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Abstract—Game-theoretic approaches have provided valuable
insights into the design of robust local control rules for the indi-
viduals in multi-agent systems, e.g., Internet congestion control,
road transportation networks, etc. In this paper, we introduce a
non-cooperative Medium Access Control game for wireless net-
works and propose new fully-distributed CSMA (Carrier Sense
Multiple Access) algorithms that are provably optimal in the
sense that their long-term throughputs converge to the optimal
solution of a utility maximization problem over the maximum
throughput region. The most significant part of our approach lies
in introducing novel price functions in agents’ utilities so that
the proposed game admits an ordinal potential function with
no Price-of-Anarchy. The game formulation naturally leads to
game-based dynamics finding a Nash equilibrium, but they often
require global information. Towards our goal of designing fully-
distributed operations, we propose new game-inspired dynamics
by utilizing a certain property of CSMA that enables links to
estimate their temporary throughputs without message passing.
They can be thought as stochastic approximations to the standard
dynamics, which is a new feature in our work, not prevalent in
other traditional game-theoretic approaches. We show that they
converge to a Nash equilibrium, and numerically evaluate their
performance to support our theoretical findings.

Index Terms—CSMA, Distributed algorithms, Game theory,
Wireless ad-hoc network, Stochastic approximation.

I. INTRODUCTION

In many engineering systems, we often observe the trade-off
between efficiency and complexity, where optimal algorithms
require heavy computational challenges or extensive message
passing, but light-weight approximate algorithms incur severe
efficiency degradation. MAC (Medium Access Control) in
wireless networks is no exception. The seminal work is
done by Tassiulas and Ephremides [2], referred to as Max-
Weight scheduling, which is centralized and computationally
intractable (for a large-scale network). The high complexity
in Max-Weight stems from the fact that an NP-hard problem
(maximum weight independent set problem) has to be solved
repeatedly over time. Since then, various subsequent papers
based on many principles, e.g., random access [3], [4], pick-
and-compare [5]–[8], and maximal/greedy [9]–[11], have been
published, and most of them more or less show that the trade-
off between efficiency and complexity indeed exists, e.g., see
[12], [13] for surveys.
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In this paper, we aim at developing fully-distributed MAC
algorithms (no message passing of information between neigh-
bors) that are utility-optimal over the maximum throughput
region (as achieved by Max-Weight). To that end, we adopt
CSMA (Carrier Sense Multiple Access) as a base-line MAC,
where we smartly update CSMA operational parameters, so
that the long-term throughput over links forms the optimal
solution of a utility maximization problem. Recently, there
have been theoretical works that fully-distributed MAC al-
gorithms based on CSMA can achieve optimality in both
throughput and utility, e.g., [14]–[17] and [18] as a survey,
as well as some studies on practicalizing such theoretically
developed algorithms, e.g., redesigning 802.11 DCF [19]. We
refer to this family of work as optimal CSMA. All theory-
based optimal CSMA works in literatures develop different
algorithms commonly based on the framework of optimization.
In this paper, we take a different angle by formulating a
non-cooperative CSMA game, to study complex interactions
due to interference among independent wireless links, and
furthermore to present insights into the design of different
types of distributed control rules.

Game theory has often been emerged as a powerful tool not
only to understand the strategic behavior but also to optimize
its distributed process in a competitive multi-agent systems
[20], where agents just optimize their local objectives reacting
to limited network information, yet their local decisions often
result in a system-wide efficient performance. In applying
game theory, there are some important questions, such as: (i) Is
there Nash equilibrium (i.e., the steady state of the game)? (ii)
Is it unique? (iii) Is it also a global optimum of the system, i.e.,
does it maximize the social welfare? Especially in (iii), it is
aimed that a game is artificially designed, so that a game has a
desirable solution in terms of uniqueness and social optimality
as a steady state.

A game theoretic approach naturally leads to popular
learning dynamics in classical game theory, e.g., the best
response dynamics, which are run by each player, yet require
the information of other players, thereby incurring heavy
message passing in general. In particular, game dynamics
are interactive: each player’s learning process correlates and
affects what has to be learned by every other players over
time. Then, one more important but challenging question in
this perspective is: (iv) Does the system converge to a good
equilibrium? It has been shown by Hart and Mas-Colell [21]
that for a broad class of games, there is no general algorithm
which allows the players’ period-by-period behavior (even not
fully-distributed) to converge to a Nash equilibrium (even
if it exists). Also, there exists a distributed game learning
dynamics in [22], which, however, provides only probabilistic
convergence guarantee under highly strict conditions such as
finiteness of a game. This paper inherits such philosophy of
a game-theoretic approach for distributed optimization. Our
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main contributions are summarized in what follows:
C1. We construct a non-cooperative CSMA game with
artificially-selected payoff functions, and characterize the ex-
istence, uniqueness, efficiency of Nash equilibrium (in terms
of achieving the social optimality, i.e., Price-of-Anarchy). In
our game, each link uses its own CSMA operational parameter,
backoff and holding time, as a strategy, and the payoff function
is designed to reflect both (i) the long-term utility from the
network, and (ii) the price measured by the harmful effects
on other links. We prove that the game is an ordinal potential
game and has the unique (non-trivial) Nash equilibrium which
is equivalent to the socially optimal point.
C2. Inspired by the popular dynamics in game theory, we
develop three fully-distributed dynamics exploiting the feature
of CSMA that each link’s temporary throughput is naturally
locally-observable without message passing. Each link adjusts
its parameter only in response to its locally realized throughput
without knowledge of the game structure, and without ob-
serving the behaviors and/or throughputs of the other links.
We theoretically provide provable convergence to the unique
non-trivial Nash equilibrium that corresponds to the utility-
maximizing solution (i.e., socially optimal point) from C1.
Technical challenges lie in complex inter-plays between the
update of CSMA’s operational parameters and the underlying
dynamics of MAC in wireless networks, where non-trivial
time-scale issues exist, e.g., the parameter-update before the
underlying Markov chain for a given parameter reaches the
stationary regime. Our algorithms can be thought as stochastic
approximations to the standard game dynamics, which is a new
feature of our work, not popular in other traditional game-
theoretic studies of MAC. We also provide the discussions on
how our results can be extended for more practical interference
model and the case when there exist collisions.

To connect the study of CSMA to the angles from machine
learning or statistical physics, it can be regarded as a problem
of finding the parameters of the hard-core graphical model1

[23] in a distributed manner, leading to the marginal distri-
bution that is the optimal solution of a utility maximization
problem. The hard-core model then corresponds to the interfer-
ence graph of multi-hop wireless network and the parameters
are related to operational parameters in CSMA. The proposed
dynamics in this paper can be also interpreted as variants of
the contrastive divergence learning [24] in hard-core graphical
models, which is of intellectually independent interest in the
area of machine learning and statistical physics.

The rest of this paper is organized as follows: In Section II,
we present a large array of related work with their differ-
ence from our work. In Section III, we describe the system
model and the game-theoretic problem formulation with its
objective, followed by the equilibrium analysis in Section IV.
In Section V, we provide three optimal distributed game-
inspired learning dynamics, and demonstrate their performance
through numerical results in Section VI. Finally, we provide
the discussions on extensions for more practical situations in
Section VII and conclude in Section VIII. Appendix includes
the detail of the mathematical proofs.

1This corresponds to a graphical model that neighboring nodes cannot be
active simultaneously.

II. RELATED WORK

There exists an extensive array of researches (i) on the
design and analysis of random access based MAC protocols
in wireless networks from the game-theoretic perspective, and
(ii) on the fully-distributed CSMA based MAC protocols that
achieve optimality in throughput and/or utility from the opti-
mization perspective. We refer the readers to survey papers,
e.g., [18], [25] for an exhaustive list. We summarize a part of
them, which is closely related to this paper.
D1. Single-hop random access MAC games: There exist game-
theoretic studies on non carrier sense multiple access such
as ALOHA or Slotted-ALOHA with selfish users [26]–[31].
To summarize some of those papers, the authors in [26]
considered a multi packet reception model for selfish users
and analyzed a Nash equilibrium and its stability region with
the assumption of perfect information. The case with partial
information has been studied in [27]. In [28], non-cooperative
two-player ALOHA game was shown to have two different
Nash equilibria, where only one was locally asymptotically
stable. The authors in [30], [31] studied the impact of channel-
state information. As another class of random access MAC
protocol, CSMA has also been studied from the game-theoretic
view, where the strategy of a game is usually contention
window, transmission power, or data rate, see [25] for a survey
and references therein. In [32], it has been studied how selfish
users can cheat those who obey the standard CSMA/CA. The
authors in [33] abstract 802.11 DCF by focusing on 802.11’s
average behavior and connecting its window-based access
and backoff to transmission probability. Then, the stability
of 802.11 has been studied when heterogeneous selfish users
exist, where each user dynamically changes its contention
window size based on its disutility in terms of contention
degree. All these papers considered a single-hop wireless
network, e.g., WLAN (Wireless LAN).
D2. Multi-hop random access MAC games: The authors in
[34] reverse-engineered exponential backoff based contention
resolution mechanism in ad-hoc networks which can be mod-
eled by a non-cooperative game with a player’s strategy being
channel access probability (i.e., ALOHA-like MAC). They
also showed that the resulting Nash equilibrium (NE) is not
generally socially optimal. This motivates the work [35] which
forward-engineers utility-optimal contention resolution algo-
rithms using a standard optimization decomposition approach.
The authors in [36], [37] take a similar medium access model
based on access probability and study how cost function in
each player’s payoff function should be designed to achieve a
good NE and propose a dynamic access probability update rule
converging to the NE of the network with multiple contention
measure signals. The authors in [38], [39] proposed distributed
ALOHA-type MAC algorithms which have provable conver-
gence, optimality, and robustness under a wider range of utility
functions with single message passing for each node in [38]
for general topologies, and without message passing for fully
interfered topologies in [39].
D3. Optimal CSMA: As mentioned in Section I, CSMA has
recently been studied from an optimization based framework
to achieve optimality in throughput and/or fairness, e.g., see
[14]–[17], [40], [41] and [18] for a survey. The main intuition
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underlying these results is that links dynamically adjust their
CSMA parameters, backoff and channel holding times, using
local information such as queue-length so that they solve
a certain network-wide optimization problem. This research
has been regarded as an exciting progress to achieve both
simplicity and optimality in the area of wireless cross-layer de-
sign. Toward practical scenarios, more practical situations, e.g.,
CSMA under the SINR interference model [42], or CSMA
networks with collisions [43], [44], have been considered for
optimal CSMA.
Major difference from prior work. Out work enhances the
research in D1 and D2 in the sense that (i) we propose a
non-cooperative game whose NE is utility optimal over the
maximum throughput region (i.e., throughput region achieved
by Max-Weight), whereas the studies in D1, D2 are utility-
optimal over a throughput region from ALOHA or Slotted-
ALOHA (a much smaller region than the maximum through-
put region), and (ii) the dynamic update rules in D1, D2
require message passing (i.e., partially-distributed algorithms).
CSMA’s utility-optimality has been studied by the researches
in D3 mainly from an optimization perspective, but our work
starts from a non-cooperative game, followed by the resulting
NE’s efficiency (i.e., asymptotically no Price-of-Anarchy),
and proposes three optimal learning dynamics not revealed
by the work in D3. In particular, applying game theory to
CSMA-based wireless networks presents powerful insights of
developing new fully-distributed CSMA algorithms.

III. MODEL AND PROBLEM DESCRIPTION

A. System Model

Network, interference, and traffic. In a wireless network,
links share the common wireless medium where they may
interfere in their transmissions. As a popular model that
captures a certain degree of interference relationships among
wireless links in a static and binary ones, called protocol
model, a network topology can be represented as an undirected
graph G = (V,E), called interference graph, where n links
correspond to nodes V , i.e., |V | = n, and undirected edges
E are generated among interfering links. In other words,
we assume that the interference is symmetric, captured by
undirected edges in the graph, i.e., (i, j) ∈ E if and only
if the transmission over link i cannot be successful if a
transmission over link j occurs simultaneously. However, the
results presented here also can be readily extended to more
practical situations where the transmission success is decided
by the aggregated interference level among links, called signal-
to-interference-plus-noise ratio (SINR) model, see Section VII
for this extension. The network is assumed to handle single-
hop link-level traffic, and be saturated, i.e., each link has
infinite backlog to transmit. However, the results presented
here can be readily extended to multi-hop flows if a classical
combination of back-pressure routing and source congestion
control [13] are inserted to.
Schedule and throughput region. We consider a continuous
time framework, where our primary interest is to track which
links transmit over time. Let σi(τ) ∈ {0, 1} denote whether
link i is transmitting at time τ or not, where σi(τ) = 1 means
that the transmission at link i is active at time τ and σi(τ) = 0
otherwise. We also denote by σ(τ) = [σi(τ)]i∈V a schedule

for links at time τ. A scheduling algorithm is regarded as
a policy that chooses a sequence of schedules {σ(τ)}∞τ=0

over time. Since interfering links cannot successfully transmit
packets simultaneously, a schedule σ(τ) is said to be feasible
(i.e., no collisions) unless there exists (i, j) ∈ E such that both
σi(τ) and σj(τ) are 1. Then, the set of all feasible schedules
I(G) is defined as:

I(G) , {σ ∈ {0, 1}n : σi + σj ≤ 1,∀(i, j) ∈ E}.

We now define the maximum throughput region (or simply
throughput region) Λ of a given network, which is the convex
hull of I(G), i.e.,

Λ = Λ(G) ,

{ ∑
ρ∈I(G)

αρρ :
∑

ρ∈I(G)

αρ = 1,

where αρ ≥ 0 for all ρ ∈ I(G)

}
.

The intuition behind this notion of throughput region comes
from the fact that any scheduling algorithm has to choose
a schedule from I(G) at each time, where αρ denotes the
fraction of time selecting schedule ρ. Hence, the time average
of the ‘service rate’ in each link induced by any scheduling
algorithm must belong to Λ.
CSMA (Carrier Sense Multiple Access) and its Markov
chain. As mentioned in Section I, our interest lies in a
simple, fully-distributed CSMA scheduling algorithm to avoid
interferences efficiently in wireless networks. Under a CSMA
algorithm, prior to trying to transmit a packet, links first check
whether the medium is busy or idle, and then transmit a packet
only when the medium is sensed idle, i.e., no interfering link
is transmitting. To control the aggressiveness of such medium
access, each link maintains a backoff timer, which is reset to
a random value when it expires. The timer runs only when the
medium is idle, and stops otherwise. With the backoff timer,
links try to avoid collisions by the following procedure:
• Each link does not start transmission immediately when

the medium is sensed idle, but keeps silent until its
backoff time expires.

• After a link grabs the channel (or medium), the link holds
the channel for a random amount of time, called the
holding time.

For simplicity, we assume backoff and holding times of link
i follow exponential distributions with means 1/bi and hi,
respectively, for some positive real numbers bi and hi. Then,
the probability for two interfering links to start transmission
simultaneously is zero (i.e., no collisions)2, and a sequence
of schedules {σ(τ)}∞τ=0 of CSMA constructs a continuous-
time reversible Markov chain3 [12], [16], [45], [46], so-called
CSMA Markov chain. To illustrate, consider a simple three-
link interference graph and its resulting CSMA Markov chain
in Fig. 1.

2This CSMA algorithm is called idealized CSMA, meaning that the
sensing is instantaneous so that collisions do not occur, which comes from
the assumption of continuous distributions of backoff and holding times.

3We refer the readers to previous works [12], [16], [45], [46] to follow
the theoretical details of CSMA Markov chain, e.g., reversibility from detailed
balance equations, ergodicity due to finite state space, and a form of stationary
distribution (1).
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(a) (b)

Fig. 1. (a) 3-link interference graph, where links 1 and 3 do not interfere with
each other, but interfere only with link 2. (b) The resulting CSMA Markov
chain for fixed parameters (b1, b2, b3) and (h1, h2, h3), where for example
the state (1, 0, 1) means that links 1 and 3 are active and link 2 is inactive.

For fixed CSMA parameters b = [bi]i∈V and h = [hi]i∈V ,
using the reversibility of Markov process {σ(τ)}∞τ=0, its sta-
tionary distribution πb,h = [πb,hσ ]σ∈I(G) can be characterized
as follows:

πb,hσ =

∏
i∈V (bihi)

σi∑
σ′∈I(G)

∏
i∈V (bihi)σ

′
i

. (1)

For a simple presentation, we let ri = log(bihi) and call ri the
transmission intensity (or simply intensity) of link i, intuitively
meaning the transmission aggressiveness of the link. Hence,
for a given r = [ri]i∈V , we also use πr instead of πb,h, i.e.,

πrσ =
exp(

∑
i∈V σiri)∑

σ′∈I(G) exp(
∑
i∈V σ

′
iri)

.

It now follows from the reversibility and ergodicity of
CSMA Markov chain that the marginal probability si(r)
that link i is scheduled under the stationary distribution πr

becomes the link i’s long-term (average) throughput or service
rate, i.e., limτ→∞

1
τ

∫ τ
0
σi(s) ds, which is given by:

si(r) = Eπr [σi] =
∑

σ∈I(G):σi=1

πrσ

=

∑
σ∈I(G):σi=1 exp(

∑
i∈V σiri)∑

σ′∈I(G) exp(
∑
i∈V σ

′
iri)

. (2)

This CSMA Markov chain models the behavior of links in a
wireless LAN, thus it can be used to assess the performance
of large-scale wireless LAN with appropriate selection of
intensity.

B. Problem Description: Utility Maximization
We aim at developing a CSMA algorithm that controls the

intensity of each link so as to make the long-term service rate
close to some fairness point of the boundary of Λ. Specifically,
each link i finds its intensity ri (i.e., CSMA’s backoff and
holding time parameters bi and hi) in a distributed manner, by
adaptively changing ri over time, so that the resulting long-
term service rates over links form a solution of the following
utility maximization problem:

(OPT) max
λ∈Λ

∑
i∈V

Ui(λi), (3)

where we denote by λ? the optimal solution. In the above, we
assume that each link i has a concave, increasing, and (twice
continuously) differentiable utility function, Ui : [0, 1] → R,
where its value represents the utility when rate λi ∈ [0, 1]
is allocated at link i. As is well-known, the various forms
of utility function enforce different concepts of fairness, e.g.,
α-fairness [47].

To achieve the desired utility maximization using a CSMA
algorithm, the core question is how each link i chooses its
intensity ri so that si(r) is the solution of (3). To this end,
we take a game-theoretic approach, where a smart design of
payoff functions for links is necessary to have the desired
property such that the solution of (3) is attained at the (Nash)
equilibrium of the game. Under such a game design, we
will consider various game learning dynamics that provably
converge to the equilibrium, where major technical challenges
for proving the convergence lie in handling a non-trivial
coupling between CSMA Markov chain and its parameter
updates.

IV. GAME DESIGN AND EQUILIBRIUM ANALYSIS

A. Optimal CSMA Game: oCSMA(β)

We first design a non-cooperative game, denoted by
oCSMA(β), which is parameterized by a constant β > 0,
then explain the rationale behind our game design.

oCSMA(β)

(i) Players. Each link i ∈ V (i.e., a node in the interference
graph G) acts as a player.

(ii) Strategy. Each player i chooses an intensity ri ∈
(−∞,∞) as its own strategy, which determines how
aggressively i accesses the medium. We use the con-
ventional notation that the strategy vector for all players
except i is r−i := (r1, r2, · · · , ri−1, ri+1, · · · , rn) and
write a strategy profile r = (ri, r−i).

(iii) Payoff. The payoff function Φi(r) of player i is designed
to be utility Ui subtracted by an incurring price Ci
(scaled by 1/β) as follows:

Φi(r) = Ui(si(r))− 1

β
Ci(r),

where Ci(r) =

∫ ri

−∞
xs′i(x, r−i)dx. (4)

Note that the payoff function of player i is determined by
how aggressively other links access the medium (i.e., r−i) as
well as how itself does (i.e., ri), and it consists of two major
terms: (i) individual utility Ui(si(r)) and (ii) incurring price
Ci(r). The parameter β > 0 quantifies ‘price level’ in the
players’ payoffs, and we realize that it balances the trade-off
between the quality of equilibria in the game (i.e., Price-of-
Anarchy) and the convergence speed to the equilibria under the
learning dynamics (see Section V). Before to analyze the game
oCSMA(β), we provide popular notions of non-cooperative
game: (i) Nash equilibrium and (ii) Price-of-Anarchy, whose
definitions are presented as follows:
Definition 1. (i) A strategy profile rNE is a Nash equilibrium
(NE) if

Φi(r
NE
i , rNE

−i) ≥ Φi(ri, r
NE
−i), ∀ri ∈ R,∀i ∈ V.

(ii) A Price-of-Anarchy (PoA) is

PoA =
maxr

∑
i∈V Ui(si(r))

minrNE
∑
i∈V Ui(si(r

NE))
.

Intuitively, we see that NE is a strategy profile for which no
player has an incentive to deviate unilaterally. Furthermore, we



1536-1276 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2017.2764081, IEEE
Transactions on Wireless Communications

5

say that a NE rNE (if exists) is non-trivial, if each player i’s
service rate at equilibrium si(r

NE) is positive for all players
i ∈ V, and trivial otherwise. The PoA indicates the ratio
between the social optimum and the worst equilibrium of the
game, and we say no PoA if PoA = 1.

B. Rationale of Price Function

To have nice properties of our game, e.g., good equilibria or
provable transfer to fully-distributed dynamics (converging to
a good equilibrium), the choice of price function is of critical
importance. This subsection is devoted to explaining how such
nice properties can be obtained from our price function (4)
which has two following design features P1 and P2.
P1. Appropriate measure of link’s contention: We choose a
price function so that it appropriately measures each link’s
contention impact on other links’ throughput. This choice
differs from other price function choices, e.g., one in ALOHA
systems, which is the key to provably have almost no Price-
of-Anarchy (see Section IV-C). Specifically, a simple algebra
gives us the following expression of our price function:
Ci(r) = si(ri, r−i) ·

∫ ri
−∞ x

s′i(x,r−i)
si(ri,r−i)

dx. Let Ri ∈ [−∞, ri]
be a continuous random variable with the density fRi(·):
fRi(x) = 1

si(ri,r−i)
∂si(x,r−i)

∂x . Then, our price function can
be regarded as the product of the service rate and Ri’s
expectation: Ci(r) = si(ri, r−i) · E[Ri].

We remark that a popular choice of price function is
Ci(r) = ri · si(ri, r−i). The intuition behind such a choice
is that the price to be paid by a link’s access intensity is
proportional to the current aggressiveness in media usage ri
multiplied by its achieved gain (i.e., throughput si(r)). This
type of choice has already been made in other works, e.g., [37]
which studies ALOHA-based MAC. However, it is unclear that
this price function provides a provable framework for no Price-
of-Anarchy. On the other hand, our design of price function
considers the expected aggressiveness E[Ri] which depends
on the relative increasing speed of the service rate in the
interval (−∞, ri). As shown later in Section IV-C, this way
of measuring link’s contention impact leads to system-wide
efficient behaviors from each link’s local decision.
P2. Indirect coupling of players’ strategies: Our price func-
tion is a function of self-strategy and its marginal distribution
of the given strategy profile, not the individual strategy values
of others. This feature enables us to develop fully-distributed
dynamics that work based only on throughput measurements
(see Section V). We first re-express the price function to better
understand how it is structured in terms of the local strategy
and other players’ strategies, as follows:

Ci(ri, r−i) =

[
xsi(x, r−i)

]ri
−∞
−
∫ ri

−∞
si(x, r−i)dx

= risi(r) + ln
(
1− si(r)

)
, (5)

where for the second term we use: first,

si(x, r−i) =

∑
σ∈I(G):σi=1 exp

(∑
j∈V rjσj

)∑
σ∈I(G) exp

(∑
j∈V rjσj

)
=

∑
σ∈I(G):σi=1 exp

(∑
j∈V \{i} rjσj

)
exp(x)∑

σ∈I(G) exp
(∑

j∈V \{i} rjσj
)

exp(xσi)

=
B exp(x)

A+B exp(x)
,

where A ≡
∑
σ∈I(G)|σi=0 exp(

∑
j∈V \{i} rjσj) and B ≡∑

σ∈I(G)|σi=1 exp(
∑
j∈V \{i} rjσj), then∫ ri

−∞
si(x, r−i)dx =

∫ ri

−∞

B exp(x)

A+B exp(x)
dx

= ln
A+B exp(ri)

A
= − ln

(
1− si(r)

)
.

From (5), the payoff function becomes:

Φi(r) = Ui(si(r))− 1

β

(
risi(r) + ln

(
1− si(r)

))
.

It is important to see that the payoff function depends only
on the local strategy ri and local service rate si(ri, r−i), not
directly on strategies or service rates of other players. This
indirect coupling, which is a unique feature in our game, is
highly convenient to develop a fully-distributed dynamics, be-
cause si(·) can be measured in the midst of playing a player’s
own strategy via CSMA without message passing, even though
the exact computation of local service rate requires heavy
computation.

C. Equilibrium Analysis: Existence, Uniqueness and Price-of-
Anarchy

In this subsection, we provide the equilibrium analysis of
our game. Three main questions of our interests are: existence,
uniqueness, and Price-of-Anarchy of the equilibrium. We now
present our main results on the equilibrium analysis in the
following theorem.

Theorem 1 (Uniqueness and no PoA). In the oCSMA(β), for
any β > 0,

(i) Existence and uniqueness. There exists a unique non-
trivial NE rNE.

(ii) Price-of-Anarchy. Furthermore, at the non-trivial NE
rNE,∑
i∈V

Ui

(
si(r

NE)
)
≥
∑
i∈V

Ui

(
si(r

?)
)
− log |I(G)|

β
, (6)

where r? represents a strategy profile such that the
service rate vector [si(r

?)]i∈V is the solution of the
optimization problem OPT in (3), i.e., [si(r

?)]i∈V = λ?.

Theorem 1, whose proof is presented in Section IV-D,
implies that there is almost no PoA (Price-of-Anarchy) in our
game, i.e., the aggregate utility at the unique non-trivial NE
can be arbitrarily close to the social optimum by choosing β
sufficiently large. Namely, PoA can become arbitrarily small:
limβ→∞ PoA = 1.

D. Proof of Theorem 1

Proof. (i) Existence and uniqueness: We first prove the exis-
tence and uniqueness of non-trivial NE using a potential game
approach. Consider the following function P (r) on the space
R+ = {r|s(r) > 0} (the set of strategies producing “non-
trivial” service rates), defined by:

P (r) , − sup
λ∈[0,1]n,µ∈P

L(λ,µ;
r

β
),
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where P is the set of all probability measures over the set of
all feasible schedules I(G), and

L(λ,µ;
r

β
) ,

∑
i∈V

Ui(λi)−
1

β

∑
σ∈I(G)

µσ logµσ

+
∑
i∈V

ri
β

( ∑
σ∈I(G)

µσσi − λi

)
.

It is easy to check that P (r) is strictly concave in r, since P (·)
is the infimum of −L(·) which is a family of affine functions
in r. We now show that oCSMA(β) is an ordinal potential
game [48] with the potential function P (r), i.e., sgn∂Φi(r)

∂ri
=

sgn∂P (r)
∂ri

, for all i ∈ V. We first have:

∂Φi(r)

∂ri
=

∂

∂ri

(
Ui(si(r))− 1

β

∫ ri

−∞
xs′i(x, r−i)dx

)
=

∂si(r)

∂ri

(
U ′i(si(r))− ri

β

)
= si(r)

(
1− si(r)

)(
U ′i(si(r))− ri

β

)
, (7)

where the last equality comes from a simple algebra:

∂si(ri, r−i)

∂ri
= si(ri, r−i)

(
1− si(ri, r−i)

)
, (8)

and second we have:
∂P (r)

∂ri
=

1

β

(
U ′−1
i (ri/β)− si(r)

)
. (9)

Thus on the space {r|s(r) > 0}, sgn∂Φi(r)
∂ri

= sgn∂P (r)
∂ri

.
From the standard results in potential games and strict con-
cavity of P (·), the solution that maximizes P (·) is a NE rNE,
where each player’s strategy is a best response to the others’
strategies at NE, and is non-trivial and unique.
(ii) Price-of-Anarchy: Consider an approximated problem A-
OPT of OPT, given by:

(A-OPT)
max

λ∈[0,1]n,µ∈P

∑
i∈V

Ui(λi)−
1

β

∑
σ∈I(G)

µσ logµσ

subject to λi ≤
∑

σ∈I(G)

µσσi, ∀i ∈ V. (10)

Since the objective function is concave and the entropy follows
−
∑
σ∈I(G) µσ logµσ ≤ log |I(G)|, A-OPT problem has a

unique solution (λo,µo) and the solution λo satisfies that∑
i∈V

Ui(λ
o
i ) ≥ max

λ∈Λ

∑
i∈V

Ui(λi)−
log |I(G)|

β
. (11)

We now consider the Lagrangian L of A-OPT with dual
variables k = [ki]i∈V :

L(λ,µ;k) =
∑
i∈V

Ui(λi)−
1

β

∑
σ∈I(G)

µσ logµσ

+
∑
i∈V

ki(
∑

σ∈I(G)

µσσi − λi)

=
1

β

∑
i∈V

βki · Eµ[σi]−
∑

σ∈I(G)

µσ logµσ



+
∑
i∈V

(Ui(λi)− kiλi) ,

where Eµ[·] denotes the expectation for distribution µ. The
solution of A-OPT is the minimum point of the dual function,
which is given by

D(k) = sup
λ∈[0,1]n,µ

L(λ,µ;k),

where L(λ,µ; ·) is maximized at (λo,µo) when µoσ = πrσ
with r = βk, and λoi = U ′−1

i (ki). Let ro be the strategy such
that ro = βko, where ko is the solution of minD(k), thus

si(r
o) = U ′−1

i (roi /β) = λoi for all i ∈ V. (12)

Note that the strategy vector rNE maximizing the potential
function P (r) satisfies that si(rNE) = U ′−1

i (rNE
i /β), from

(9). This completes the proof, because rNE coincides with the
strategy vector ro = βko that minimizes D(k), and thus (6)
holds from (11) and (12).

V. GAME-INSPIRED DYNAMICS: DISTRIBUTEDNESS,
CONVERGENCE, AND OPTIMALITY

In Section IV, we have established desirable equilibrium
properties in oCSMA(β), such as uniqueness and no Price-of-
Anarchy (thus asymptotic utility optimality). In this section,
we consider game (learning) dynamics to study how players’
strategy (i.e., intensity in oCSMA(β)) evolves over time and
converges (if it does). We aim at developing dynamics that
(i) operate in a fully-distributed manner, and (ii) converge to
the unique non-trivial equilibrium in Section IV. By “fully-
distributed”, we mean that links update their strategies without
any message passing among them, relying only on pure local
information and observations. In other words, the strategy
update of a link does not require the payoffs and the strategies
of other links. To that end, we first consider three popular
dynamics in non-cooperative game theory (best response dy-
namics, Jacobi dynamics, and gradient dynamics), and discuss
the major challenges in terms of fully distributed operations,
when applying such standard dynamics to oCSMA(β). Then,
we develop new fully-distributed dynamics, investigate their
convergence and optimality on the strength of stochastic ap-
proximation theory, and finally discuss the rationale behind the
dynamics compared to the existing optimal CSMA algorithms.

A. Preliminaries: Three Standard Game Dynamics

Best response dynamics. The most popular dynamics in non-
cooperative games is the best response (BR) dynamics. In the
BR dynamics, each player i chooses its best strategy, given
the strategy vector (at the previous frame) for all other players
except i, which gives a maximum payoff to the player, i.e., at
t-th frame

ri(t+ 1) = BRi(r−i(t)) := arg max
ri∈R

Φi

(
ri, r−i(t)

)
,

which leads to a fixed point of following function in
oCSMA(β): for all i ∈ V ,

ri(t+ 1) = βU ′i

(
si

(
ri(t+ 1), r−i(t)

))
. (13)
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Jacobi dynamics. The second dynamics is Jacobi dynamics. Its
basic idea is to adjust each player’s strategy gradually towards
its best response strategy, i.e., at t-th frame

ri(t+ 1) = ri(t) + α

(
BRi(r−i(t))− ri(t)

)
, (14)

where α ∈ (0, 1] is a smoothing parameter4. The smoothing
parameter α captures how aggressively the dynamics follows
the BR dynamics, where α = 1 corresponds to the BR
dynamics.
Gradient dynamics. Finally, we investigate the gradient dy-
namics [50], which can be viewed as a ‘better reply’ dy-
namics5. At each frame, each player i first determines the
gradient of its payoff (4), ∇Φi(r), then updates its strategy in
the gradient direction, i.e., at t-th frame,

ri(t+ 1) = ri(t) + α · ∂Φi(ri, r−i(t))

∂ri
,

where α > 0 is the step-size. In oCSMA(β), the gradient
dynamics becomes: for all i ∈ V ,

ri(t+ 1)

= ri(t) + α · ∂si(ri, r−i(t))
∂ri

(
U ′i (si(r(t)))− ri(t)

β

)
,(15)

since the gradient of player i from (4) is given by:

∇Φi(r) =
∂Φi(r)

∂ri
=
∂Ui(si(r))

∂ri
− 1

β

∂Ci(r)

∂ri

=
∂si(r)

∂ri

(
U ′i

(
si(r)

)
− ri
β

)
.

The interpretation of the gradient dynamics from an economic
perspective is that if the marginal utility exceeds the marginal
price, i.e., ∇Φi(r) > 0, link i’s intensity is increased to
achieve more utility, and if the marginal price exceeds the
marginal utility, i.e., ∇Φi(r) < 0, link i’s intensity is de-
creased to reduce the transmission price.

In developing the learning dynamics for oCSMA(β), two
primary goals are fully-distributed operation and convergence
to the unique NE (which is also socially optimal). To that end,
an immediate and obvious attempt is to apply the aforemen-
tioned three standard dynamics to our case. However, we have
the following two challenges in achieving our goals.
(i) Hardness of convergence to NE under fully-distributed dy-
namics. It is known that that for a broad class of games, there
exists no generalized uncoupled dynamics which operates even
in a “partially”-distributed manner (i.e., operating based on the
observation of other players’ payoff, and thus with message
passing), converging to NE [21]. However, in a special class
of games, e.g., finite ordinal potential games, it has been
shown that many adaptive learning dynamics are guaranteed
to converge to a pure NE [48], e.g., best response dynamics,
better reply dynamics, fictitious play, and regret matching.
Therefore, by applying three dynamics in Section V-A to
oCSMA(β), convergence to the unique NE is guaranteed,

4Jacobi dynamics generally makes a smoother move than the best
response dynamics, where a small smoothing parameter plays the role of
compensating for the instability of the best response dynamics, see [49].

5Sometimes, it is called better response dynamics.

since oCSMA(β) is an ordinal potential game. As described in
Section V-A, however, in each of three standard dynamics (13),
(14), and (15), player i requires message passing with other
players to know their current strategies to determine the next
strategy, in particular for computing the service rate si(r) or its
derivative ∇si(r), even though they do not directly need r−i
or s−i(r). We overcome this challenge by smartly exploiting
the locally-observed service rate rather than computing the
exact marginal distribution at every frame.
(ii) Long convergence time for classical dynamics. In updat-
ing strategies, locally-observed service rate is not the actual
marginal distribution, because after a strategy is played, it
takes long time to reach the stationary regime. In other words,
the observed service rates may be far from the ‘stationary’
service rates. This time-scale issue incurs additional challenges
of extremely long convergence times, because a certain amount
of time (formally called mixing time) to reach the stationary
regime is required for each strategy update, and for conver-
gence, long strategy update iterations are necessary. This chal-
lenge prevents us from ensuring the convergence to NE under
the three dynamics in Section V-A when exploiting locally-
observed service rates. We tackle this challenge by adopting
special learning dynamics, called stochastically-approximated
dynamics that utilize the time-aggregated service rates in the
strategy updates.

B. Fully-Distributed Stochastically-Approximated Dynamics
We now propose three learning dynamics, all of which

provably converge to the unique non-trivial NE and operate
in a fully-distributed manner. They are theoretically supported
by the theory of stochastic approximation, and therefore, we
call them (i) SA-BRD (SA-Best Response Dynamics), (ii)
SA-JD (SA-Jacobi Dynamics), and (iii) SA-GD (SA-Gradient
Dynamics).
Algorithm description. In all three dynamics, time is divided
into discrete frames t = 0, 1, . . . , where the frame duration is
fixed by, say the time to transmit a MAC packet of a fixed size.
We first let ŝi(t) and s̄i(t) be the instantaneous and aggregate
service rate of player i at and until frame t, respectively. ŝi(t)
denotes the number of transmitted packets at link i over frame
t, and

s̄i(t) =
1

t

t−1∑
n=0

ŝi(n). (16)

We now describe three algorithms.

At t-th frame, each link i ∈ V updates ri(t) as follows:

(i) SA-BRD (Stochastically-Approximated Best Response
Dynamics)6

ri(t+ 1) =

[
βU ′i

(
s̄i(t)

)]rmax

rmin

, (17)

(ii) SA-JD (Stochastically-Approximated Jacobi Dynamics)

ri(t+ 1) =

[
ri(t) + α

(
βU ′i

(
s̄i(t)

)
− ri(t)

)]rmax

rmin

, (18)

where α ∈ (0, 1] is a constant.

6[·]ba ≡ max(b,min(a, ·)).
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(iii) SA-GD (Stochastically-Approximated Gradient Dy-
namics)

ri(t+ 1) =

[
ri(t) + α

∂si(r(t))

∂ri(t)

(
U ′i

(
s̄i(t)

)
− ri(t)

β

)]rmax

rmin

, (19)

where α ∈ (0, 1] is a constant.

The above three dynamics are seemingly simple variants
of the classical dynamics in Section V-A. Recall that com-
puting the service rate directly produces message passing
among players, and measuring the ‘stationary’ service rate
si(ri(t), r−i(t − 1)) under a CSMA algorithm might in-
cur the long convergence issue (i.e., it takes the mixing
time of the underlying CSMA Markov chain). Note that
ri(t), s̄i(t), Ui(·),∇si(r(t)) are locally obtained due to the
feature of CSMA in (8). The key idea of our new fully-
distributed dynamics to overcome such challenges is to use
the locally maintained aggregate service rate s̄i(t) instead
of si(r(t)) when computing the best response or gradient
direction.
Convergence and optimality. For provable convergence anal-
ysis, we make the following assumption (A1), which means
that we choose rmin and rmax such that the interval [rmin, rmax]
is large enough to include the optimal solution of A-OPT. The
explicit values of rmin and rmax can be also computable [41].

(A1) If r0 ∈ Rn solves for all i ∈ V , r0
i = βU ′i

(
Epr0 [σi]

)
,

then rmin ≤ r0
i ≤ rmax for all i ∈ V . Note that, for example,

if the utility function Ui(·) is such that U ′i(0) <∞, then (A1)
for r0

i is satisfied when rmin ≤ βU ′i(1) and rmax ≥ βU ′i(0).
One can easily verify that (A1) provides a guarantee that the
convergent point of our three dynamics actually belongs to a
bounded region.

We now present the main theorem, which states that all of
three dynamics converge to the unique non-trivial NE, which
is in turn asymptotically equals to the socially optimum, as
described in Section IV-C.
Theorem 2 (Convergence and Optimality). Under (A1), for
arbitrary initial condition r(0), SA-BRD, SA-JD, and SA-
GD converge to the unique non-trivial NE rNE, where rNE is
defined in Theorem 1, in the sense that

lim
t→∞

r(t) = rNE, component-wise, almost surely.

The proof of Theorem 2 is presented in Appendix, but we
briefly provide the proof sketch for readers’ convenience. Each
of SA-BRD, SA-JD and SA-GD is interpreted as a stochastic
approximation procedure with the controlled Markov noise,
and the main technical challenge lies in handling a non-trivial
coupling between the underlying CSMA Markov chain and
CSMA parameter r updates. The use of aggregate service
rates s̄(·) provides a provable convergence, in the way that
we intuitively expect that by averaging empirical service rates
which has an effect of 1/t step-size (see the relation (16)),
the speed of variations of the intensity r tends to zero after
sufficiently long time, and its limiting behavior is understood
by ordinary differential equations (ODE), see Appendix for
the mathematical detail. The additional technical challenge
dealing with SA-JD, SA-GD (not existing for SA-BRD) is
that they have higher-order temporal dependencies in their

updating rules, i.e., use the current strategy ri(t) for obtaining
the next strategy ri(t + 1). To handle the issue, we define
a ‘virtual’ process (see νi(t) and υi(t) in Appendix) and
argue its convergence under the relation to that of the original
process {ri(t)}t∈Z≥0

.
Comparison with existing algorithms. The dynamics update
rules in optimal CSMA have been studied in other papers, e.g.,
[41], [15], and [40]. We briefly summarize their underlying ra-
tionale, and compare them with three algorithms in this paper.
In [41] and [15], the authors develop utility optimal CSMA
algorithms, which we refer to as JW and EJW, respectively,
and they show that the (asymptotically) optimal solution of
A-OPT can be achieved by the following algorithm:

ri(t+ 1) = ri(t) + ai(t)

(
U ′−1
i

(
ri(t)

β

)
− ŝi(r(t))

)
, (20)

where ai(t) is a positive step-size function of link i at frame t.
The key idea of this algorithm is that the transmission intensity
is updated by quantifying the supply-demand differential, and
the new intensity is locally applied to the system with more
moderate updates with the belief that the system approaches
to what is desired. Technically, both algorithms iteratively
update each link’s intensity based on the gradient of the
dual problem of A-OPT, where the transmission intensity
plays a role of Lagrangian multiplier and step-size function
is set to decrease to sufficiently small positive values for
convergence guarantees. In updating the intensities as per
(20), the empirical service rate ŝi(r(t)) has been used instead
of computing the exact service rate si(r(t)) towards fully-
distributed operation. The authors in [41] take an exponentially
increasing length of the update intervals in JW, i.e., exp(

√
t)

for t-th frame, with ai(t) = 1/t, so that ŝi(·) becomes close
to si(r(t)), while the authors in [15] use a fixed duration of
update intervals with a decreasing step-size function ai(·) with
the condition of

∑
t ai(t) =∞,

∑
t ai(t)

2 <∞ in EJW.
Instead, all of our proposed dynamics SA-BRD, SA-JD, and

SA-GD are motivated by game-inspired learning dynamics by
designing the rational behavior of wireless links under CSMA
in a non-cooperative game framework. Nevertheless, our algo-
rithms may be interpreted from an optimization perspective.
First, SA-BRD and SA-JD correspond to approximations (in
the sense that they exploit locally-observed aggregate service
rates) of the perfect steepest ascent algorithm of OPT using
the smoothing parameter α ∈ (0, 1] to smooth out the effect
of random behavior of wireless links. In particular, we found
that the algorithm in [40] becomes equivalent to SA-BRD,
where the transmission intensity of each link i is set to be
proportional to the first derivative of the utility function Ui(·)
at the empirical rate until the corresponding instant. This
algorithm is inspired by a steepest ascent method of OPT,
i.e., ri(t + 1) = β · U ′i

(
s̄i(t)

)
. This implies that our work

reverse-engineers that in [40] in the game-theoretic framework.
However, other two algorithms SA-JD and SA-GD are the
new algorithms which can be developed by our game-theoretic
framework, which shows the value of investigating optimal
CSMA from a different angle. To interpret SA-GD from an
optimization context, it is a variant (i.e., by using the locally
maintained aggregate service rate) of the steepest ascent
method of the optimization problem: for i ∈ V , maxriΦi(r),
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Fig. 2. Interference graph topologies: basic topologies
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Fig. 3. rand topology of 20 nodes, 28 links

with a constant step-size α. Despite various forms of fully-
distributed algorithms from optimization or game theoretic
perspective, their convergence and optimality is from smartly
applying the stochastic approximation theory to the problem.

VI. NUMERICAL RESULTS

We provide numerical results that show our analytical find-
ings of game dynamics, which we simply call SA-dynamics,
by considering various interference network topologies.
Setup. For numerical experiments, we consider proportional
fairness across users, i.e., Ui(·) = log(·) for all users i, and
simply fix the unit duration for all dynamics. Since network
utility has negative value in our framework of log(·), to get
more intuitive values, we use GAT (Geometric Average of user
Throughput) instead, which is defined as (Πi∈V si(r(t)))1/n.
Note that under the proportional fairness, max GAT equals to
max the aggregate log utilities.

In this paper, we consider “basic” topologies to show that
our game dynamics converge to the accurate non-trivial NE,
and a random topology that is regarded as a collection of such
basic topologies, for more general results. The interference
network topologies G = (V,E) under which our results
are presented here are star, grid, bipartite, complete, and
random graphs, as classified into the following 5 topologies
and depicted in Fig. 2 and Fig. 3:

◦ star: Star interference graph of 5 nodes, 4 links.
◦ grid: Grid interference graph with of 25 nodes, 40 links.
◦ bipa: Bipartite interference graph of 20 nodes, 100 links.
◦ comp: Complete interference graph of 5 nodes, 10 links.
◦ rand: Random interference graph of 20 nodes, 28 links.

(i) SA-dynamics converge to the unique non-trivial NE:
We first demonstrate the result of Theorem 2 for the star
topology in Fig. 4(a) by showing the convergence of intensity
and GAT to the unique non-trivial NE under SA-BRD, SA-JD,
and SA-GD, where we use β = 1.0 and α = 0.5. We consider
this simple case to rigorously support that our dynamics find
the “accurate” solution (i.e., the unique NE), where the exact
solution can be easily characterized. For the star topology,
the accurate solution with β = 1.0 is attained at r?1 = 5.35 for
the hub node, and r?2 = 1.5 for the other spoke nodes, thus
the optimal GAT value, say U?, becomes 0.516. The intensity
updates of the hub node and the corresponding GAT under our
SA-dynamics are shown to converge to the unique non-trivial
NE r?1 and U?, in Fig. 4(a). The convergence speeds of all
algorithms do not show much difference in this simple setup.
Figs. 5(a), 6(a), 7(a), and 8(a) also illustrate the convergence
of our game-inspired dynamics to the unique non-trivial NE
for grid, bipa, comp and rand graph, respectively.

(ii) SA-dynamics converge faster than optimization-based
algorithms: Second, we compare the convergence speed of
the proposed game dynamics and other utility optimal CSMA
algorithms JW and EJW described in Section V-B. For both
algorithms, we run the simulation under the same setup as
in SA-dynamics. Fig. 4(b), Fig. 5(b), Fig. 6(b), Fig. 7(b), and
Fig. 8(b) show the traces of transmission intensities and GATs
of SA-BRD, JW and EJW for star, grid, bipa, comp, and
rand topology, where we plot SA-BRD instead of plotting all
three SA-dynamics since the traces are similar as we see in
(i). In particular, regarding the results for the star topology
in Fig. 4(b), we observe that SA-BRD converges faster to the
r?1 = 5.35 and U? = 0.516 within 50000 iterations, while JW
and EJW are still slowly moving towards the optimal solution.

(iii) The convergence speed is relatively slower under higher-
connected interference graphs: As the figures demonstrate,
the convergence speed of the dynamics is dependent on the
topology characteristics. Based on numerical results, bipa
and comp topologies have relatively slower convergence speed
than other topologies. As the interference graph has complex
interfering relation among links, e.g., comp and bipa, the
learning dynamics require more iterations to converge, since
the CSMA Markov chain is likely to stay at one state and
thus it has much longer mixing time. We run simulations under
various interference topology, and find the slower convergence
speed under bipa and comp graph than other cases, see
Figs. 6 and 7.

(iv) Trade-off between efficiency and convergence speed:
Finally, we present the results that show the trade-off be-
tween Price-of-Anarchy of SA-dynamics and their conver-
gence speeds, to support the findings stated in Theorem 1,
i.e., PoA of SA-dynamics is asymptotically 1/β. To that end,
we vary β and plot the GAT at the converged non-trivial NE.
For the relation between convergence speed and β, we also
measure the convergence time to reach the NE. Fig. 9 shows
that, as β grows, SA-dynamics require exponentially long time
to reach the equilibrium point, and the corresponding point
becomes closer to the socially optimal point. According to
the numerical experiments, the GAT with β = 3.0 is 0.4986
and converges after almost 5× 108 iterations, while that with
β = 1.0 is 0.4342 and converges after 4× 106 iterations.

VII. EXTENSION: SINR-BASED INTERFERENCE AND
COLLISIONS

We have so far considered a simple interference model that
are captured just by the topological condition and an idealized
scenario, i.e., no collision. However, in practical situations,
(i) collisions could not be avoided completely, and/or (ii)
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successful transmission is indeed determined by the aggregated
interference level among links. This section is devoted to
how our game-inspired approach can be also applied to those
practical scenarios. The key step in these extensions is the
construction of a CSMA Markov chain with a product-form of
stationary distribution. To this end, we can use the techniques
developed for (i) and (ii) by [42] and [43], respectively.

A. CSMA with no collisions under the SINR model

Model. Let dji denote the distance between the links j and
i, ζ ≥ 2 denote the path loss exponent, and P denote the
transmission power at each link. We assume white Gaussian
thermal noise with variance ω2 at all links. Although all the
active links in the network can potentially contribute to the
interference, the aggregate interference from the links beyond
the certain distance, referred to as the close-in radius, can be
safely neglected to be less than amount of ω2

ci [51]. Denote
N (i) as the set of links who are within the close-in radius
of link i. Now, for a fixed schedule σ, the total interference
power at link i is given by Ii(σ) =

∑
j∈N (i):σj=1 Pd

−ζ
ji ,

and thus the SINR at link i under the schedule σ is given
by: ηi(σ) =

Pd−ζii
Ii(σ)+ω2

ci+ω
2 . Under this SINR model, we say

that link i can successfully transmit if its SINR exceeds a
pre-determined SINR requirement κi, i.e., ηi(σ) ≥ κi. In
contrast to the protocol model where two interfering links
cannot transmit simultaneously, active links can coexist under
the SINR model if they can make successful transmissions at

the same time. Thus, schedule σ is said to be feasible if the
set of active links satisfy the SINR requirements. Then, the set
of all feasible schedules under the SINR model, denoted by S,
is defined as: S , {σ ∈ {0, 1}n | ηi(σ) ≥ κi,∀i : σi = 1},
and the throughput region under the SINR model ΛS is the
convex hull of S.

SINR-aware feasibility probing mechanism. One significant
challenge under the SINR model is that multiple links can
transmit successfully at the same time, and such a coexistence
relationship is dynamic and complicated, while the feasibility
of a schedule under the protocol model can be easily verified
only by the topological structure, see Section III-A. To tackle
this challenge and construct a (continuous-time) Markov chain
structure of a CSMA network under the SINR model as we
did under the protocol model, where each state in the Markov
chain corresponds to a feasible schedule, we need to ensure
that the network always stays in a feasible schedule. To this
end, we employ a SINR-aware feasibility probing mechanism,
motivated by the approach in [42]. The role of this mechanism
is to enable each link to judge its coexistence feasibility with
the existing active links and avoid possible violations to the
SINR requirements, by utilizing carrier sensing and control
messages (i.e., interference tolerance level) exchange.

In this probing mechanism, we use the interference toler-
ance level, defined as the interference power that the link can
further tolerate without violating the SINR requirement, as
follows: for link i at time τ ,
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Ti(τ) =
Pd−ζii
κi
− Ii(τ)− ω2

ci − ω2, (21)

where Ii(τ) = Ii(σ(τ)) is link i’s aggregated interference
power from active links at time τ . When a link is activated, it
should tolerate the aggregated interference from other active
links, and meanwhile, its incurring interference would not
violate the SINR requirements of other ongoing transmissions.
At time τ , each active link j keeps broadcasting its interference
tolerance level Tj(τ) in the control message (using the separate
frequency from data signal) to its nearby links. Then, when
an inactive link i is about to be active, link i can estimate
its coexistence feasibility, i.e., (i) Ti(τ) > 0 and (ii) for any
active link j ∈ N (i), the interference from link i to j is no
greater than Tj(τ). Along the same line as in conventional
idealized CSMA in Section III-A, each link i contends for
transmission using the random backoff and holding time
(following exponential distributions with means 1/bi and hi),
except that the backoff timer is suspended when it would
violate any existing transmission of nearby links (using SINR-
aware feasibility probing mechanism).
CSMA and its Markov chain under the SINR model. By
the aid of the probing mechanism, a sequence of schedules
{σ(τ)}∞τ=0 of CSMA under the SINR model constructs a
continuous-time Markov chain [42]. The Markov chain is
shown to be ergodic and time-reversible with the stationary
distribution of the following form (see Section IV in [42] for
the details): for σ ∈ S,

πrσ =
exp

(∑
i∈V σiri

)∑
σ′∈S exp

(∑
i∈V σ

′
iri
) , (22)

where r is transmission intensity of links, as defined in
Section III-A. This stationary distribution has similar product
form to that of CSMA Markov chain under the protocol
model, see (1) and (22), except the set of feasible states.
Now, the marginal probability si(r) under the stationary
distribution (22) becomes the link i’s long-term throughput as
in (2), and the utility maximization problem in this model can
be expressed as: maxλ∈ΛS

∑
i∈V Ui(λi). All the remaining

analysis including (i) game design, (ii) NE analysis, and (iii)
game-inspired distributed dynamics can be applied without
significant changes.

B. CSMA with collisions under the protocol model
The assumption of continuous distributions of backoff and

holding times easily removes the need to consider collisions
under the protocol model. However, a real system is discrete,
thus collisions naturally occur when two interfering links
contend at a same slot. In this discrete system, link throughputs
are characterized in more complicated way by considering the
transmission loss due to collisions. Following the approach in
[43], we will present a discrete-time Markov chain for a CSMA
with collisions under the protocol model, which also enables
us to extend our game-inspired CSMA dynamics achieving
utility optimality to the case with collisions.
Model and CSMA algorithm with collisions. We describe
a basic CSMA/CA algorithm with fixed transmission proba-
bilities and fixed duration of slot. In each slot, if link i is
inactive and if the medium is idle, link i starts transmission
with probability pi. If at a certain slot, link i did not choose to

transmit, but an interfering link (captured by an interference
graph G) starts transmitting, then link i keeps silent until that
transmission finishes. A collision occurs when interfering links
try transmitting at the same slot.

To deal with issues not presented in CSMA network with
no collisions, let each link transmit a short probe packet with
length ` before the data is transmitted, which enables to avoid
collisions of long data packets. Assume that a successful
transmission of link i lasts µi, which includes a constant
overhead µ̄ (due to RTS, CTS, ACK, DIFS, etc.) and the
data payload µd

i , which is a random variable with mean
Mi = E[µi]. For a fixed schedule σ, let T (σ) denote the set
of links having a successful transmission (i.e., no collisions
with interfering links at the slot), C(σ) denote the set of links
that are experiencing collisions, and h(σ) denote the collision
number, i.e., the size of C(σ). Clearly, any active link of a
schedule σ is in either T (σ) or C(σ).
Markov chain of CSMA with collisions. Now, we can
construct the underlying discrete-time Markov chain, which
evolves slot by slot. The state of the Markov chain in a slot t is
w(t) , {σ(t), [(li(t), ei(t)) | ∀i : σi(t) = 1]}, where li(t) is
the total length of the current packet that link i is transmitting,
and ei(t) is the remaining time before the transmission of link
i ends. As detailed in Section II and Appendix of [43], a se-
quence of {w(t)}t∈N is shown to be ergodic and almost time-
reversible discrete-time Markov chain. Moreover, for a given
transmission probability p = [pi]i∈V , its stationary distribution
has a simple product-form, from which the probability of a
schedule σ can be obtained as follows (see Theorem 1 in [43]
for details):

πσ =
1

Z

(
`h(σ) ·

∏
i∈T (σ)

Mi

)
·
∏
i∈V

pσii (1− pi)1−σi . (23)

To see how we can apply our game-based approach for
idealized CSMA to the CSMA with collisions, we first re-write
the distribution (23) with parameter % = [%i]i∈V , defined as
Mi = µ̄+M0 ·exp(%i). In particular, % is a vector representing
transmission length of links, i.e., M0 · exp(%i) is the mean
length of the data payload where M0 is a constant reference
payload length. Then, for a given %, the distribution is re-
written as:

π%σ =
1

Z(%)
g(σ) ·

∏
i∈T (σ)

(µ̄+M0 · exp(%i)) ,

where g(σ) = `h(σ) ·
∏
i∈V p

σi
i (1 − pi)

1−σi is not related
to %, and Z(%) is a normalizing term. Then, a throughput
(or service rate) of link i in terms of data payload, i.e., the
stationary probability that link i transmitting a data payload,
is given by: si(%) = M0·exp(%i)

µ̄+M0·exp(%i)

∑
σ:i∈T (σ) π

%
σ.

If link i is transmitting successfully at a schedule σ, i.e.,
i ∈ T (σ), it is either transmitting the overhead or the data
payload. Now, this can be captured by the detailed state (σ, z),
where zi = 1 if i ∈ T (σ) and it transmits the payload,
and zi = 0 if i ∈ T (σ) and it transmits the overhead.
Denote the set of all possible detailed states by D(G), and
define the throughput region ΛD of a CSMA network with
collisions as the convex hull of D(G). Then, we have the
following product-form stationary distribution of the detailed
state (σ, z) ∈ D(G) [43]:
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π%(σ,z) =
1

E(%)
g(σ, z) · exp

(∑
i∈V

zi%i

)
,

where g(σ, z) = g(σ) · (µ̄)|T (σ)|−1′zM1′z
0 , and E(%) is a

normalizing term. Clearly, this provides alternative expression
of the service rate si(%) =

∑
(σ,z)∈D(G):zi=1 π

%
(σ,z). Now, the

utility maximization problem in this model can be expressed
as: maxλ∈ΛD

∑
i∈V Ui(λi). Note that the stationary distribu-

tion and service rate parameterized by % have a similar form
to those of CSMA Markov chain in (1) and (2). The only
difference is that this discrete-time Markov chain is controlled
by a parameter % with a set of feasible states D(G). Therefore,
all the remaining analysis including (i) game design, (ii) NE
analysis, and (iii) game-inspired distributed dynamics can be
extended to this case (i.e., CSMA with collisions), by applying
the results with respect to transmission length % instead of
transmission intensity r.

VIII. CONCLUSION

Despite a large array of game-theoretic studies on wireless
MAC, to the best of knowledge, this is the first game-theoretic
work that is utility optimal over the maximum throughput
region. We start by designing a non-cooperative CSMA game
whose equilibrium properties (i.e., uniqueness and Price-of-
Anarchy) are first analyzed, and propose three game-inspired
dynamics based on the idea of stochastic approximation theory.
Our theoretical findings exploit the features of CSMA, where
the price function is smartly designed so that the NE is unique
and asymptotically close to the social optimum as well as
fully-distributed dynamics are feasible. Our main contribution
lies in developing a different style of fully-distributed optimal
CSMA algorithms inspired from a game-theoretic approach,
which we believe, provides useful insights and interests with
the support from several efforts in literature ensuring practical
values of our theoretical results.

APPENDIX: PROOF OF THEOREM 2

A. Proof of Theorem 2: SA-BRD
To prove that SA-BRD converges to the non-trivial NE, we

show that in Step 1, the evolutions of strategies in SA-BRD
asymptotically approach deterministic trajectory. In next step,
we prove that the resulting deterministic trajectory converges
to the non-trivial NE. To do this, we use a similar approach as
that used in Theorem 1 of [52] and Corollary 8 of [53][pp.74].
Step 1. The first step is to approximate the dynamics of
strategies when t is large by dynamics of a continuous-time
ordinary differential equation (ODE) system, by introducing
continuous-time interpolation of strategies. We start with the
definition of s̄i(t),

s̄i(t) =
1

t

t∑
n=0

ŝi(n) = s̄i(t− 1)− 1

t
(s̄i(t− 1)− ŝi(t)). (24)

SA-BRD algorithm (17) then becomes approximately as fol-
lows when t grows large:

ri(t+ 1)

(a)
= β

(
U ′i(s̄i(t− 1))− 1

t
(s̄i(t− 1)− ŝi(t))U ′′i (s̄i(t− 1))

)

= βU ′i(s̄i(t− 1)) +
1

t

(
− βU ′′i (s̄i(t− 1))

)
(s̄i(t− 1)− ŝi(t))

(b)
= ri(t) +

1

t
g(ri(t))

(
U ′−1
i

(
ri(t)

β

)
− ŝi(t)

)
, (25)

where

g(x) = −βU ′′i (U ′−1
i (

x

β
)) > 0, (26)

for concave, increasing utility function. The equality (a) holds
when t is sufficiently large, and the equality (b) comes from
the SA-BRD rule at time t:

ri(t) = βU ′i(s̄i(t− 1)), and thus s̄i(t− 1) = U ′−1
i

(
ri(t)

β

)
.

Now, we define κ(t) :=
∑t
j=1

1
j where κ(0) = 0. We take

continuous-time interpolation from the discrete-time sequence
{r(t)}t∈Z≥0

in the following way: define {r̄(τ)}τ∈R+
as:

∀t ∈ Z≥0, for all τ ∈ [κ(t), κ(t + 1)), r̄i(τ) = ri(t) +

(ri(t+ 1)− ri(t))× τ−κ(t)
κ(t+1)−κ(t) . Also define continuous-time

instantaneous service rate as ŝi(τ) = ŝi(t) · 1κ(t)≤τ<κ(t+1)
7.

It should be clear that SA-BRD (25) is a stochastic approxi-
mation algorithm with controlled Markov noise as defined in
[15], [52], [53]. We can now easily check follows:

i. We set the strategy domain to the compact set [rmin, rmax].
ii. The transition kernel of [ŝi(t)]i∈V is continuous in r(t)

and corresponding Markov chain is ergodic with station-
ary distribution πr for fixed r.

iii. The function g(ri)
(
U ′−1
i

(
ri
β

)
− ŝi

)
is continuous and

Lipschitz in ri, uniformly in ŝi due to given properties of
utility function and boundedness of strategy set.

iv. ŝ(t) is a stochastic process with values in a finite space.
Then applying Theorem 1 of [52] to SA-BRD, we get follow-
ings: Let T > 0 and fix w > 0. Denote by r̃w(·) the solution
on [w,w + T ] of the following ODE system: ∀i ∈ V ,

ṙi(τ) = g(ri(τ))

[
U ′−1
i

(
ri(τ)

β

)
−
∑
σ

πr(τ)
σ σi

]
, (27)

with r̃w(w) = r̄(w). Then, we have almost surely,
limw→∞ supτ∈[w,w+T ] ‖r̄(τ) − r̃w(τ)‖ = 0. Note that if the
ODE system (27) has a unique fixed point r?, then we would
have limτ→∞ r̃(τ) = r?. As a consequence, we would also
have limt→∞ r(t) = r?.
Step 2. The second step of the proof consists in showing that
(27) is interpreted as the subgradient algorithm of the dual
of A-OPT, using a similar technique as in [14]. The Karush-
Kuhn-Tucker(KKT) condition for dual variable k is given by:

U ′−1
i (ki)−

∑
σ

πrσσi = 0, ∀i ∈ V, (28)

with r = βk. Now the subgradient algorithm corresponding
to (28) is: for all i ∈ V ,

ṙi =

(
U ′−1
i

(
ri
β

)
−
∑
σ

πrσσi

)
. (29)

Note that (29) is equivalent to (27) since g(·) > 0 for concave,
increasing utility function. Finally, A-OPT is a strictly convex

71E is the indicator function for the event E.
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optimization problem with unique solution, and hence this sub-
gradient algorithm converges to its unique solution ro. Using
ro = rNE and Step 1, we complete the proof of SA-BRD’s
convergence to the unique non-trivial rNE of oCSMA(β).

B. Proof of Theorem 2: SA-JD

Step 1. We first define a sequence {ν(t)}t∈Z≥0
derived from

{r(t)}t∈Z≥0
as:

νi(t) = ri(t)− (1− α) · ri(t− 1),

ri(t) = α · νi(t)
α

+ (1− α) · ri(t− 1). (30)

Recall SA-JD’s update rule (18), then under (A1), it is
represented as

νi(t+ 1) = ri(t+ 1)− (1− α)ri(t) = αβU ′i(s̄i(t))

(a)
= αβU ′i

(
s̄i(t− 1)− 1

t
(s̄i(t− 1)− ŝi(t))

)
(b)
= αβ

(
U ′i(s̄i(t− 1))− 1

t
(s̄i(t− 1)− ŝi(t))U ′′i (s̄i(t− 1))

)
= αβU ′i(s̄i(t− 1)) +

1

t
αg

(
νi(t)

α

)
(s̄i(t− 1)− ŝi(t))

(c)
= νi(t) +

1

t
αg

(
νi(t)

α

)(
U ′−1
i

(
νi(t)

αβ

)
− ŝi(t)

)
, (31)

where g(·) is defined in (26). The equality (a) holds due to
(24), the equality (b) holds when t is sufficiently large, and
the equality (c) comes from the SA-JD rule at time t:

νi(t) = αβU ′i(s̄i(t− 1)), and thus s̄i(t− 1) = U ′−1
i

(
νi(t)

αβ

)
.

As we did in the analysis of SA-BRD, we now define a
continuous-time interpolation {ν̄(τ)}τ∈R+ from the discrete-
time sequence {ν(t)}t∈Z≥0

as follows: ∀t ∈ Z≥0, ∀τ ∈
[κ(t), κ(t+1)), ν̄i(τ) = νi(t)+(νi(t+1)−νi(t))× τ−κ(t)

κ(t+1)−κ(t) .
It should be clear that SA-JD (31) is also a stochastic approx-
imation algorithm with controlled Markov noise, and we can
verify the conditions for convergence (i)-(iv) of Step 1 in proof
of SA-BRD. The only difference is that (31) is a stochastic
process of νi(t) instead of ri(t), and it has αβ instead of α.
Having applying Theorem 1 of [52] in the framework of SA-
JD, we have followings: Let T > 0 and fix w > 0. Denote
by ν̃w(·) the solution on [w,w + T ] of the following ODE
system: for all i ∈ V ,

ν̇i(τ) = αg

(
νi(τ)

α

)[
U ′−1
i

(
νi(τ)

αβ

)
−
∑
σ

πν(τ)/α
σ σi

]
, (32)

with ν̃w(w) = ν̄(w). Then, we have almost surely,
limw→∞ supτ∈[w,w+T ] ‖ν̄(τ) − ν̃w(τ)‖ = 0. As a conse-
quence, if the above ODE system (32) has a unique fixed point
ν?, then we would have that almost surely, limt→∞ ν(t) = ν?.

Step 2. This step proves the equivalence of the convergence
of virtual process {ν(t)}t∈Z≥0

and that of {r(t)}t∈Z≥0
. Since

ri lies in compact region, from (30), there exist L and M such
that for all t,

|νi(t)| < L and
∣∣∣∣g(νi(t)α

)(
U ′−1
i

(
νi(t)

αβ

)
− ŝi(t)

)∣∣∣∣ < M.

For ε > 0, let T (ε) :=
4 log( εαM4L )

ε log(1−α) . Then, for all t ≥ T (ε),∣∣∣νi(t)α − ri(t)
∣∣∣ ≤ 5

4εM, because 8

∣∣∣∣νi(t)α
− ri(t)

∣∣∣∣ (a)
=

∣∣∣∣∣∣νi(t)α
−

t−1∑
j=0

νi(t− j)
α

α(1− α)j

∣∣∣∣∣∣
≤

t−1∑
j=0

∣∣∣∣νi(t)α
− νi(t− j)

α

∣∣∣∣α(1− α)j +

∣∣∣∣νi(t)α
· (1− α)t

∣∣∣∣
(b)

≤ εt/4

t− εt/4
M +

2L

α

t−1∑
j=εt/4

α(1− α)j +
L

α
(1− α)t

(c)

≤ ε

2
M +

2L

α
(1− α)εt/4 +

ε

4
M ≤ 5

4
εM, (33)

where (a) comes from (30) by applying recursion as:

ri(t) = α · νi(t)
α

+ (1− α) · ri(t− 1)

= α
νi(t)

α
+ (1− α)

(
α
νi(t− 1)

α
+ (1− α)ri(t− 2)

)
= · · · =

t−1∑
j=0

νi(t− j)
α

· α(1− α)j ,

and where (b) comes from the followings:

εt/4−1∑
j=0

∣∣∣∣νi(t)α
− νi(t− j)

α

∣∣∣∣α(1− α)j

≤
εt/4−1∑
j=1

j∑
k=1

∣∣∣∣νi(t− k + 1)

α
− νi(t− k)

α

∣∣∣∣α(1− α)j

≤
εt/4−1∑
j=1

j ·M
t− j

α(1− α)j ≤ εt/4

t− εt/4
M,

and where (c) holds for t ≥ T (ε) and ε ≤ 2. Therefore,

lim
t→∞

νi(t)

α
− ri(t) = 0.

Step 3. From Step 1 and Step 2, the ODE system (32) is
equivalent ODE system to (27), thus it converges to a fixed
point ν† such that r† = ν†

α and

αβU ′i(si(r
†)) = αβU ′i

(
si

(
ν†

α

))
= ν†i = αr†i .

Note that r† satisfies r†i = βU ′i(si(r
†)), and thus it is clear

that r† = rNE. Now, we can conclude that r(t) of SA-JD
converges to the unique non-trivial rNE of oCSMA(β).

C. Proof of Theorem 2: SA-GD
In case of SA-GD, similar proof strategy is applied as in

SA-JD, thus we provide brief proof due to the space limit.
Step 1. We start with defining following alternative discrete
sequence {υ(t)}t∈Z≥0

as follows:

υi(t) =
ri(t)

∇si(r(t))
−
(

1

∇si(r(t))
− α

β

)
ri(t− 1),

8Here, we use just εt/4 instead of dεt/4e for notional simplicity.



1536-1276 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2017.2764081, IEEE
Transactions on Wireless Communications

14

and thus we have following property:

ri(t) = υi(t) · ∇si(r(t)) +
(

1− α

β
∇si(r(t))

)
· ri(t− 1).

then, SA-GD is understood as the update rule of {υ(t)}t∈Z≥0

with following representation:

υi(t+ 1) = αU ′i

(
s̄i(t)

)
, and thus s̄i(t− 1) = U ′−1

i

(
υi(t)

α

)
.

Now, under (A1) and from the property of service rate
function in (8), we have that s′i(r) is positive and in a range
of (0, 1/4]. Then, for sufficiently large t, SA-GD’s update rule
is represented as follows: where g(·) is defined in (26),

υi(t+ 1) = αU ′i(s̄i(t))

= υi(t) +
1

t

α

β
g

(
βυi(t)

α

)(
U ′−1
i

(
υi(t)

α

)
− ŝi(t)

)
.

Now, similar arguments as in SA-JD can be applied. First,
we define a continuous-time interpolation {ῡ(τ)}τ∈R+

of the
alternative process {υ(t)}t∈Z≥0

, and verify the conditions for
convergence to the solution of corresponding ODE system:

υ̇i(τ) =
α

β
gi

(
βυi(τ)

α

)[
U ′−1
i

(
υi(τ)

α

)
−
∑
σ

πυ(τ)/(α/β)
σ σi

]
.

Then, the asymptotic closeness of {ῡ(τ)}τ∈R+ to the solution
trajectory of the above ODE system can be claimed as in Step
1 of SA-JD.

Step 2. Now, the equivalence of convergence of {υ(t)}t∈Z≥0

and that of {r(t)}t∈Z≥0
in (19) is shown as follows: First,

for notational simplicity we use γ = α/β, and we denote
by γmin, γmax the minimum and maximum value of the se-
quence {γt := γ∇si(r(t))}t∈Z≥0

, respectively. Note that
γmin, γmax < γ since s′i(r) ∈ (0, 1/4]. Then, for ε > 0, let

S(ε) :=
4 log( εγM4L ·

γmax
γmin

)

ε log(1−γmin)
. Since ri lies in compact region, from

(34), there exist constants L and M such that for all t,

|υi(t)| < L ,
∣∣∣∣g(βυi(t)α

)(
U ′−1
i

(
υi(t)

α

)
− ŝi(t)

)∣∣∣∣ < M,

and γ >
(

1− γmin

γmax

)
· 4L

εM
.

Then, ∀t ≥ S(ε), we can verify that |υi(t)γ − ri(t)| ≤ 5
4εM ,

following similar arguments in (33):∣∣∣∣υi(t)γ
− ri(t)

∣∣∣∣ (a)
=

∣∣∣∣∣∣υi(t)γ
−

t−1∑
j=0

υi(t− j)
γ

j∏
k=1

(1− γk)γj+1

∣∣∣∣∣∣
≤

t−1∑
j=0

∣∣∣∣υi(t)γ
− υi(t− j)

γ

∣∣∣∣ j∏
k=1

(1− γk)γj+1

+

∣∣∣∣∣∣υi(t)γ
·
(

1−
t−1∑
j=1

j∏
k=1

(1− γk)γj+1

)∣∣∣∣∣∣
(b)

≤ εt/4

t− εt/4
M +

2L

γ

t−1∑
j=εt/4

γmax(1− γmin)j

+
L

γ

(
1−

t−1∑
j=1

γmin(1− γmax)j
)

(c)

≤ ε

2
M +

2L

γ
· γmax

γmin
· (1− γmin)εt/4 +

ε

4
M ≤ 5

4
εM,

where (a) comes from (34) by applying recursion, and (b) is
straightforward as in SA-JD, and (c) holds for t ≥ S(ε) and
ε ≤ 2. Now, we have following consequence:

lim
t→∞

υi(t)

α/β
− ri(t) = 0.

Step 3. We can finally conclude that r(t) of SA-GD converges
to r‡ such that r‡i = βU ′i(si(r

‡)), and it is clear that r‡ = rNE,
which completes the proof.
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