existing of
passive protector.

[17,18] considered the problem of hiding the source by introduc-
ing a new diffusion mechanism called adaptive diffusion from
the source. The authors in [19] proposed a game model for both
perspective of seeking and hiding the source.

III. SYSTEM Model

In this section, we introduce a diffusion model of spread-
ing two information and two estimators for finding the original
information source. In addition, we review some prior works
which are considered the source detection probability based on
these estimators but different models.

A. Information Spreading Model

We consider an undirected graph G = (V, E), where V is a
set of nodes and F is the set of edges of the form (i, j) for ¢, j €
V. Each node represents an individual in human social networks
or a computer host in the Internet, and each edge corresponds
to a social relationship between two individuals or a physical
connection between two Internet hosts. As in other works, e.g.,
[1], we assume a countably infinite set of nodes for avoiding the
boundary effects.

There exist two spreading sources: an information source
and a protector, which we denote by v*, p* € V, respectively.
The information source is the starting node which spreads an
information such as rumor, and the protector corresponds to a
node which spreads an “anti-information”, e.g., an anti-virus for
virus spreading and a true fact for feigned information spread-
ing. We consider the case when the protector is passive in
the sense that the protector source is initially dormant, but be-
comes active and starts to infect its neighboring node only when
the original information reaches it (see Fig. 1). As a model
of spreading information and anti-information, we consider a
variant of SI (Susceptible-Infected) model that each node is
one of the following three states: susceptible, infected, or pro-
tected, where all nodes are initialized to be susceptible except
the initially-infected information source v* and the initially-
protected protector p*. Once a node ¢ has an information (or
an anti-information), it is able to spread it to another suscepti-
ble node j if and only if there is an edge between them, i.e.,
(i,7) € E. We assume that once a node becomes either infected
or protected, it does not change its state, as in the classical SI
model. For each edge (i,j) € E, let a random variable 7;;
be the time it takes for susceptible node j to receive the infor-
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mation (irrespective of being any two information) from non-
susceptible node i. We assume 7;; is exponentially distributed
with rate A > 0 independently with everything else. > Without
loss of generality, we assume that A = 1.

B. Source Estimators: MLE and MAPE

MLE and MAPE. Let Iy and P, be the sets of infected and
protected nodes at time ¢, respectively, where subscripts /N and
M are used to express the number of infected and protected
nodes until time ¢. We omit time ‘t’ just for notational simplic-
ity. To estimate the source v*, we consider the following two
popular estimators, MLE and MAPE:

Up1 = arg 51.152}1)5 P(Iy, Pylv,p®),

vmap:argmaXP(U|INaPJ\4ap*)7 (1)
vElN

where we assume that algorithms have the knowledge of the pro-
tector p*. Note that the relation between MLE and MAPE can
be explained by:

Umap = argq;néaf;v( P(vlIn, Py, p")

(a) P(IN7PM‘Uap*)P(Uap*)
P(In, Pn,p*)
= arg max P(In, Py|v,p*) - P(v,p*),

veElN

where (a) is from the Bayes’ rule and P(Iy, Pys|v, p*) is the
probability that the realizations I and P,; occur, given an in-
formation source v and the protector p*. Therefore, MLE is
equivalent to MAPE if P (v, p*) is assumed to be uniform over
v €E Iy.

To further characterize two estimators, let 0 = (w; =
v*, wa, ...,wpr+ N ) be an infection sequence (also called a sam-
ple path) resulting in Iy, Pps, where the source v* gener-
ates the information first, and all other nodes in the sequence
w2, ..., wpr+ N are arranged in ascending order of their propaga-
tion times. Then, we have

>

ceQ(v,p*,In,Pnr)

P(IN7PM|U7P*) = P(O—|va*)7

@)

where Q(v,p*, Iy, Pys) be the set of all possible propagation
sequences given I, Pys. Then, under regular tree G, one can
follow the same approach as that in [1] and characterize MLE
and MAPE based on the number of possible propagation se-
quences, i.e.,

Vpl = argmaxR(U,p*7INaPM)a (3)
veln

Unap = arg rrel:;}mx R(v,p*, Iy, Py) - P(v,p*). ()
veElN
where
R(U7p*7IN>P]W) = ‘Q(Uap*w[NaP]W)‘
=M+N)! ]

u€InUPy

A

2This assumption omits the case that a susceptible node hears both informa-
tion at the same time.

We call vy or vy,p a protected center, where unless confusion
arises, we omit the name of a particular estimator. In the above,
we let |T7| be the number of nodes in the subtree T}V rooted
at node « when v is the information source. Then, the number
of possible propagation sequences from v can be obtained by
computing the product of the subtree size. One can compute
R(-) for every infected node v € Iy in O(M + N) time using
a similar message passing algorithm to that in [1].

Detection Probability. Given randomness in the choice of
a v* and p* and the afore-mentioned diffusion process, let
G M, N+ p~ be a random diffusion and protection snapshot.
Then, we define the following event:

Cun = {w | a given estimator detects v* from
Gt g ()} (6)

We omit the dependence on the estimator for notational sim-
plicity, unless explicitly needed. Note that rather than studying
the detection probability with a random process with time ¢, we
do it with the numbers of infected and protected nodes M and
N. As will be clear shortly, this is enough for our study whose
focus is on the detection probability when a sufficiently long
time elapsed, as done in many prior work. In other words, as
t — oo, we have N (t), M (t) — oo, almost surely, where N ()
and M (t) are the numbers of infected and protected nodes un-
til time ¢. For a comparative purpose, we present the detection
probability of MLE, when there is no protector source, and thus
M = 0 as follows [6]:

Lemma 1: ( [6]) Under d-regular tree G, when there is no
protector source, the detection probability of MLE 7 is:

0 ifd =2,
TV -d(1-np (5 5)) irdzs,

where I, (v, 3) is the incomplete Beta function® with parameters
« and fB.

Using Lemma 1, one can easily check that the detection
probability for MLE without protectors is at most 0.307 in the
asymptotic case for d-regular trees.

IV. Main Result: Detection Probability
A. Maximum Likelihood Estimator

In this section, we provide the performance of MLE for de-
tecting the information source in presence of opposite informa-
tion, i.e., protector, under regular trees.

Theorem 1: Under d-regular tree GG, the following limit on
the detection probability of MLE with protector nodes exists:

7T21 = lim P(C]M_N), (7)
,N—oc0 ’
and it is characterized by
™ = g for all d > 2.

3The incomplete Beta function I, (v, 8) is the probability that a Beta ran-
dom variable with parameters « and f is less than € [0, 1], whose form
is In (o, B) = % Jo 71 (1 — t)P~1dt where T'(-) is the standard
Gamma function [6].
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Fig. 2. Examples of distance distributions between two sources with L=50.

The proof of Theorem 1 will be presented in Section V-A.
This theorem implies that the existence of anti-information does
not improve the detection performance when there are suffi-
ciently large infected and protected nodes in the graph. This
seems somewhat counter-intuitive, because the diffusion of op-
posite information may provide a side information so as to en-
able better detection. This negative result can be explained for
the following reasons. Depending on the distance between the
protector and the original information source, two cases can be
considered. First, when I is much larger than Py, the MLE
is highly likely to be equal to the original rumor center (with-
out anti-information), resulting in the same detection probabil-
ity. Second, when P, is larger than [y, the MLE is highly
likely to be located in Py, which leads MLE to estimate a bor-
der node between I and P, (because the original information
source should be in Iy), but the number of such border nodes
is negligible (in fact, there exists a single border node in tree
topologies), when N and M goes to infinity.

B. Maximum A Posterior Estimator

From the result of MLE, we see that if there is no further in-
formation about the source, the detection cannot be improved.
Hence, in this section, we consider the case that a prior infor-
mation for the source node is given and then we use MAPE to
find the source using this information. As such an information,
we consider a distance between two sources as follows.

Distance Distribution. For computing MAPE, one has to know
the probability P(v, p*) where v is the information source. To
this end, we assume that the distance between v and p* is a
random variable following a specific distribution. In this paper,
we consider three distributions: ‘L-truncated’ Zipf, Geometric
and Poisson, where L is a non-negative integer constant, i.e., for
1<I<L L,

1/1° for Zipf (6 > 0),
P(d(v,p*)=1) x < 6(1 —0)~! for Geometric (0 < § < 1)
6le=0 /11 for Poisson (6 > 0),

®)

4This can be obtained from some historical information of the sources or un-
derlying graph topologies.
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and P(d(v,p*) ) = 0forl > L° (See Fig. 2). The
main reason why we study these three distributions is because
higher probabilities are assigned to nearer the original informa-
tion source from the protector under them and these distributions
will give how the distance information as the priori knowledge
effect to detect the original information source. Hence, our goal
is to quantify the improvement of the source detection probabil-
ity for using these distance information. Nevertheless, our ana-
Iytical results can be easily extended to other distributions. We
also remark that it is reported the distance of two nodes follows
Zipf distribution in some social networks [20-22].° Throughout
this paper, we commonly use 6 to mean the parameter of the
distance distribution, where the true parameter # = 6* might be
unknown a priori and one has to run MAPE with an estimated
parameter 6 = 6. As we mentioned before, since there is no en-
hancement for detecting the information source by MLE when
the number of diffused nodes goes to infinity, we address how
much it can increase the detection probability when there is a
distance information of two sources as a priori. Hence, in this
subsection, we provide the performance of MAPE for detecting
the original information source in presence of anti-information
under regular trees. It turns out that obtaining the exact formula
of MAPE’s detection probability, as in Lemma 1 in absence of
protector, is technically challenging. However, we will provide a
characterization of the lower bound of the detection probability
with protector, as stated in Theorem 2, even when the unknown
parameter of the distance distribution is not exactly equal to the
true parameter 6.

Theorem 2: Under d-regular tree G, the following limit on
the detection probability of MAPE with the learnt parameter 6
for the true parameter 6 exists:

() = Aim  P(Car ), )
and it follows that
mR0) -7 > (p(07) - 1/2)50D (10)
— 61— p(8)/p(6")16" = 6], (D)
where
29211 for Zipf(8), 6 >0,
p(0) =S 525 for Geometric(f), 0<6<1, (12)
245 for Poisson(f), 6 > 0.

A few interpretations of Theorem 2 are in order.

(a) Theorem 2 states that depending on how well we learn the
true parameter 6*, the detection probability 7 * is deter-
mined. In other words, § is far from §*, 7> may be lower
than 7.

(b) In fact, we see that the condition that the protector helps in
detecting the information source, i.e., wzap(é) — g > 0,

51n this paper, we consider sufficiently large L but finite

61n practice, it may not be guaranteed that the distance of two sources is close.
However, in this paper, we focus on how much the detection probability by MAP
estimator will be increased if we have this information as a prior.
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Fig. 3. Theoretical results of Theorem 2 ((a), (), (¢)) and learning the parameter
of each distributions by MLE ((b), (d), (f)) in Algorithm 1 for d = 3 and
L = 50, respectively (We generate 100 random diffusion snapshots up to
M 4+ N = 500, and plot the average value of the estimated parameters
with 95 percent confidence interval for the simulations) and 74 = 0.25 for
d=3.

when the following condition holds:

j < @) = 1725
61— p(0)/p(0")

For example, consider a Zipf distribution with 6* = 1 for
3-regular tree (i.e., d = 3). Then, (13) holds if |6* — 6] <
0.8, and the condition for other cases are similarly mild,
where as we will present in Section I'V-C, 0 can be easily
learnt with a high-accuracy and low-cost parameter learning
algorithm.

To roughly quantify our analytical result, if the distribution
parameter estimation is almost perfect, i.e., 6 ~ 0*, then
TP (f) — 14 2 (p(0F) — 1/2)%2 . The value of p(6*)
ranges in all three distributions as: 1/2 < p(6*) < 1. Thus,
the detection performance gap from MLE without protec-
tor is up to 50% for d = 3 and up to 63% for d — ooc.
This gap will reduce slightly, depending on the value of true
parameter 6.

6" —

13)

(©)

We obtain the numerical result of Theorem 2 for the three

distributions as in Fig 3 ((a),(c),(e)). As an example, we consider
the three true parameter i.e., 0* = 0,1, 2 for Zipf distribution
and change the learning parameter from 6 =0t0f =5 We
see that if * = 0 (Uniform distribution) then there is no gain
of detection probability for any learnt parameter € due to lack of
any distance information of the two sources if L goes to infinity.
However, if 6* > 0 then there exists quite enhancement of the
detection probability from learning the parameter appropriately.
The results of other distributions are similar as in Fig 3.

C. Learning 0*

In practice, there is no knowledge of the true parameter 6*
as a priori. In this case, one can estimate it using prior records
of information sources or the following MLE simply using the
current ‘snapshot’:

O = argmeaxP(IN, P, p*|0)
L
= argmGaXZP Iy, Py, p*|d(v*,p*) = D) P(d(v*, p*) =
Vi
@ argmaxz ZP In, Py, p*log = v")
k=1
0 S
= argmgx?_}R(%)P(d(v p") =1]0), (14)

where vy j; is the k-th infected nodes at the distance [ and V]
is the set of these nodes for 0 < k < |Vj|. Then, (a) is
from the fact that d(v,p*) = [, which implies that v € V.
The equality (b) is from the fact that for each v, € V,
P(In, Py, p*lug) o« R(uik,p*, In, Pa) as in (3), where
R(V)) = SV R, p*, In, Par).  Since R(V;) can be
obtained from the snapshot and P(d(v,p*) = I|0) is deter-
mined when the distribution is given, MLE is obtained by solv-
ing the optimization problem (14). To do this, let f(0)
ZlL:l R(V;)P(d(v*,p*) = 1|#) then we see that this function
does not guarantee the concavity in terms of 6 (thus not a con-
vex program), but from the monotonicity and differentiability of
P(d(v*,p*) = 1]0), it is easy to check that the function f(6)
is a differentiable unimodular function’. Thus, we can apply a
popular algorithm for maximizing a unimodular function [23]
to solve (14) as in Algorithm 1 where € > 0 is the termination
constraint. One can easily check that the algorithm is terminated
in polynomial time of M + N and 1/e.

Fig. 3 ((b),(d),(f)) show numerical results on the performance
of learning 6* for various values of §* in three distributions. For
the graphs, we consider the total number of diffused nodes M +
N = 500 under the 3-regular tree (d = 3) and we generate 100
random diffusion snapshots, and plot the average value of the
estimated parameters with 95 percent confidence interval. Our
numerical results reveal that MLE-based parameter estimation
is highly accurate in the expectation sense.

7 £(0) is differentiable unimodular 8 f (6) /86 > 0 for one side of some 6 and
Af(0)/06 < 0 for the other side.

16)



Algorithm 1 Maximum Likelihood Estimation (MLE) of 6* for
Regular Trees
Input: (In, Py, d, L, 0pnin, Omas, €, P(v, p*))
for v € Iy do
Compute R(v,p*, In,Py) by a message passing algo-
rithm [1] and obtain d(v, p*) by a shortest path algorithm;
RWV)«+0;,(1<I<L)
if d(v,p*) = [ then
end if
end for
Set f(0) = -y R(VI)P(d(v,p") = 1I0);
grew +— Gmintfmar . (initialize)
while |V f(0"")| > ¢ do
Use Brent method [23] to find the root of V f(6™¢%);
end while
return 0,; = "%

V. Proof of Theorems

A. Proof of Theorem 1

If the protector does not receive the information, it is trivial
that there is no gain using MLE without protector. Hence, to
prove the theorem, we only focus on the case that the protector
receives the information i.e., M > 0.

Polya’s Urn. The description of P6lya’s urn can be directly ap-
plied into diffusion spreading scenario in regular tree networks,
in which the connection first appeared in [6]. Since we assume
homogeneous spreading, i.e., A = 1 for all edges, at each in-
fection epoch the next infecting node will be uniformly selected
among the neighbors of currently infected nodes from the mem-
oryless property of exponential random variable. This can be in-
terpreted as uniform ball drawing in Pélya’s urn. Furthermore,
since it is assumed that the underlying network is d-regular tree,
d — 2 additional infection candidates are added in each infection
time. This can be interpreted as ¢ additional balls in the urn.
The number of balls drawn with each color is mapped into the
number of each subtrees, spread from the information source.
Initially, all subtrees have only one infection candidates, which
makes b; = 1 for all j and the total number of diffused nodes
is M + N (i.e.after M + N — 1 draws). Let X; be the number
of nodes, which are either infected or protected, in j-th subtree
rooted at the information source, where j = 1,...,d. Then, the
joint probability of (X7, ..., X,) is given by

d
meXj ZW] _(M+N-1!

i z1lzg! -2y

J (15)
szl 1(14+¢)...(1+ (z; — 1e)

MENT (k= 1)e

)

where € = d — 2 and Zj:l xj = M + N — 1. In the proof,
we will directly use the above for d = 2 (i.e., line graph), but
for d > 2, we take one step further as following. Let Y; =
X;/(M+N),(1 <j < d) then the distribution of the marginal
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distribution of Y; for M + N are sufficiently large is given by

1 d-1
li PlY;<z|=L|——=,—— |, 16

M4 N oo Y5 < 2] <d—2 d—2) (16)
where I.(«, 3) is the incomplete beta function. We use this
result to handle the asymptotic regime in the proof.

Proof of Theorem. In the proof, we let P(vy = v*|nb(v*) =
m) be the probability that v* is v,; when the number of suscep-
tible neighbors of the information source v*, denoted by nb(v*),
ism (1 < m < d) in the network. Then, by conditioning this,
the detection probability is given by

ml _ .
w = )

M,IJ{/IEOO - P(vm = v*|nb(v*) = m)P(nb(v*) = m).

a7
Here, we see that there are two possible cases for m: (i) m =
d — 1 if the source is the neighbor node of the protector because
the protector is not susceptible from the infection and m = d,
otherwise. Using this fact, we consider the following two cases:
(i) d = 2 and (ii) d > 3.
(i) d = 2: In this case, we first consider the following lemma for
the line graph.

Lemma 2: For the line graph (d = 2), when the information
source v* € Iy hasm (1 < m < 2) susceptible neighbor nodes
then

lim  P(vm = v*|nb(v*) = m) = Igpn—1y/2,

M, N300 (18)

where I{.} is the indicator function.

This lemma says that when the source v* is a neighbor node of
protector, the detection probability is 1/2 otherwise, it becomes
zero for the number of diffused nodes goes to infinite. The proof
of this lemma can be obtained by the result in [3]. By using this
result, we obtain

P(vg = v*nb(v*) = m)P(nb(v*) = m)
m=1

lim

ot =
M,N— o0

—~

a

=

- P(nb(v*) =1) 4+ 0- P(nb(v*) = 2) =0,

N |

where (a) is from the fact that the P(nb(v*) = 1) = 0 under
the uniform prior distribution because there are only two nodes
that have m = 1 among the infinite nodes set in the line graph.
Therefore, we conclude that 73 = 75 = 0.

(ii) d > 3: From the result of Polya’s urn (16), we first state the
following lemma.

Lemma 3: For d-regular tree (d > 3), when the information
source v* € Iy has m (1 < m < d) susceptible neighbor nodes
then we have

lim P(vg = v*nb(v*) =m

M,N—oc0 )
1 d-1 (19)
= 17m (1]1/2 (d—27d—2)> B
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where I, (v, ) is the incomplete Beta function.

This lemma is a similar result in [3] which considered the
detection probability of MAPE with a suspect set. They ob-
tained the detection probability of the information source with
m (1 < m < d) infected neighbor in the suspect set. We will
give the proof of this lemma in Section VI. This lemma implies
that if the information source is a neighbor node of protector
then MLE detects it more correctly® since this node has a higher
likelihood than others more frequently. From this result, we ob-
tain the detection probability as follows. First, note that the node
with one-hop from the protector has m = d — 1 candidate sus-
ceptible neighbors due to the protected one and all other nodes
except this have m = d. From this facts, the detection probabil-
ity is given by

m=d
ml __ . * - .
T 2 Pl = o) = m)Plrbo) = m
=Tg- P(?’lb(’U*) =d— 1) + 7y - P(’I’Lb(v*) = d) (;) Td,

where 74 = l—d(l—ll/g( Tl 2)) and7rd =1-—(d-
1) (1 —1Is (ﬁ, % . The last equality (a) comes from
the fact that P(nb(v*) = d — 1) = 0 and P(nb(v*) = d) =

under the uniform prior distribution because there are only d
nodes that have m = d — 1 among the infinite nodes set in the

d-regular tree whereas the other nodes have m = d. Hence, this
completes the proof of Theorem 1.

B. Proof of Theorem 2

To prove this, we first consider the detection probability
7% (0) of MAPE for d-regular tree which is conditioned on the

distance [ as

map /5 : %
Ty P (0) > M’%Him Z P(Vpap = v)P(v = v")
vEV,
= Mlj{[rgoo; (;/ P(Upap = v ) P(d(v,p*) =1]0")
= vEV]

L
(ﬁ) *\ *
= 2 (Ml&rgoo P(Vpap = v)) P(d(v,p*) =1|6")

1" (0, d) P(d(v,

veV]
p') =16,

(20)
where V := U |V and go’l"ap(é, d) :=limps N o0 Yopey; Pl
Unap = ) is the detection probability of the MAPE when the
distance of two sources is I (1 < I < L). The equality (a)
is from the fact that L is finite. Due to the technical challenge
in obtaining the exact formula of MAPE’s detection probability,
we will obtain the lower bound of the probability. To do this,
consider the following lemma.

Lemma 4: For the information source v*
dlve,p*) =1 (1 <1 < L), let P, := P(d(

e Iy with
v*,p*) = 1|0)

8Note that if m < d, the value in (19) will be greater than that of the case
when m = d and this will occur if the node is a neighbor of protector.

then we have

R 1 d-1
map >1—(d— _ R
SoP(0,d) > 1 (d ”O %(maw_ﬁ)

1 d-1
(1= - -
(1 (7557)):

ey = for any distributions.

2y

where p; = and q; =

Py
P 1+P

This result is slightly different in Lemma 1. We will give
the proof of details in the Section VI. By using this, we will
prove the theorem as following steps. First, we obtain the lower
bound of difference of detection probabilities between MAPE
with true parameter and MLE without protector. Second, we
will obtain the upper bound of difference between the detection
probabilities of MAPE with true parameter and MAPE with an
estimated parameter. By subtracting these two results, we will
conclude the proof of theorem 2. To obtain the result of the first
part, we consider the following result.

Lemma 5: For d-regular trees (d > 2),

TER0%) — 7ma > (p(07) — 1/2)503, (22

where p(-) is defined in (12) for each distributions, respectively.

This result shows that the lower bound of difference between
two detection probabilities depends on the true parameter and
degree. We see that the detection performance gap from the
MLE without anti-information is up to 50% for d = 3 and up
to 63% for d — oo, which are non-negligible quantities. We
will give the proof of details in Section VI. Next, to obtain the
second part, we consider the following lemma.

Lemma 6: For d-regular trees (d > 2),

map(e*) map(é) < GK(Q*,é)w* _ é‘7 (23)

where K (6*,60) = |1 — p(6)/p(6*)].

This results implies that for any estimated value 0, the differ-
ence of detection probabilities depends on how well it estimates
the true parameter i.e., |§* — 6| under the true parameter. We also
give the proof of details in the next section. Then, by combining
(22), (23), we obtain the result of theorem 2 and this completes
the proof.

VI. Proof of Lemmas

This section provides the proofs of lemmas used for establish-
ing Theorem 1 and Theorem 2.

A. Proof of Lemma 3

Before the proof of lemma, we denote |T.7| as the number
of infected or protected nodes in the subtree rooted at node u
where v is the information source as shown in [1]. In order to
obtain the result of the lemma, we first consider the following
proposition which is a property of MLE in the case of existing
the protectors.

Proposition 1: (Property of MLE) For the uniform priori dis-
tribution, a node v is vy if and only if [T}V < (M + N)/2 for
all u,v € Iy.



This result can be directly obtained from the result of Propo-
sition 2. The above proposition implies that when there are pro-
tectors in the networks, MLE has the same property with the
rumor centrality as in [1] i.e., it is located at the middle of the
infected and protected graph. The only difference is that when
there are more protected nodes than infected nodes, the MLE
chooses the boundary infected node of these two set I and Py,
as the estimator because it has highest likelihood among the in-
fected nodes. Based on this, let E; = {X; < (M + N)/2} be
the event that the number of infected and protected nodes in a j-
th subtree of the information source v* is less than (M + N)/2
for 1 < j < m, where m is the number of infected neighbors of
v*. Then, from the result in [3] and Proposition 1, the detection
probability of the source v* € Iy with m (1 < m < d) infected
neighbor nodes in d-regular tree (d > 3) is given by

M,llifn—lwo Plom =v7) = J\I,IJ{/rgoo(l ~ UL POE)
@ w1 mP(ES .
= yim (1 —mP(Ey)),

where (a) is due to the fact that the events E; are identical and
disjoint for all j. From the result in (16), we have

J»I-&}\Ifri)oo P(El) =1- 11/2 (1/(d - 2)7 (d - 1)/(d - 2)) )
and by putting this into (24), we obtain the result which com-
pletes the proof of Lemma 3.

B. Proof of Lemma 4

In order to prove this lemma, we first construct a property of
MAPE which is a kind of generalization of the result in Propo-
sition 1. To do this, let p(v, w) be the set of nodes on the path
between v and w not including v in [ ~.2 Then, we have the
following Proposition.

Proposition 2: (Property of MAPE) For a given distribution,
anode v iS Upap if and only if

I (qrew) =) = Py

=7p )
iep(v,w) (w,p)

(25)

forallw € Iy.

This seems to be quite complex compared to Proposition 1.
However, one can easily check that when P(v, p*) = P(w, p*)
for all v,u € Iy, it is directly obtained the result in Proposi-
tion 1 as a special case of MAPE due to [T}, ;| < |T}’| — 1 for
any i € p(v,w) where ¢ + 1 is a neighbor node of ¢ which the
distance from the node v is greater than that of v.

Proof. First, we prove that if v = wy,p then v satisfies
(25). To see this, we consider the computation of MLE in (5).
Let R'(v) = R(v,p*, In, Py)P(v,p*) then for a neighbor
node u of v, one can easily check that |[T?| = (M + N) —

R (u)
R’ (v)
< 1 Letxy = [T/ (M +N)—|T7[)

|T;|. Since we assumed v = Upap, it follows that
17, P(u,p*)
(M+N)=ITy| ) P(v,p*)

9For the tree, there is a unique path between any two distinct nodes.
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then for any node w € Iy,

R (w) 11 P(w, p*)
W) x| ) <y
R (U) i€p(v,w) P<’U7p )
P(v,p*)
o I wsitn)
P *
i€p(v,w) (w7p )

Then, for every s € Iy with the distance |p(v,s)| =h (1 < h <
2L — 1), v satisfies (25). Conversely, if a node v satisfies (25)
then v = vp,p. Hence, we complete the proof of Proposition 2.1

Based on this result, we will give the proof only for Zipf dis-
tribution since the proofs for the others are similar. To do this, let
v € Iy be the information source with d(v,p*) =1 (1 <1 < L)
and let C}, be the event which satisfies (25) for all nodes u € Iy
with |p(v,u)| = h > 0. Then, in order to obtain ¢;* (6, d) in
(21), we need to find the probability of NpCy, forall 1 < h <
2L —1 in Proposition 2. To do this, we divide Ny C}, into the two
parts such as N, Cy, = E; N F; where E; = ﬂﬁ;{ Cy, is a part of
larger distance from p* than that of v and F; = N, Cy, is a part
of direction to p*. Let CiW’N be the event that MAP estimator is
the information source when the distance of two sources is [ and
there are M + N infected and protected nodes. Then, we have

PNy =P ((NJZ{Ei;) N F) =1- P ((UjZ{Ef;) UFY)

(a d—1
>1-Y P(Ef;) - P(F)
j=1

Q1 @-1)pPE) - PF),

(26)
where E ; is the event for jt (1 < j < d—1) subtree of larger
distance from p* than that of v. First, consider that the inequality
(a) is from the union bound of the probability due to the fact that
the events £ ; and Fy® are not disjoint by the following reason.
For a neighbor node u € Iy of v with d(u, p*) = [+ 1, we have
|T7] < (M + N)p; in the Proposition 2 where

(I+1)°
17+

B P(d(v,p*) =1) B
PC= Plu,p) =1+ 1) + P, p) =1) (i

6
%. Then p; + ¢ < 1 forany 6 > 0
and this makes the non-disjoint events. '© The equality (b) is

from the disjoint events of £ ; forall 1 < j < d — 1. Hence, it
remains to obtain the probability P (Ef) and P (FY) in (26), re-

spectively. To this end, consider P (Ef) = P ((ﬂﬁ;{ Ch)c> =
P (Uﬁ;{ Cf,) but, it is not easy to obtain the exact probability
due to the fact that ﬂﬁ;i Cy, # C;. However, by dividing the

and similarly, ¢; =

101f @ = 0 i.e., for the Uniform distribution, the parameters p; = ¢; = 1/2
forall 1 <[ < L and this makes the events to be disjoint as in [6].
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event UL he {Ch as disjoint events and by taking limit, we have

lim P (UEZics lim P (CS
1\4,1{71200 (U2 Gh) = []{flgoo ()
L—1
. c h
—|—M71]{rn_1m};P (Chs1 [ N)21Cy)

(%)
(a) 1 d-1
=1l (d—2’d—2>’

where (a) is from the fact that the term (%) will be vanished as
M + N goes to infinity and by applying the Polya’s urn in (16)
into P (CY) because

L—-1

lim (1-
M,N—oc0

() = P (Cpyr | NjZ1Cy))

L-1
= 1(1—Mljlvm P (Chyr | N 1C)>

|
M

L—I

) L (®)
- (1 Mle{/rgooP(Ch—&-l | Ch))

=0,

where (a) is from the memoryless property of exponential
distributions of homogeneous diffusion process and (b) is
limps N—yoo P (Chy1 | C) = 1 from the Hoeffding inequality.
Similarly, one can obtain the part of P (F). Then, by putting
these results into (26), we obtain (21) and this completes the
proof of Lemma 4.

C. Proof of Lemma 5

First, consider that the detection probability is obtained by
using the incomplete beta function as in Lemma 4. Ac-
cordingly, to obtain the difference of two detection prob-
abilities, it is required the difference of two incomplete
beta functions with different parameters. Let Dy(z,y) :=

v (ﬁ, %) I, (d12, &= 2)‘ be the difference of two in-

complete beta functions with parameters « and y then we have
the following proposition.

Proposition 3: For 0 < x,y < 1andd > 3, we have

c(d)(1 + 22|z — y|
d—2 ’
@7

=yl =5
T a_2 < Dd(x,y) <

2d—3

where C(d) (dT(jl)

This result guarantees mathematical tractability for calculating
the difference of detection probability because it is a simple ap-
proximation to the incomplete beta function which is a complex
form to handle directly. This is one of polynomial approxima-
tion and then we can obtain the proper bound of detection prob-
ability. The proof of Proposition 3 will be provided in [28]
Based on this result, we will finish the proof of Lemma. To
do this, let P* = P(d(v*,p*) = [|0*) and then from the fact

that 3"/, P = 1, we have

TP (07) — ma = Y1 (G (0%,d) — 7a) P
=Y, ((d=1)Da(p;, 1/2) — Dalg;, 1/2)) P

2d—3

@ 1 F—1/2|3d=2)
25k ((@-nkgts

1
(d)(1+(q)) @D g7 —1/2] \
_ q — q )Pl

A=
> Zl ) (( )\P; 1/2\

B
_lpy—1/2|40d-2 *
-2 B

L 2d—3 ©
=2t pp = 127 P > (p(07) -
where (a) is due to Proposition 3 and (b) follows from some
algebra using the fact that |¢f — 1/2| < |pj —1/2|forall 1 <
2d—:
! < L. The inequality (c) is from the fact that |p; —1/2] id7) >
2d—3
(p(6%) — 1/2)5T7 forall 1 <1< Landd > 3 where p(6*) is
defined in (12). Therefore, we complete the proof of Lemma 5.

1/2)7,

D. Proof of Lemma 6

We also use the result of Proposition 3 to obtain the upper
bound of the difference between detection probabilities with true
and estimated parameters. To see this, consider that

= lel ((d l)Dd(pZ%pz) — Dalq, @) P

(%) " <<d1>c<d><1+<pz‘>di2>prm|

6.0 P

C(d)(lﬂ‘]{}_f"j?)'q?q')a*

®) R
dsr ((d—l)e(d)(lﬁzw ?)lp] —pzl) P

=i (A + @D ™)~ ml) P
Ll - Osh, K (a0 + o)) By

(d) . .
< 6K (67,0)[0" — 0],

where (a) is from Proposition 3 and (b) follows from the fact
that |gf — 1| > |p; — pi| for all {. The inequality (c) is due
to the fact that p; is a contraction mapping w.r.t. 6 since p; is a
continuous differentiable and K is a corresponding a Lipschitz
constant and ¢(d) = ¢(d)(d — 1)/(d — 2). The inequality (d)
follows from the facts that p; < p} := p(0*) forall2 < < L
with ¢(d)(1 + p(G*)ﬁ) < 3 for all d > 3. For given 6* and
0, one can easily check that K; < 2|1 — p(8)/p(6*)| for all
1 <1 < L by simple algebra and this completes the proof of
Lemma 6.

VII. General Graphs and Simulation Results

We have so far assumed that the underlying graph is a reg-
ular tree, which is simply for analytical tractability as done in



(a) US Power Grid Network. (b) 5 x 5 Grid Torus Graph.

Fig. 4. Examples of the real world graph: (a) US power grid network (source:
Smart Energy International) and (b) Grid torus network.

other related work. In this section, inspired by our analytical
findings in earlier sections, we study the detection performance
of a MAPE-based algorithm in more practical, general graphs.

MAP-BFS estimator with §* learning. We first describe a
heuristic estimator motivated by MAPE, which is necessary due
to the computational intractability ' of the problem MAPE in
(1). Motivated by the heuristic in [1], we propose a heuristic
algorithm based on Breadth-First Search (BFS), as described in
what follows: Let o, be the infection sequence of the BFS order-
ing of the nodes in the given graph, then we estimate the source

b

Upap that solves the following:

Upap = AT Inax P(oy|v,p") [R(v,p*7Tb(v)) x P(d(v,p*))|
where Tp(v) is a BFS tree rooted at v and the information
spreads along it and d(v,p*) is the shortest distance between
v and p*. Note that P(d(v, p*)) uses an MLE-estimated param-
eter as in Section IV-C based on T}(v), where computing the
rumor centrality R(-) (in (14)) with T} (v) is the key component.
This T} (v)-based parameter learning is also a heuristic since ob-
taining the exact 0, for a general graph is hard to solve. Except
for the complexity in learning the distribution parameter, we can
estimate the information source in O(N (M + N)) time.

Graphs. We consider (i) three synthetic random graphs: Erdos-
Rényi (ER) random graphs, small-world (SW), scale-free (SF)
graphs, and Torus grid (TG) (see Fig. VII(b) as an example) and
(ii) two real-world graphs; a Facebook (FB) ego network and a
US power (US) grid network. First, in synthetic random graphs,
we set the average degree as 4 when there are 2000 nodes in
the networks. For the Torus grid network, we consider a 60x 60
grid torus network (thus 3600 nodes). Second, the Facebook ego
network [26] is an undirected graph consisting of 4039 nodes
and 88234 edges, where each edge corresponds to a social rela-
tionship (called FriendList) and the diameter is 8 hops. The US
power grid network [27] consists of 4941 nodes and 6594 edges,
and the diameter is 46 hops.

Protector Selection Algorithms 2. 1n practice, the distance

distribution may not be known as a priori so that we need to

1We can easily prove that this is fP-complete similarly to the proof of MLE
without protectors in [1].

12Dijfferent to the case of regular trees, the location of the protector in general
graphs is an important issue because the degrees of each node and the diameter
of graphs are not same.
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Algorithm 2 Distance Centrality-Based Algorithm (DSBA)

Input: (G, n, L)
Select a subgraph G C G with diameter L randomly and
generate an information source v} € G'f, uniformly at random
uptol <¢ < my
forv e G, do

Compute the distance d(v,v}) by a shortest path algo-
rithm for all ¢ and calculate the distance centrality of v by
C(v) = 1/ Y, d(v,v7):
end for
P+ ¢;
v = argmax,eq, C(v);
P+ PU{v};
if |[P| > 1 then

Choose v € P uniformly at random;

end if
Pt
return p*

Algorithm 3 Degree Centrality-Based Algorithm (DGBA)
Input: (G, L)
Select a subgraph G C G with diameter L randomly ;
Set D(v) by the degree of node v in G;
P ¢
v = arg maxyeq, D(v);
P < PU{v};
if |[P| > 1 then
Choose v € P uniformly at random;

end if
p* v
return p*

estimate or to assume some proper distributions to obtain the
detection behaviors by MAP-BFS estimator. In this simulation,
we consider the following two scenarios: (i) Known distribution
(K) and (ii) Unknown distribution (U). For the first case, since
the distribution is given as a priori, we only need to estimate
the hidden true parameter of the distribution by some heuristic
learning algorithm as we mentioned earlier. However, in the
second case, due to the lack of the knowledge of distribution,
we use some statistical information about the history of location
for previous information sources. Based on this, we provide
two protector selection algorithms as follows. First, we consider
an algorithm based on distance centrality (DSBA) of locations
for them if the diameter of the network is huge. Second, we
consider an algorithm based on the degree centrality (DGBA) of
the networks, otherwise. In both algorithms, we use the notion
G, to denote a subgraph of G which the diameter is L > 0.

Setup. We use the true parameters: 6* = 1 for Zipf, 6* = 0.2
for Geometric and §* = 2 for Poisson distributions and com-
pare the results to the case of no protectors in the network and
no priori information (i.e., MLE). We just choose these param-
eters for a representative example and show their results due to
space limitation, where we observe a similar trend in other pa-
rameter configurations. We use MATLAB for the simulations
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(d) Torus network (U).

Fig. 5.

(e) US power grid network (K).

(f) US power grid network (U).

Simulation results of MAP-BFS detection performances where the Cumulative Distribution Function (CDF) of the distance between true source and

estimator (Error) with 100 iterations under the general topologies when M + N = 600. (K: known, U:Unknown)

Table 1. Detection Probabilities with known distribution for General Graphs

Distribution | ER | SW | SF | Torus | FB UsS
No protector | 0.02 | 0.03 | 0.02 | 0.03 | 0.01 | 0.03
Uniform 0.03 | 0.05 | 0.03 | 0.07 | 0.02 | 0.04
Zipf 0.13 | 0.10 | 0.11 | 0.21 | 0.07 | 0.11
Geometric | 0.10 | 0.08 | 0.09 | 0.18 | 0.06 | 0.08
Poisson 0.11 | 0.11 | 0.10 | 0.14 | 0.09 | 0.09

Table 2. Detection Probabilities with unknown distribution for General Graphs

Distribution | ER | SW SF | Torus | FB US
No protector | 0.02 | 0.03 | 0.02 | 0.03 | 0.01 | 0.03
Uniform 0.02 | 0.03 | 0.04 | 0.04 | 0.02 | 0.03
Zipf 0.10 | 0.08 | 0.10 | 0.15 | 0.06 | 0.10
Geometric | 0.07 | 0.07 | 0.07 | 0.13 | 0.04 | 0.07
Poisson 0.09 | 0.09 | 0.08 | 0.12 | 0.05 | 0.08

and generate 200 random graph samples for synthetic random
graphs and a scenario-driven graph, where we diffuse an infor-
mation and opposite information until we have M + N = 600.
By considering the total network size, we set the value L as 50
% to the diameter of networks and we performed 100 iterations
for all graphs to obtain the results.

Simulation Results. In the simulation, we obtain two different
results as in the Fig. 5 for the known distribution (K) and un-
known distribution (U). The x-axis of the figure indicated that
the number of errors between true source and estimator and
the y-axis indicates that the Cumulative Distribution Function
(CDF) of the errors. Clearly, the zero value of the error is the

exact detection probability. For the second case, we use DGBA
for ER, SW, SF and FB graphs, and use DSBA for Torus and
US networks. The results show that if the distance distribution
is known as a priori, the detection performances of MAP-BFS
heuristic are better than that of the case of no protector and no
priori information (i.e.Uniform distribution). It is hard to be be-
yond 5% for the case of no protector and no priori information
but, if the distance information is given, we see that the detec-
tion probabilities can go beyond 10 % for the synthetic as well
as real world topology even for our parameter setting with the
estimated parameter (See Table 1). This means that the priori
information of the distance between two sources is more help-
ful in finding the information source in the general graphs as
we expected. In the case of unknown distribution, the detection
performances decrease compared to those of known distribution
case. However, there are non-negligible enhancements from the
result of no protector (See Table 2). This implies that if there
is some information about the distance of two sources, then it is
better to consider a protector which is located properly than that
of no protector, assuming some proper distribution (like Zipf
distribution).

VIII. CONCLUSION

In this paper, we consider the information source detection
problem in presence of passive protectors that spread the anti-
information. We obtain MAPE with true parameter for a given
priori distribution with hidden parameter and show that the de-
tection probabilities become larger than that of no protectors and
no priori information by learning the true parameter. Further-
more, we consider the case that the distance distribution is not



given as a priori and for this case, we provide two protector lo-
cating algorithms which shows that there is also non-negligible
enhancements for detecting the information source by MAPE-
based heuristic estimator by assuming proper distributions. For
the future work, we will consider the heterogeneous diffusion
rates and active protector which start the diffusion simultane-
ously.
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