
FluNet: A Hybrid Internet Simulator for Fast Queue Regimes

Yung Yi and Sanjay Shakkottai∗

July 11, 2007

Abstract

Motivated by the scale and complexity of simulating large-scale networks, recent research has focused on
hybrid fluid/packet simulators, where fluid models are combined with packet models in order to reduce simulation
complexity as well as to track dynamics of end-sources accurately. However, these simulators still need to track
the queuing dynamics of network routers, which generate considerable simulation complexity in a large-scale
network model. In this paper, we propose a new hybrid simulator – FluNet – where queueing dynamics are not
tracked. The FluNet simulator is predicated on a fast-queueing regime at bottleneck routers, where the queue
length fluctuates on a faster time-scale than end systems. FluNet does not track queue lengths at routers, but
instead, replaces queue-based AQM schemes (such as RED or DropTail) by an equivalent rate-based model. This
allows us to simulate large-scale systems, where the simulation “time step-size” is governed only by the time-
scale of the end-systems, and not by that of the intermediate routers; whereas a fluid model based simulator that
tracks queue-length would require decreasingly smaller step-sizes as the system scale size (such as the number of
flows and link capacity) increases. We validate our model using a ns-2 based implementation. Our results indicate
a good match between packet systems and the associated FluNet system.

1 Introduction

1.1 Motivation

The Internet has experienced tremendous growth in both scale and speed, and the control and management of the
Internet is becoming an ever more important issue. To model and understand the behavior of such networks, several
widely-used discrete event-driven simulators are available (such as ns-2, GlomoSim, QualNet, PDNS, and SSFNet,
see their references in [1]) in the area of simulation. However, event-driven simulation of large scale network systems
with a significant number of users and flows is difficult due to simulation time complexity.

Recently, there have been significant efforts on developing fluid model based simulators to address the time
complexity of discrete event simulators. These simulators can be classified into pure fluid model based approach,
and hybrid model based approach. Pure fluid model based approaches include [3–6], where the authors are primarily
interested in rate based fluid modeling of TCP sources, AQM algorithms, and their interactions. On the other
hand, hybrid model based approaches [2, 7–10] integrate packet models along with fluid models to enable hybrid

∗Y. Yi is with the Department of Electrical Engineering, Princeton University (e-mail: yyi@princeton.edu). S. Shakkottai is with the
Department of Electrical and Computer Engineering, The University of Texas at Austin (email: shakkott@ece.utexas.edu). This research was
supported by NSF Grants ACI-0305644, CNS-0325788 and CNS-0347400.

1

packet network

packet network

packet network

Fluid Network

edge router

packet flow

aggregated fluid flow

fluid queue (router)

traffic aggregation

Figure 1: Hybrid Simulation Framework [2]

simulation. Hybrid simulators have both advantages of (a) accurately tracking source dynamics (as the sources in the
simulator are typically modeled using packet networks), and (b) reducing simulation time by decreasing the number
of generated events. This reduction is due to fluid approximation in the core network (the large system scale size
permits a fluid approximation to be accurate [11]) and “dimensional collapse” due to traffic aggregations inside the
core network (see Figure 1). There exist two main components that have to be modeled by fluids: sources and router
queues (i.e., AQM algorithms), which are modeled by coupled differential equations (e.g., see [2, 3, 5]). In hybrid
simulation, the main focus typically lies in the fluid modeling of the router queues, unless there exist sources inside
the core network modeled by a fluid model. We address the issue on fluid modeling of router queues in this paper.

The model used in existing hybrid simulators, such as in [2], integrate fluid models with packet systems by
measuring data rate from packet flows over short time-intervals (i.e., time-step-size) and use these rate measurements
to drive a fluid simulator. The resulting fluid simulator consists of a collection of fluid queues, which evolve in
discrete time. The dynamics of these fluid queues are used to “mimic” the packet system, e.g., fluid queue lengths
are used to determine packet dropping and marking probabilities in the intermediate routers. From the perspective
of fluid modeling of router queues, this time-step-size should be small enough to accurately track the fluid queue
length dynamics, i.e., queue length variation should not be significant at successive sampling instants. We call this
approach “queue-tracking fluid approach.”

A potential problem with this approach is that the rate of queue length variations increases as the system scale
size (i.e., the number of flows and the link capacity) increases. Note that the time-step-size is inversely proportional
to “simulation event rate” that is linearly proportional to simulation time complexity [12]. Thus, increasingly large
simulation event rates are required as the system scale size increases. To understand this intuitively, consider a queue
of capacity nc accessed by n flows, where the number of packets generated by each flow is modeled by a Poisson
process with parameter λ, and the size of each packet is fixed. Then, from standard queueing theory, the (mean) busy
period (i.e., the time interval over which an empty router buffer fills up and empties again) is expressed by 1

n(c−λ) .

Note that this time step is inversely proportional to n, the system scale size. This implies that we need progressively
smaller step-sizes (increasingly higher event rate) to capture the fluid queue dynamics accurately as the system scale
(i.e., n) increases (see Figure 2 for illustration). Thus, such a queue-tracking fluid approach is not scalable with
respect to the system scale size.

2

Time Time

queue
length

δ1 δ2

small system scale large system scale

Figure 2: The queue length is sampled over a step size δ1 in the left figure, but the step size needs to decrease to δ2

in the right figure as the number of flows and the capacity of the router increases, in order to accurately capture the
queueing dynamics.

1.2 Overview and Related Work

To address the scalability problem of queue-tracking fluid approach, we develop a new fluid simulator, FluNet,
where the step-size is independent of the system scale size, but only depends on the time-scale of end-system source
dynamics. The FluNet is predicated on a “fast queue regime” at bottleneck routers, and does not track queue lengths
at the core-routers. Instead, it uses an equivalent rate based marking/dropping model for a given queue based AQM
model.

The main assumptions of the fluid model in FluNet are (i) sufficient randomness in the system and (ii) large sys-
tem scale size. The randomness in the Internet is generated by e.g., unresponsive flows and flow initiation/terminations.
Indeed, recent studies [13, 14] show that unresponsive sources contribute to about 70% - 80% of the Internet flow
counts1. Typical examples of such unresponsive flows include multimedia (video and audio) flows and web mice
(short-lived HTTP flows). Further, the scale of the current Internet is very large, e.g., in the Sprint backbone, OC-192
links have been installed in several POPs (Points-of-Presence) with a total of approximately 11 M TCP connections
being captured during one hour in those back-bone routers [15].

Under such a regime, we will have a considerable number of “cycles” in the queue dynamics of the intermediate
routers even over a small interval of time, where one “cycle” corresponds to the time interval over which an empty
router buffer fills up and empties again (technically, the regeneration time). In particular, the queue dynamics at
the intermediate routers occur on a much faster time-scale than that of the end system sources2 [16, 17]. Thus, it
is reasonable to expect that queueing dynamics are not visible to the end system controller. Instead, the queueing
behavior at the router affects the end system controller only through the “statistical behavior of the queue.”

This allows us to simulate large-scale systems, where the simulation time-step size is governed only by the
time-scale of the end-systems, and not the time-scale of queue dynamics at the intermediate routers. Note that the
time-scale of the end-systems is governed by the window dynamics of the congestion controller (e.g., TCP), which
is, in turn, determined by the round-trip time. This does not change with respect to the system scale size3 resulting

1However, the volume of data in unresponsive flows contribute to about 10% - 20% of the total traffic volume of the Internet.
2In order to understand this intuitively, consider a router of capacity n× c accessed by n TCP flows and n unresponsive flows. Then, the

time scale of a TCP source rate update is the order of 1/c (since its rate update is clocked by the ACK packets from the receiver), whereas
the time scale of a router queue “cycle” is in the order of 1/(nc).

3The instantaneous round-trip time may vary w.r.t the system scale size, but the long-term mean of round-trip time does not.

3

in a fixed step-size that does not scale with n.

In [17–19], the authors have formalized the above heuristic, and have derived an equivalent rate based marking
model in the large n regime, which is the basis of our work in this paper. However, it is questionable whether we
can apply this limiting regime toward a practical (finite-scale) simulation study. Further, from a theoretical point of
view, we need new results for AQM algorithms employing a queue averaging technique (for absorbing the burstiness
of incoming traffic). From an implementation point of view, we also need to consider practical issues such as the
choice of time-step-size, handling dropping functionality (e.g., forced drop mode in RED, and DropTail queue), the
design of the simulation framework, and importantly, extensive simulation results for validation of this approach.

Practically, in a fluid model simulator, a queue-tracking fluid approach and our scheme should be used together,
depending on the queue regime that can be seen for a given measurement interval. For a fixed measurement interval,
the fluid model in FluNet works better under a fast queue regime, i.e., there are a large number of regenerative
cycles, such that stationary queue length behavior is seen, but the incoming rate of TCP flows looks constant over
the interval. However, under a slow queue regime, where the queue lengths do not vary much, queue-tracking
fluid approach performs better, since discrete sampling in this case tracks the queue length very well. The fast
queue regime becomes a slow queue regime if we decrease the measurement interval, but at the cost of increasing
simulation complexity. Thus, a fast or slow queue regime is relatively determined by the chosen measurement
interval, queue length threshold, and the system scale size (see Section 2 and Section 5 for more details).

We comment that another interesting approach is presented in [20], where the authors describe a procedure where
a sampled version of the traffic is fed to scaled-down version of the network model, and then linearly extrapolate the
results from the scaled-down system to the original large-scale system. Essentially, the authors argue that in several
ways, a slowed down system mimics the larger system. However, the authors in [20] point out that correlated events
(e.g., burst of packet losses, for instance) breaks the linear-scaling hypothesis, and causes the scaled simulation to
deviate from the real system. Recent work in [21] applies network calculus based on the mathematical theory of
Min-Plus (or Max-Plus) algebra to fluid modeling of network dynamics. We also remark that results in [21] suggest
that fluid queue based simulation could perform poorly when the bottleneck buffers are not saturated. This can
be understood from the fact that unsaturated buffers correspond to a system with fast queueing dynamics, where
tracking queue length trajectories (i.e, a fluid queue based approach) may not be feasible. More related work on the
alternate models for fast queue regimes are discussed in Section 3.3.

The work in [12, 22, 23] studied the ripple-effect, which increases the computational complexity in fluid simula-
tion. The ripple-effect describes the phenomenon where changes in the data rate in one flow induces rate changes
in flows which also traverse any of the links along the original flow’s path. These rate changes propagate through
the network, and lead to increased rate fluctuations in the network. This effect necessitates progressively smaller
simulation step sizes for increasingly larger and more complex network topologies and flow configurations. We note
that our approach is relatively insensitive to the ripple effect as we do not track instantaneous flow variations. It
would be of interest in the future to study the ripple effect in the context of combining a queue-tracking approach
and our approach.

4

20 20.005 20.01 20.015 20.02 20.025 20.03 20.035 20.04 20.045 20.05
Time (sec)

0

10

20

30

40

50

60

70

80

90

100

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h

(a) 20 Mbps bottleneck bw, 20 TCP, and 20 unresponsive
flows (total 6 Mbps)

25 25.005 25.01 25.015 25.02 25.025 25.03 25.035 25.04 25.045 25.05
Time (sec)

0

5

10

15

20

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h

(b) 100 Mbps bottleneck bw, 100 TCP and 100 unresponsive
flows (total 30 Mbps)

Figure 3: Rate of queue variations for different
system scale sizes

25 25.005 25.01 25.015 25.02 25.025 25.03 25.035 25.04 25.045 25.05
Time (sec)

0

5

10

15

20

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h

(a) 100 Mbps bottleneck bw, 100 TCP, 100 unresponsive
flows (total 30 Mbps), and [30,100]

43 43.005 43.01 43.015 43.02 43.025 43.03 43.035 43.04 43.045 43.05
Time (sec)

0

20

40

60

80

100

120

140

160

180

200

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h

(b) 100 Mbps bottleneck bw, 100 TCP, 100 unresponsive
flows (total 30 Mbps), and [300,1000]

Figure 4: Rate of queue variations for different
queue threshold parameters: [a,b] = [min th

, max th] of RED

2 When FluNet Works: Fast and Slow Queue Regime

In this section, we present the ns-2 based simulation results to show that the rate of queue variations indeed become
faster for both larger system scales and smaller queue operating size of AQM (i.e., min thresh and max thresh

of RED, and a physical queue size DropTail). Recall that FluNet is designed to operate at a fast queue regime,
and thus these simulation results provide a practical motivation for the FluNet. The simulations are performed in a
single bottleneck network (see Figure 7(a)) with RED algorithm [24], accessed by TCP and unresponsive ON-OFF
sources. The end-to-end source-destination round trip time is set to be 200 msec, which is a typical end-to-end delay
of trans-continental flows. In the simulation results, shown in Figures 3 and 4, we plot the queue length trajectory at
the bottleneck link over a time interval of 50 msec, which can essentially be regarded as the measurement interval
of a fluid simulator.

First, in Figure 3, we plot the queue length trajectories for different system scale sizes, where the system size in
Figure 3(b) is scaled by a factor of 5. We observe that increasing system scale size generates faster queue dynamics,
as previously discussed in Section 1.

Second, we note that fast queue variations can also occur if the mean queue length is kept small, and thus
resulting in many “busy cycles” over a short interval of time. For example, with the RED algorithm, the param-
eters, min th and max th, determine the queue length thresholds at which packet marking/dropping occurs (see
Section 3.2.2 for details). This in turn leads to fast queue length variations as illustrated in Figure 4(a). On th
other hand, setting these parameters to be large results in slow queue length variations (see Figure 4(b)), where the
queue-tracking fluid approach will perform well, for a given sampling measurement interval.

Experimental motivation and justification for fast queue regimes is also based on [25, 26], where a fast queue

5

regime corresponds to a small queue regime in a large-scale system. Note that the term ‘small queue’ corresponds
to the queue length when normalized with the system capacity. Such a regime seems reasonable for large-scale
systems based on arguments presented in [25, 26]. It has been argued that the required buffer size does not have to
scale linearly with the system scale size [25], and in fact can be fixed, independent of the system scale size [26].
This implies that in large systems, the buffer fluctuations will be fast, because the buffer size normalized to the link
capacity shrinks. Thus, the queue length normalized with the capacity will be small, leading to fast queue dynamics.
More discussions on buffer size scaling will be provided in Section 3.3.

3 Fluid Queueing Model of FluNet

3.1 Equivalent Rate Based Model with Queue Averaging

In this subsection, we derive the fluid queueing model of FluNet in the system with a large number of TCP and
unresponsive flows. The analysis here adopts similar notations and techniques used in [18], but includes an important
extension for AQM algorithm with queue averaging which is used in various AQM algorithms (e.g., RED [24] and
REM [27]) to absorb a certain level of burstiness of incoming traffic.

What we intend to study through our analysis is the queue length process over a (appropriately-scaled) short-
time interval for the large system scale size, n. Even over this small time interval, we will show that the queue
reaches “steady-state” behavior. This occurs due to the fact that the capacity is very large (nc), and causes the queue
to “regenerate” an arbitrarily large number of times over this short interval. However, from a viewpoint of a single
source, this corresponds to a very short interval of time, where one can expect that the end-user will only perceive the
statistical “steady-state” queueing behavior. By quantifying the above heuristic argument, we develop an equivalent
rate based model for a given queue based marking function.

We consider the systems with scaling parameter n. The model of the n-th system consists of a single bottleneck
router (with its capacity nc) fed by n TCP flows and n unresponsive flows. For notational simplicity, we have
assumed an equal number of TCP and unresponsive sources4. We denote the fluid rates of individual TCP flows in
the n-th system by {xi

n(t), i = 1, . . . , n}, where xi
n(t) denotes the instantaneous arrival rate of a TCP flow i at time

t. Let xn(t) be the average TCP arrival rate (over flows) at time t, i.e., xn(t) = 1
n

∑n
i=1 xi

n(t). For the well-defined
initial conditions, we assume that xi

n(0) → xi(0), and xn(0) → x(0), as n →∞. We model each unresponsive flow
by means of a simple point process. We refer the readers to the Appendix for the technical details of assumptions
and the complete proof of our main result, Theorem 3.1.

Associated with the router is a queue based marking function (AQM algorithm), denoted by pq(Q̄n(t)), where
Q̄n(t) is the exponentially-moving averaged queue length. Note that our marking function is based on the actual
queue lengths, not the scaled queue length. Let Qn(t) be the instantaneous queue-length process at the router. Then,
the weight-averaged process is given by Q̄n(t) = wnQ̄n(t − δn) + (1 − wn)Qn(t), where 0 < wn < 1 is the
queue-averaging parameter for n-th system and δn = 1/(nc) corresponds to the time-scale of the queue variation at
the router (see also [3]).

In [24], the authors provide a guideline on the choice of the parameter wn. Essentially, the authors in [24] argue
4The results in this paper hold even if they are not the same, as long as the ratio of the number of TCP flows and the number of unresponsive

flows is finite.

6

that wn is chosen such that a fixed burst of packets (i.e., L back-to-back packets from a single flow) should be allowed
into the router without this burst being marked. This burst tolerance is chosen to account for TCP window behavior
and cumulative ACKs, which lead to a burst of packets being transmitted from a single TCP source, instead of the
packets being spaced apart. However, observe that as the number of flows and capacity increases, the normalized
packet burst size decreases (normalization with respect to link capacity).

In particular, consider a bottle-neck router with capacity nc, and fed by n independent arrivals each of which has
a packet-burst of size L packets (i.e., L back-to-back packets from a single flow). Then, if the flows are independent,
it is unlikely that the packet bursts from various flows will synchronize and form a single large burst of nL. This
heuristic is supported by [28], where the authors show that when multiple flows are aggregated, and the individual
flows have different burstiness but equal rates, the burstiness of the aggregate flow is determined by the burstiness of
the individual constituent flow which has the maximum burstiness. In other words, as the number of flows and the
bottle-neck link capacity increases, the burstiness of aggregate incoming flows remains constant. This implies that
the queue averaging parameter wn needs to become smaller as the system scale increases (because the normalized
packet burst size decreases). Motivated by this argument, we make the following assumption:

Assumption 3.1. wn
n→∞−→ 0.

We define a queue length process q(t) to be the queue length process of M/D/1 queue with Poisson arrival rate
λ and capacity c− x(0). Then, we have the following main result on the fluid queueing model:

Theorem 3.1. For a fixed T < ∞,

1
T/n

∫ T
n

0
xi

n(y)pq(Q̄n(y)) dy
n→∞−→ xi(0)

1
T

∫ T

0
pq(q(y)) dy (1)

Theorem 3.1 states that in the large n regime, the time-average volume of marks experienced by i-th TCP flow
over the interval [0, T/n] (LHS) can be well approximated by the marked volume at the M/D/1 queue with Poisson
arrival rate λ and capacity c − x(0) (RHS). Note that the original unresponsive arrival process is not necessarily
a Poisson process. In other words, for n large enough, and fixed T, the interaction between the router queueing
process and the congestion controller at a fixed user occurs only through 1

T

∫ T
0 pq(q(y)) dy (the marking probability

in the limiting system).
Thus, the system with aggregate unresponsive rate of nλ, and with aggregate TCP rate of nx can be represented

by M/D/1 system of fixed service rate of c − x, and an arrival process that is Poisson with parameter λ (even if the
actual system does not have Poisson arrivals). Further, we observe that q(t) is a regenerative process when λ

c−x < 1,

and x < c. Thus, from the ergodic theorem for a regenerative process for large enough T, the following definition
on the equivalent rate based marking function, denoted by pr(x), is a good approximation of the marked volume of
data at the router:

pr(x) =

Eπc−x
λ

[pq(Q)] if λ
c−x < 1 and x < c,

1 if x ≥ c or λ
c−x ≥ 1,

(2)

where Q is the stationary queue length random variable and πc−x
λ is the stationary distribution of an M/D/1 queue

with capacity c− x and arrival rate λ.

In the next section, we describe how our theoretical model of this section is practically implemented in the
FluNet.

7

Marking
Prob

qlen

Forced Drop

Unforced Drop
(Marking)

min_th max_th

max_p

mark_p

Marking
Function

Drop
Function

= +

Equivalent Rate based Marking
and Dropping Function

pm
q () pd

q()

Figure 5: Marking and dropping in RED with marking mode

3.2 Implementation Issues

3.2.1 Choice of Measurement Interval and Simulation Step Size

Implementing an approximate marking function based on (2) requires measurement of x (TCP arrival rate) and
λ (unresponsive arrival rate). In our implementation, this is done by choosing a small measurement interval M̄,

which satisfies (i) that the arrival rate from TCP flows does not vary significantly over M̄ , and (ii) that there exists
a sufficient number of regenerative cycles in the router queue over M̄ , enabling us to see the statistical stationary
behavior (i.e., the Poisson approximation in Theorem 3.1 holds for the chosen value of M̄). In our experiments, we
have chosen one (minimum over end-to-end flows) round-trip time for M̄, which is independent of the system scale
size, n. This choice seems to be reasonable, since the transmission rate of a TCP flow is clocked by the received
ACK feedbacks, and we can also see a significant queue variations over one round-trip time (a large number of
regenerative cycles) in large scale systems (e.g., in the plots of Figures 3 and 4, even over 1

4 of a round-trip time in
the router with 100 flows, we can see more than 20 cycles of queue regeneration). Note that since we focus on the
flows passing through a WAN, the minimum round trip-time over flows will be large enough to see the stationary
behaviors at the core-routers.

Additionally, we split a measurement interval M̄ into the W sub-intervals (i.e., δ = M̄
W), over which the system

states evolves. If this “splitting” of a measurement interval is not done, ACKs will aggregate over a measurement
interval at a source, and lead to spurious bursts of packets, resulting in incorrect end-system behaviors. This time-
step-size is significantly smaller than the time-step-size in a queue-tracking fluid simulator (e.g., [2]), which requires
at least one sampling of queue length over one regenerative cycle of the queue dynamics, leading to simulation time
complexity reduction in FluNet. Note that M̄ and W do not depend on the system scale size, n. W depends only
on the number of packets per flow in a round-trip time (i.e., congestion window size), so that the packets can be
“clocked out” without spurious bursts5. Thus, as W and M̄ are independent of n, δ is also independent of n. This is
the key observation that leads to the reduced simulation time complexity for large scale systems.

3.2.2 Marking and Dropping in AQM

A realistic fluid model of a AQM algorithm should incorporate packet dropping as well. This is due to the fact that
(i) a queue has a finite queue limit size, and (ii) some AQM algorithms drop the incoming packet when the current

5Note that this does not mean that “valid” bursts are not allowed. If a burst of ACKs arrive at a TCP source, the TCP source will in fact
send a burst of packets by ACK-clocking.

8

(averaged) queue length is larger than a threshold. For instance, the RED [24] algorithm marks packets below a
queue threshold, but drops packets if the current (average) queue length exceeds this threshold (see unforced and
forced drop region in Figure 5). Packets are also dropped if the packet buffer overflows.

This dropping functionality can be approximated by and incorporated into the equivalent rate based fluid model
simply by decomposing the queue based marking-dropping function into a pure drop and marking function (pm

q (·)
and pd

q(·)), as shown in Figure 5. Each of these two functions are then used in (2) to compute the equivalent rate
based marking and dropping probability, denoted by pm

r (·) and pd
r(·), respectively. Note that this is an approximation

in the sense that the arrival rate is not “thinned” when computing the dropping probability. However, we do take into
account flow “thinning” along a path of routers, see Section 4.2.2. We observe that this approximation is good as
long as the long-term drop rates are small (see Section 5.6 for numerical results). We comment that a simple Drop-
Tail queue without marking functionality can also be approximated by setting its marking function to be always zero
and its drop function to be a step function (1 if qsize ≥ qlimit, and 0 otherwise).

3.2.3 Implementation of E[pm
q (Q)] and E[pd

q(Q)]

As discussed in Section 3.1 and 3.2.2, we have to compute E[pm
q (Q)] and E[pd

q(Q)] to determine the mark-
ing/dropping probability for a given fluid input rate. However, we may not always find a closed form expression
to compute E[f(Q)], where Q is the stationary queue length in an M/D/1 queue. Thus, our implementation uses
numerically pre-computed values of the marking probability for each arrival rate (discretized suitably). This com-
putation is performed using results in [29], where the authors have shown that the unfinished work U for a Poisson
process with arrival rate λ, and with service rate µ has a steady state distribution of the form

Pr(U > x) = 1− (1− ρ)eρxHbxc(x− bxc), (3)

where Hn(x) are polynomial functions (which can be computed recursively as shown in [29]), and ρ = λ/µ.

Then, by denoting the stationary workload of an M/D/1 queue with capacity c by V , we have V = Q/c, and
U = µV = (c− x)V. Thus,

Pr(Q > q) = Pr
(

U >
q(c− x)

c

)
(4)

This is used to off-line pre-compute a table of marking/dropping probabilities for a large set of input traffic parame-
ters (λ, µ), and AQM parameters, and use table lookups during run-time.

3.3 On the Alternate Models and Discussion

We conclude Section 3 by providing comparative explanation on the alternate models for completeness. The alternate
models are derived based on the different assumptions on (i) buffer size scaling and (ii) randomness in the network.

The buffer size scaling has been classified into three regimes [19]: (a) small buffer regime (B = Θ(1), i.e.,
independent of the system scale size n), (b) intermediate buffer regime (B = Θ(nα), 0 < α < 1), and (c) large
buffer regime (B = Θ(n)), where B is the buffer size at the bottleneck router. Traditionally, network design (at the
back-bone routers) has been predicated on the large buffer regime (i.e., linearly proportional to n) [30]. However,
recent experimental studies on the buffer size scaling show that we can achieve sufficient statistical multiplexing

9

gain and high network utilization in small buffer regime [26] as well as intermediate buffer regime [25]. Further,
analytical results [31, 32] show that arbitrary small loss probability and high throughput are guaranteed even with
small buffer regime. The small buffer regime is based on the intuition that a large number of flows multiplexed at
the large capacity router and randomness (which leads to de-synchronization among flows) in the network enables
sufficient statistical multiplexing without large buffer size.

The major sources of randomness in the network are generated by both unresponsive flows and TCP flows, i.e.,
real-time or short-lived flows, random session arrivals/departures and flow initiations/terminations. Different models
can be derived, depending on the different assumptions on the randomness by these two types of flows, and their
relative magnitude and time-scale of variability.

The authors in [17, 19] assume that the time-scales of randomness by both TCP and unresponsive flows are
in the same order. Thus, aggregate TCP and unresponsive flows form a Poisson process with parameter (λ + x),
where λ and x are the mean arrival rates of unresponsive and TCP flows, respectively. Thus, the limiting system is
approximated by an M/D/1 system with capacity c and Poisson input with parameter λ + x. On the other hand, our
work in this paper and [18] assumes that the randomness of TCP flows happens at much slower time-scale than that
of unresponsive flows, i.e., over a small interval of time, the mean arrival rate of TCP flows looks constant. This
assumption leads to a M/D/1 system, but with capacity c− x and Poisson input with parameter λ.

The assumptions and analytical models in [17,19] can be viewed as a “conservative” interpretation of the Internet.
However, the models in [18] and this paper analyze the Internet on a “optimistic” assumption, i.e., the randomness of
TCP flows due to inter-packet jitter over a short time-interval is ignored, where the randomness of unresponsive flows
is dominant. Intuitively, in a system with the both TCP packet-jitter and unresponsive flows, more marking/dropping
of packets occurs. FluNet can be implemented based on the model in either [17, 19] or that described in this paper.
Both models are easily implementable using the method in Section 3.2.3. However, due to space limitations, we
have provided simulation results using only the model described in this paper (our simulation experiments suggest
that the results due to both models are very close with 100 or more flows).

4 FluNet Architecture

4.1 Architecture Summary

The entire FluNet framework consists of four components: (i) ingress fluid interface, (ii) fluid routers, (iii) egress
fluid interface, and (iv) packet queue pool, as shown in Figure 6. The ingress and egress fluid interfaces reside at
edge of the FluNet-core (a pair of ingress and egress fluid interfaces forms a single interface node), and there are
multiple fluid routers (depending on the topology of simulated network) inside the FluNet-core, where a fluid router
corresponds to a packet router in the Internet-core.

To illustrate, let us consider the two packet streams between the end-systems of (ES-1↔ES-2) and (ES-1↔ES-
3). The packets from ES-1 (destined to a node in ES-2 or ES-3) are first transmitted to the ingress fluid interface,
IFI-1, which classifies them into two classes depending on the destination end-systems, ES-2 and ES-3. IFI-1
records per-class packet transmission rate information over successive time steps. The IFI-1 separately stores the
received real packets at a queue (identified by a tuple (ingress fluid interface, egress fluid interface)) belonging to the
packet queue pool, and forwards only rate information (not real packets) into the FluNet-core. The forwarded rate

10

Edge
Router

Edge
Router

Edge
Router

IFI 1

EFI 1

IFI 2

EFI 2

IFI 3

EFI 3

Packet Queue
Pool

FluNet Core
Network

End System 1 (ES-1)

End System 2 (ES-2)

End System 3 (ES-3)

LAN

LAN

LAN

Fluid Router

IFI : Ingress Fluid interface
EFI: Egress Fluid interface

Interface Network

Figure 6: FluNet Architecture

information is processed by the FluNet-core, and the associated marked/dropped rate is computed at each fluid router
using the equivalent rate based marking/dropping model in Section 3. The updated marked/dropped rate information
is finally transferred to the egress fluid interfaces, EFI-2 and EFI-3, which marks/drops the real packets (which are
fetched from the packet queue pool) physically based on the rate information computed at the fluid routers in the
routing path. The EFI-2 and EFI-3 forwards the real packets to the destination networks in ES-2 and ES-3. We will
describe the detailed procedure and issues of each component in Section 4.2.

The important thing that we note is that the real packets do not traverse the FluNet-core. The real packets
are stored at the associated queue (corresponding to the ingress-egress pair) in the packet queue pool. Since only
aggregate flow information between end-systems is transfered inside the FluNet-core, the maximum number of
(aggregate) flows present within the FluNet-core is just I × (I − 1) (e.g., I = 3 in Figure 6).

In this paper, we focus on the data traffic injected only by end-packet systems, and the queue regimes at the
intermediate routers at the FluNet-core. We can easily extend our analysis and implementation to more general
scenario, where there exists data flows originated from and destined to the nodes inside the FluNet-core. The fluid
representation of such flows inside the FluNet-core can be easily made by the techniques in [3,5], and apply the fluid
rates to the input of our rate based marking/dropping models.

4.2 Description of Components

Inside the FluNet-core, we model the network as a directed graph. We denote this graph by G = (V, L), where V

is a set of nodes (corresponding to routers in the real network) and L is a set of links. Associated with each link
l ∈ L is a propagation delay of γl. Let us denote I ⊂ V to be a set of (ingress/egress) interface nodes, and we also
denote by I the number of interface nodes to abuse the notation. We define a class to be a single fluid-flow within

11

the FluNet-core which experiences the same route inside the FluNet-core6. Denote by Lk a sequence of links of the
class-k path, and again we use Lk to refer to the number of links of the path to abuse the notation, for simplicity.

4.2.1 Ingress Fluid Interface

At each ingress fluid interface, a step size δ is chosen (based on the criterion discussed in Section 3.2.1), and the
total number of bytes that arrive from the end-system edge routers over this interval for each class is recorded over
successive time step intervals. This recorded rate information is transferred to the first link inside the FluNet-core in
the routing path of the corresponding traffic class. The incoming real packets are stored in a packet queue (indexed
by its class) of the packet queue pool.

At the end of each time step s = 1, 2, . . ., a rate information vector which includes the information on the
received volume of (1) total, (2) marked, (3), dropped, (4) TCP, and (5) unresponsive data, is generated corresponding
to the aggregate data volume over the s-th time step for class k. Note that the sum of TCP and unresponsive data
volume equals the total data volume, and the sum of marked and dropped data volume equals the TCP data volume.
At an ingress fluid interface, checking the IP packet header CE and ECT field enables us to know whether a packet
is TCP or unresponsive, or marked or unmarked.

4.2.2 Fluid Router

The main task of a fluid router is to update the marked/dropped volume of data in the rate vector transferred from
an ingress fluid interface or the previous fluid router in the routing path by applying the rate based fluid model in
Section 3, and to finally transfer those vectors to the associated egress fluid interface.

We now describe the traffic interactions inside the FluNet. We first denote by cl[s], ul[s], tl[s], ml[s], and dl[s],
the received volume of TCP, unresponsive, total, marked, and dropped data 7 of a class k at link l ∈ Lk over the s-th
time step, respectively. We denote by l′ the previous link of link l in the path of Lk. Denote by s′ the time step right
before the data is transmitted over link l′, i.e., s′ = s− dγl′/δe.

Associated with every link l are the (rate based) marking and dropping probabilities, pm
l [s] and pd

l [s], which are
computed by (2) in Section 3 8. Then, we have

cl[s] =
(
1− pd

l′ [s
′]
)
cl′ [s′] (5)

ml[s] =
(
tl′ [s′]−ml′ [s̃]

)
pm

l′ [s
′] + ml′ [s′]. (6)

Note that mean queueing delays can be easily incorporated by adding it to the link propagation delays. However,
in sufficiently large scale systems, queueing delay is negligible, compared to link propagation delay 9. Analogous
equations to (5) and (6) hold for the unresponsive arrival rate (ulk,i

k [s]) and the drop rate (dlk,i

k [s]), respectively.
Finally, the total arrival rate of each class k is computed by the sum of TCP and unresponsive arrival rate, i.e.,

tl[s] = cl[s] + ul[s]. (7)
6A class corresponds to multiple packet flows over the same path in the FluNet-core.
7Since our explanation can be generally applied to any class, we have omitted the class index k here for notational simplicity.
8We eliminate the subscript ‘r’ in (2) for notational simplicity.
9This is also justified by [25], where the authors show that buffers need to scale only as

√
n, whereas the capacity scales with n, which

implies that the queueing delay is O(1√
n
), while the propagation delay is Θ(1).

12

Notice that update of cl[s] and ul[s] due to the dropping probability is needed, since it affects the TCP and unrespon-
sive arrival rate at the next link (and thus, affects the computation of marking/dropping probability of next link). As
discussed in Section 3.2.1, in computing pm

l [s] and pd
l [s], we need the TCP and unresponsive rate information over

M̄ interval as their input. In our implementation, we use the TCP/unresponsive volume of data averaged over past
W time steps, i.e., c̄l[s] =

∑W
j=1

cl[s−j+1]
W , and similarly, ūl[s].

4.2.3 Egress Fluid Interface

At the egress of the FluNet-core is the egress fluid interface connected to the destination end-system. When a rate
vector, corresponding to a particular class leaves the last fluid router in its routing path, this vector enters the egress
fluid interface of the corresponding destination end-system. At each time-step s, the egress fluid interface i ∈ I

maintains a collection of vectors of byte-counters (not necessarily integers) for every class (which has the node i as
its egress inside the FluNet-core), where byte-counters for, say, class k consist of: (i) total counter (T [s]), (ii) mark
counter (M [s]), and (iii) drop counter (D[s]). These byte counters keep track of the amount of total data, the amount
of marks, and the amount of drops received for the class k at each time step. Note that the egress fluid interface does
not need the information of TCP or unresponsive data rate, since they are used only in computing marking/dropping
probability at the fluid routers. At the end of each time-step, when a vector, (tl,ml, dl) is transferred to the egress
fluid interface, the interface increments three counters by the incoming quantities.

At each time-step s, if T [s] is larger than or equal to the size of a packet in the class-dependent packet queue
in the packet queue pool, the head-of-line (HOL) packet from the packet queue is transferred to the correspond-
ing destination egress fluid interface. Then, the egress fluid interface determines how to handle this real packet:
drop, forward with marking, or forward without marking. First, the fetched real packet is dropped with probability
D[s]/T [s]. Next, if the packet is not dropped, the value of the mark counter is now checked, and the ECN bit of the
real packet is set to the value ‘1’ with a probability M [s]/T [s]. This is simply an implementation of probabilistic
marking corresponding to the fluid mark/drop rate. This packet is now forwarded to the edge-router of the destination
end-system, which will suitably forward the packet to its final destination.

Once the packet has been forwarded or dropped, the byte counters are updated by the following:

M [s] = M [s](1− psize/T [s]), D[s] = D[s](1− psize/T [s]), T [s] = T [s]− psize,

where “psize” is the size of the packet that is fetched and processed. The same procedure is repeated unless T [s] is
smaller than the HOL packet in the associated per-class packet queue.

5 Simulation Results

In this section, we provide extensive simulation results to validate the performance of FluNet. We have implemented
FluNet in ns-2. To implement FluNet, we have modified the fluid network implementation in ns-2 developed by [2],
where their fluid queueing model (router) is completely replaced by our rate based (fluid) model with consideration
of practical issues in discussed Section 3.2.

Our objective here is to compare a queue-tracking fluid simulation (QFM) in [2] with FluNet, and determine
the regimes for which each is suitable. Our base-line system for comparison is a “packet” system, where no fluid
approximations/models are used.

13

10Mb, 5ms

150Mb, 20ms

200Mb, 50ms

class 1

class 2

class 3

1 2 4 5

6 7

8 9

10Mb, 5ms

10Mb, 5ms10Mb, 5ms

10Mb, 5ms 10Mb, 5ms

150Mb, 20ms 150Mb, 20ms

150Mb, 20ms

150Mb, 20ms

150Mb, 20ms

10Mb, 5ms

200Mb, 25ms

150Mb, 20ms

class 1

class 2

class 3

1 7 9 8

2 3

5

4

6

10Mb, 5ms

10Mb, 5ms10Mb, 5ms

10Mb, 5ms 10Mb, 5ms

200Mb, 45ms

200Mb, 45ms

200Mb,

25ms

200Mb, 25ms

200Mb,

25ms
150Mb, 20ms

(a) a single bottleneck network (b) dumbbell network

Figure 7: One bottleneck network and dumbbell network

5.1 Simulation Environment

In the simulation results that use RED [24] as an AQM algorithm, the parameters in RED are set to: w q = 0.002,
gentle = false, max p = 0.02, mark p = 1.0, and adaptive = false, most of which are the default values in
ns-2. The main parameters that we vary are the queue threshold values (i.e., min th and max th in RED, and the
physical queue length in DropTail), which determines the fast or slow queueing regime for a given time-step-size.
Other network environments will be described in each set of simulations.

As suggested in [33], in our simulations, we use TCP Sack for end-system elastic data flows, and ON-OFF
processes for unresponsive flows, respectively. In each ON-OFF process, the burst size of ON and OFF periods
are exponentially distributed with mean 50 msec. The packet size for both TCP and the unresponsive flows are set
to be 1000 bytes. In the simulation results, we present three statistics to investigate both steady-state and transient
behavior: (i) normalized average throughput (over flows and time) w.r.t the packet system, (ii) CWND (congestion
WiNDow) traces and instantaneous throughput averaged over flows, and (iii) average CWCR (Congestion Window
Cut Ratio) over flows and time10.

According to the selection rule of measurement interval and step size, we use M̄ = 200 msec, and W = 40,

resulting in the step-size being set to 5 msec (i.e., δ = 200
40), unless explicitly specified. The value of W = 40 is

sufficient to avoid spurious bursts of transmitted TCP packets, since the steady-state congestion window size less
than 25 packets, as in Figure 9.

5.2 A single bottleneck network and a dumbbell network

In this experiment, we present simulation results with four varying parameters: min th , max th , number of un-
responsive flows, and total volume of unresponsive flows in a single bottleneck (SINGLE) and a dumbbell (DUMB-
BELL) network, where there are three (TCP, unresponsive) traffic classes depending on the source-destination ac-
cess network pair. Each choice of these parameters are denoted as P1-P8 (see Table 1), for different values of queue
threshold values and the per-class number/volume of total unresponsive flows. Further, for each traffic class, we

10The CWCR represents the number of window cut events divided by the number of total transmitted packets, where window cut events
include triple duplicate ACKs, retransmission timeouts, and ECN responses.

14

P1 P2 P3 P4 P5 P6 P7 P8

Choice of Parameters
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

QFM
FluNet

P1 P2 P3 P4 P5 P6 P7 P8

Choice of Parameters
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

QFM
FluNet

P1 P2 P3 P4 P5 P6 P7 P8

Choice of Parameters
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

QFM

(a) a single bottleneck: step size = 5 ms (b) a dumbbell network: step size = 5 ms (c) a single bottleneck with 10 × queue thresholds
as those in (a), and step size = 1 msec

Figure 8: Normalized average throughput of QFM and FluNet

Table 1: Average CWCR for SINGLE and DUMBBELL. (a,b,c,d) = (min th , max th , num of unresp flows, vol
of unresp flows).

Name Parameters L1 (×10−3) L2 (×10−3)

Pkt FlN QFM Pkt FlN QFM

P1 (10,100,30,30Mb) 4.83 4.69 8.18 4.94 4.93 18.7

P2 (30,100,30,30Mb) 4.84 4.67 9.22 4.81 5.11 25.9

P3 (10,50, 30,30Mb) 5.06 4.95 9.05 5.32 4.95 17.9

P4 (10,150,30,30Mb) 4.67 4.54 7.72 4.69 4.45 7.22

P5 (30,100,10,30Mb) 4.91 4.66 9.34 5.28 4.74 28.1

P6 (30,100,90,30Mb) 5.15 4.90 9.76 5.22 4.93 26.6

P7 (30,100,30,10Mb) 2.45 2.29 6.36 2.72 2.62 4.63

P8 (30,100,30,50Mb) 14.4 14.4 15.2 12.7 11.3 17.8

20 40 60 80 100
Time (sec)

0

10

20

30

C
W

N
D

Packet
FluNet

20 40 60 80 100
Time (sec)

0

10

20

30

40

C
W

N
D

Packet
FluNet

20 40 60 80 100
Time (sec)

0

10

20

30

C
W

N
D

Packet
FluNet

20 40 60 80 100
Time (sec)

0

10

20

30

C
W

N
D

Packet
FluNet

(a) # of UFs (10/90) (b) vol of UFs (10/50) Mb

Figure 9: CWND traces for SINGLE topology: min th = 30, max th = 100.

run 50 TCP sources. We show only the performance results of class 1 TCP sources due to space limitation (similar
results are seen for other classes).

Figure 8 and Table 1 summarize the simulation results of normalized average throughput and CWCR. Further,
Figure 9 shows the associated CWND traces for selected experiments. As the experiments in Section 2 indicate, the
parameter choices of queue thresholds and step-size in Figure 8 and Table 1 induce fast queue regimes. The results

15

10Mb, 5ms

150Mb, 20ms

200Mb,

50ms

class 1

class 2

class 3

1 2 4 5

6 7

8 9

10Mb, 5ms

10Mb, 5ms10Mb, 5ms

10Mb, 5ms 10Mb, 5ms

150Mb, 20ms 150Mb, 20ms

150Mb, 20ms

150Mb, 20ms

150Mb, 20ms
200Mb,

50ms

200Mb,

50ms

200Mb,

50ms

200Mb,

50ms

class 1 srcs

class 4 dsts

class 2 srcs class 5 dsts

class 1 dsts

class 3 srcs

class 4 srcs

class 2 dsts

class 5 srcsclass 3 dsts
10Mb, 5ms

150Mb, 35ms

200Mb, 35ms

(a) a long-route network (b) a circular network with multiple bottlenecks

Figure 10: A network with long-route connections and circular interactions

of FluNet match those of a pure packet network within an error of 5% for all cases considered. On the other hand,
QFM has up to 45% throughput error, compared to the packet simulation.

However, as shown in Figure 8(c), by decreasing the step-size to 1 msec and increasing the queue thresholds (ten
times as those in (a)), the results of QFM have a good match with those of packet systems. This is because with a step-
size of 1 msec and with the large mean queue size, queue fluctuations are not severe, enabling QFM to accurately
track queue dynamics. This simulation results support the fact that QFM and FluNet should be incorporated together
depending on the queue regimes. However, the simulation results in this subsection also shows that FluNet can
achieve the comparable performance with low cost (i.e., larger step size).

FluNet is based on asymptotic models for router queues, where the number of flows are large. Indeed, FluNet
simulation results match packet simulations closely when there are a large number of flows. For example, in a system
with 4,200 flows and the topologies of Figure 7, the difference in average throughput between the packet system and
FluNet is less than 4%. Importantly, in this section, we have shown that FluNet performs well even in a moderately
scaled system, with only a few hundred flows. We skip the details for the large system (with many thousand flows)
due to space constraints.

5.3 Network with multiple bottlenecks and long-route connections

Now, we compare the performance of FluNet in a network with long-route connections, shown in Figure 10(a), the
total number of hops in of end-to-end path is nine. We also carry out the simulation for the network with circular
interactions with multiple bottlenecks, as shown in Figure 12. Again, Figures 11 and 12 show that FluNet has a good
match with the packet system, whereas the performance of QFM deviates from that of the packet system more than
that of FluNet.

We observe that the deviation of QFM manifests as lower throughput, and this happens across many simulation
results that we have carried out throughout this section. A possible explanation of this is that QFM fails to adequately
track the queue dynamics in a fast queue regime, thus leading to an overestimation of the queue lengths.

16

P1 P2 P3 P4 P5 P6 P7 P8

Choice of Parameters
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

QFM
FluNet

0 20 40 60 80 100
0

2e+05

4e+05

6e+05

8e+05 QFM
FluNet
Packet

(a) Normalized average throughput (b) Instantaneous throughput (class-1 TCP flows)

Figure 11: Comparison of FluNet and QFM for long-route connections, where min th = 10, max th = 50, the
total per-class number/volume of on-off flows = 30 and 30 Mbps, respectively. (a) shows the normalized average
throughput for eight scenarios described in Table 1. (b) shows the instantaneous throughput measured over every
second,

0 20 40 60 80 100
0

2e+05

4e+05

6e+05

8e+05 QFM
FluNet
Packet

0 20 40 60 80 100
0

5

10

15

20

25

30

QFM
FluNet
Packet

(a) Instantaneous throughput (class-1 TCP flows) (b) CWND traces (class-1 TCP flows)

Figure 12: Comparison of FluNet and QFM for circular interactions with multiple bottlenecks, where min th = 30,

max th = 60, the total per-class number/volume of on-off flows = 80 and 50 Mbps, respectively.

5.4 Connections with different round-trip times

Now, we move on to a heterogeneous setup, where we have connections with different round-trip times. In the single
bottleneck topology in Figure 7(a), we have changed the delay of links, such that classes 1, 2, and 3 experience
60 msec, 100 msec, and 200 msec round-trip times, respectively. Figure 13 shows that FluNet again has a good
match with the packet system for different configuration of queue thresholds and unresponsive flows. Note that in a
network with connections of heterogeneous round-trip times seem to generate more randomness due to asynchronous
interactions among flows. This intuition is shown in the simulation results, where QFM has much worse performance
than the homogeneous setups in earlier subsections.

5.5 Dynamic connections

In this experiment, we investigate the response of FluNet when flows dynamically enter and leave the system,
where we have tested the cases when TCP and unresponsive flows are dynamic, in the topology of Figure 7(a). In
the TCP-dynamic scenario, we have used the following scenario, where the number and volume of per-class total

17

0 20 40 60 80 100
0

2e+05

4e+05

6e+05

8e+05 QFM
FluNet
Packet

0 20 40 60 80 100
0

2e+05

4e+05

6e+05

8e+05 QFM
FluNet
Packet

0 20 40 60 80 100
0

2e+05

4e+05

6e+05

8e+05 QFM
FluNet
Packet

(a-1) class 1 TCP (a-2) class 2 TCP (a-3) class 3 TCP

0 20 40 60 80 100
0

2e+05

4e+05

6e+05

8e+05 QFM
FluNet
Packet

0 20 40 60 80 100
0

2e+05

4e+05

6e+05

8e+05 QFM
FluNet
Packet

0 20 40 60 80 100
0

2e+05

4e+05

6e+05

8e+05 QFM
FluNet
Packet

(b-1) class 1 TCP (b-2) class 2 TCP (b-3) class 3 TCP

Figure 13: Comparison of FluNet and QFM for connections of different round-trip times. (a) min th = 10,

max th = 100, the total per-class number/volume of on-off flows = 30 and 30 Mbps and (b) min th = 30,

max th = 100, the total per-class number/volume of on-off flows = 90 and 30 Mbps.

unresponsive flows are 30 and 30 Mbps: At time 0, we add 50 TCP flows per each class, at time 60, we remove the
half of the class-1 and class-3 TCP flows, at time 90, we add 25 class-2 TCP flows, at time 120, we add 25 class-1
TCP flows, and finally, at time 150, we add 25 class-3 TCP flows and remove 25 class-2 TCP flows. In the UDP-
dynamic scenario, for a fixed number of 50 TCP flows in each class and a fixed 500 Kbps mean rate of a unresponsive
flow, we increasingly add the number of unresponsive flows over time. In each class, we start the system with 20
unresponsive flows, and then we add 30 unresponsive flows in every 50 secs. Since all the unresponsive flows of
three class shares the same bottleneck link, this dynamic scenario corresponds to the total unresponsive flow load
ranging from 15% (= 20×3×0.5

200) to 82.5% (=110×3×0.5
200). We observe that FluNet reacts to both of these changes in a

similar manner to that in the packet system, whereas the performance of QFM is lower than that of the packet system
in most cases.

5.6 DropTail Queues

In this experiment, we provide the simulation results for DropTail queues. First, we comment that our results include
only comparison of FluNet with the packet system, since the QFM code which is available in public does not support
DropTail. One can emulate DropTail queue by setting the RED parameters (e.g., min th =max th =qlimit and
wq = 1, where wq is the weight assigned to the instantaneous queue length in the moving average). However, our
simulation experiments suggest that with such an emulation, the throughput with QFM throughput drops close to
zero, which is due to wq = 1. We conjecture that this phenomenon happens due to the current version of the fluid
model in QFM, where the fluid (differential equation) for average queue length is not well-defined for this condition
(the RHS in [5, eqn (2)] becomes indeterminate for this case, which corresponds to α = 1 in [5, eqn (2)]). Table 2
shows the normalized average throughput and CWCR values of class-2 flows, and Figure 15 shows an instantaneous
average throughput for two different physical queue limit values. These results also show that FluNet’s ability to
match with the packet system. However, we comment that if we use a large value of the queue limit, then FluNet’s

18

0 20 40 60 80 100 120 140 160 180 200
2e+05

4e+05

6e+05

8e+05

1e+06 QFM
FluNet
Packet

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

QFM
FluNet
Packet

(a-1) Instantaneous throughput (a-2) CWND traces

20 40 60 80 100 120 140 160 180 200
2e+05

4e+05

6e+05

8e+05

1e+06

1.2e+06

QFM
FluNet
Packet

20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

QFM
FluNet
Packet

(b-1) Instantaneous (b-2) CWND traces

Figure 14: Comparison of FluNet and QFM for the dynamics of TCP and unresponsive flows, min th = 10, and
max th = 50. Both (a) and (b) correspond to the performance of class-2 flows.

performance become worse, again, corresponding to fast and slow queue regimes.

Table 2: Normalized Average Throughput and Average CWCR values
Physical Queue Limit Packet FluNet

Norm. Avg. Thput (kbps) CWCR (×10−3) Norm. Avg. Throughput CWCR

20 572 4.94 613 5.21

50 610 4.34 653 4.88

80 635 4.21 662 4.63

110 643 4.06 675 4.52

6 Concluding Remarks

In this paper, we have presented an approach to hybrid packet/fluid simulation using the equivalent rate based models
of router queues. Under a fast queue regime, our approach enables us to simulate large-scale systems, where the
simulation step-size is governed only by the time-scale of the end-systems, and not that of the queueing dynamics
at the intermediate routers. This gives us a significant reduction of both simulation time complexity, compared with
queue tracking based hybrid simulation.

Further, we have implemented the FluNet-core (the fluid model part of FluNet) using multiple processes in the

19

0 20 40 60 80 100
Time (sec)

0

2e+05

4e+05

6e+05

8e+05

N
or

m
al

iz
ed

 A
vg

. T
h

(b
ps

)

FluNet
Packet

0 20 40 60 80 100
Time (sec)

0

2e+05

4e+05

6e+05

8e+05

N
or

m
 A

vg
. T

h
(b

ps
)

FluNet
Packet

(a) Instantaneous Throughput (qlimit=50) (b) Instantaneous Throughput (qlimit=80)

Figure 15: FluNet’s performance for DropTail queue

user-level space in a Linux PC. Network interface cards (Fast Ethernet cards) along with appropriate packet capture
libraries [34] have been used to connect external PCs (TCP sources/sinks) with the FluNet-core, and thus has enabled
hybrid fluid/packet emulation (as opposed to ns-2 based simulation). Measurements based on this system have shown
that we can enable real-time hybrid emulation using this approach.

However, it is possible that we can be in a regime where fast queue regimes do not occur (e.g., by having large
queue threshold parameters or in a small-scale system), where FluNet does not seem to perform well. In a real
network, depending on the number of traversing flows and capacity at intermediate routers, fast and slow queue
regimes can occur at different times and routers. In this case, queue-tracking fluid simulation and rate model based
simulation should be chosen appropriately. A simple approach to differentiate between both regimes is to measure
the number of regenerative cycles in a chosen step-size, and apply one of both fluid simulation models to mark/drop
the packet at the intermediate routers.

Further, queueing delays could be significant with such a large queue operating size, which are ignored in
the current implementation of FluNet (note, however, that FluNet can incorporate mean queueing delays, simply
by adding an extra parameter to the round-trip propagation delay). In this case, a more accurate approach is to
implement fluid queues to track the queue variation, and determine marking/dropping decisions based on the queue
length (at the cost of having state in the simulator to keep track of the queue lengths). Thus, we believe that a good
approach to hybrid simulation is to use both queue based method (such as in QFM [2]) as well as rate based method
(such as FluNet), depending on the type of the system under study.

Note that there are some common disadvantages of hybrid simulation scheme (either with or without fluid
queues). For example, algorithms that dynamically operate on a per-packet basis (such as per-packet routing) cannot
be directly studied. With FluNet, only statistical queue behavior can be measured, whereas QFM can capture a finer
granularity of queue dynamics (even if its granularity is larger than that of the pure packet system). An approach
to tackling this class of problems is to couple analytic models of the aggregate behavior of per packet algorithms at
the fluid time-scale (a time-scale decomposition model), and use these models in the fluid network. Our future work
will focus on these techniques.

20

Appendix

6.1 Assumptions and Proof of Theorem 3.1

Let

Xn(t) =
n∑

i=1

xi
n(t),

Yn(t) =
∫ t

0
Xn(z)dz = n

∫ t

0
xn(z)dz,

An(t) =
n∑

i=1

Ai
n(t),

where Xn(t) is the total arrival rate at time t across all n TCP flows, and Yn(t) is the total cumulative volume of
arrivals of the TCP flows until time t. An(t) represents the total cumulative volume of arrivals of the unresponsive
flows.

For TCP flows, recall that for the well-defined initial conditions, we assume that xi
n(0) → xi(0), and xn(0) →

x(0), as n →∞. We assume that ẋi
n(·) is bounded by some constant L (i.e., the transmission rate is Lipschitz). This

in-turn implies that xi
n(·) is Lipschitz continuous with some parameter M < ∞ [11]. Further, we assume that pq

m(·)
is also Lipschitz continuous.

For unresponsive flows, we assume that each Ai
n(t) has the same distribution as a simple stationary point process

A that satisfies the following assumptions [31, 35]:

Assumption 6.1.

(i) ∃ λ > 0, s.t. E[A(t)] = λt, t ∈ [0,∞).

(ii) ∃ θ0 > 0 and K < ∞, s.t. limt→0+ E[eθ0A(t)1{A(t)>K}] = 0. 11

(iii) lim inft→∞
tΛ(x,t)
log t > 0, where Λ(x, t) = supθ∈R[θx− 1

t log E[eθA(t)]].

Assumption 6.1 states that each unresponsive arrival process satisfies the properties that (i) multiple packets from
a single unresponsive source do not arrive at the same time, (ii) all arriving packets are of the same size and (iii) the
unresponsive arrival process has a finite intensity (see [31] for further details).

We define q(t) to be a queue length process q(t) to be the queue length process of M/D/1 queue with Poisson
arrival rate λ and capacity c− x(0), i.e.,

q(t) = sup
r∈[0,t]

[a(t)− a(r)− (c− x(0))(t− r) + q(r)]. (8)

For a fixed T < ∞, consider the time interval [0, T/n]. For any s ∈ [0, T/n], the instantaneous queue length
process is given by:

Qn(s) = sup
r∈[0,s]

[An(s)−An(r) + Yn(s)− Yn(r)− nc(s− r) + Qn(r)]

111B = 1 if the event B is true, and 0 otherwise.

21

= sup
r∈[0,s]

[
An(s)−An(r) + n

∫ s

r
xn(z) dz − nc(s− r) + Qn(r)

]
.

Recall that Q̄n(t) = wnQ̄n(t− δn) + (1− wn)Qn(t), where 0 < wn < 1 and δn = 1/nc.

Now, let us study the processes (Xn, Yn, An, Qn, Q̄n) over a slowed-down time-scale, i.e., for t ∈ [0, T], let
qn(t) = Qn

(
t
n

)
, q̄n(t) = Q̄n

(
t
n

)
, an(t) = An

(
t
n

)
, and yn(t) = Yn

(
t
n

)
. Then, from the definition of Qn(t) and

Q̄n(t), we have for any t ∈ [0, T],

qn(t) = sup
r∈[0,t]

[an(t)− an(r) + yn(t)− yn(r)− c(t− r) + qn(r)]

q̄n(t) = wnq̄n(t− 1/c) + (1− wn)qn(t). (9)

We will show that

q̄n(t) n→∞−−−→
w

q(t), t ∈ [0, T] over D([0, T] : R+), (10)

where D([0, T] : R+) is the space of RCLL (Right Continuous with Left Limit) trajectories over the interval
[0, T], and n→∞−−−→

w
corresponds to the weak convergence (i.e., convergence in the distribution functions). Then, from

Theorem 3.2 in [18], and using the Lipschitz continuity of pq
m(·) and xi

n(t), the result follows. Thus, we focus on
proving (10) in the rest of this proof.

First, we will prove that for any fixed ε > 0, we can find N1 such that ∀n > N1,

||q̄n(t)− qn(t)|| < ε over D([0, T] : R+), (11)

where || · || is the Skorohod metric.
¿From (9), we have

||q̄n(t)− qn(t)|| = ||wnq̄n(t− 1
c
) + (1− wn)qn(t)− qn(t)|| = wn||q̄n(t− 1

c
)− qn(t)|| ≤ wn sup

t∈[0,T]
|qn(t)|.

Then, (11) follows from that fact that supt∈[0,T] |qn(t)| is almost surely finite, and from Assumption 3.1.
Next, from Theorem 3.2 in [18], we have

qn(t) n→∞−−−→
w

q(t) over D([0, T] : R+).

Then, from the Skorohod representation theorem [36], we can find processes q′n(t) and q′(t) in D([0, T] : R+) such
that qn(t) dist= q′n(t), and q(t) dist= q′(t), where dist= means “equivalence in distribution.” Then, for the same ε in (11), we
can find N2 such that ∀n > N2,

||q′n(t)− q′(t)|| < ε over D([0, T] : R+). (12)

Let q̄′n be the weighted averaged process of q′n. By the triangle inequality of Skorohod norm, for the same ε in (11)
and (12), ∀n > N = max(N1, N2), we have

||q̄′n − q′(t)|| < ||q̄′n − q′n(t)||+ ||q′n(t)− q′(t)|| < ε + ε = 2ε.

Since ε is arbitrary, this completes the proof.

22

References

[1] Network Simulators, http://www.icir.org/models/simulators.html.

[2] Y. Gu, Y. Liu, and D. Towsley, “On Integrating Fluid Models with Packet Simulation,” in Proceedings of IEEE INFOCOM,
March 2004.

[3] V. Misra, W.-B. Gong, and D.Towsley, “Fluid-based analysis of a network of AQM routers supporting TCP flows with an
application to RED,” in Proceedings of ACM SIGCOMM, 2000.

[4] D. M. Nicol and G. Yan, “Discrete event fluid modeling of background TCP traffic,” ACM Transactions on Modeling and
Computer Simulation, vol. 14, no. 3, July 2004.

[5] Y. Liu, F. L. Presti, V. Misra, D. Towsley, and Y. Gu, “Fluid models and solutions for large-scale IP networks,” in
Proceedings of ACM SIGMETRICS, June 2003.

[6] F. Baccelli and D. Hong, “Flow level simulation of large IP networks,” in Proceedings of INFOCOM, San Francisco, CA,
April 2003.

[7] T. Yung, J. Martin, M. Takai, and R. Bagrodia, “Integration of fluidbased analytical model with packet-level simulation
for analysis of computer networks,” in Proceedings of SPIE, 2001.

[8] B. Melamed, S. Pan, and Y. Wardi, “Hybrid discrete-continuous fluid-flow simulation,” in Proceedings of ITCOM, Scala-
bility and Traffic Control in IP Networks, August 2001.

[9] G. Riley, R. Fujimoto, M. Ammar, K. Permula, and D. Xu, “Distributed network simulations using the dynamic simulation
backplane,” in Proceedings of International Conference of Distributed Computing Systems, 2001.

[10] S. Bohacek, J. P. Hespanha, J. Lee, and K. Obraczka, “A hybrid systems modeling framework for fast and accurate
simulation of data communication networks,” in Proceedings of ACM SIGMETRICS, 2003.

[11] S. Shakkottai and R. Srikant, “Mean FDE models for Internet congestion control under a many-flows regime,” IEEE
Transactions on Information Theory, vol. 50, no. 6, June 2004.

[12] D. R. Figueiredo, B. Liu, Y. Guo, J. Kurose, and D. Towsley, “On the efficiency of fluid simulation of networks,” Computer
Networks, vol. 50, no. 12, pp. 1974–1994, 2006.

[13] CAIDA, http://www.caida.org.

[14] C. V. Hollot, Y. Liu, V. Misra, and D. Towsley, “Unresponsive flows and AQM performance,” in Proceedings of INFO-
COM, 2003.

[15] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley, “Inferring TCP connection characteristics through passive
measurements,” in Proceeding of INFOCOM, March 2004.

[16] F. P. Kelly, “Models for a self-managed Internet,” Philosophical Transactions of the Royal Society, vol. A358, pp. 2335–
2348, 2000.

[17] S. Deb and R. Srikant, “Rate-based versus Queue-based models of congestion control,” in Proceedings of ACM SIGMET-
RICS, 2004.

[18] Y. Yi, S. Deb, and S. Shakkottai, “Time-scale decomposition and rate-based marking,” IEEE/ACM Trasactions on Net-
working, vol. 14, no. 5, pp. 938–950, 2006.

[19] G. Raina and D. Wischik, “Buffer sizes for large multiplexers: TCP queueing theory and instability analysis,” in Proceed-
ings of Next Generation Internet Networks, 2005.

23

[20] R. Pan, B. Prabhakar, K. Psounis, and D. Wischik, “Shrink: A method for scaleable performance prediction and efficient
network simulation,” in Proceedings of IEEE INFOCOM, San Francisco, CA, 2003.

[21] H. Kim and J. C. Hou, “Network Calculus Based Simulation for TCP Congestion Control: Theorems, Implementation
and Evaluation,” in Proceedings of IEEE INFOCOM, March 2004.

[22] B. L. D. R. Figueiredo, Y. Guo, J. Kurose, and D. Towsley, “A study of networks simulation efficiency: Fluid simulation
vs. packet-level simulation,” in Proceedings of infocom, 2001.

[23] G. Kesidis, A. Singh, D. Cheung, and W. Kwok, “Feasibility of fluid-event-driven simulation for atm networks,” in
Proceedings of globecom, 1996.

[24] S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance,” IEEE/ACM Transactions on
Networking, vol. 1, no. 4, pp. 397–413, August 1993.

[25] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,” in Proceedings of ACM SIGCOMM, 2004.

[26] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Roughgarden, “Part iii: Routers with very small buffers,”
ACM/SIGCOMM Computer Communication Review, 2005.

[27] S. Athuraliya, V. H. Li, S. H. Low, and Q. Yin, “REM: Active queue management,” IEEE Network, vol. 15, May/June
2001.

[28] H. Jiang and C. Dovrolis, “Why is the internet traffic bursty in short time scales?” in Proceedings of ACM SIGMETRICS,
2005.

[29] U. M. J. Roberts and J. Virtamo, Broadband Network Teletraffic, Final Report of Action COST 242. Boston: Birkhauser,
1992.

[30] C. Villamizar and C. Song, “High performance TCP in ANSNET,” ACM SIGCOMM Computer Communications Review,
vol. 24, no. 5, pp. 45–60, 1994.

[31] J. Cao and K. Ramanan, “A poisson limit for buffer overflow probabilities,” in Proceedings of IEEE INFOCOM, New
York, NY, June 2002.

[32] M. Mandjes and J. H. Kim, “Large deviations for small buffers: an insensitivity result,” Queueing Systems, vol. 37, pp.
349–362, 2001.

[33] S. Floyd and E. Kohler, “Internet research needs better models,” in HotNets-I, October 2002.

[34] P. Wood, “A libpcap version whith supports mmap mode,” http://public.lanl.gov/cpw/.

[35] D. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes. New York, NY: Springer-Verlag, 1988.

[36] P. Billingsley, Convergence of Probability Measures. Wiley-Interscience, 1999.

24

