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Abstract—An essential condition precedent to the success of mo-
bile applications based on Wi-Fi (e.g., iCloud) is an energy-effi-
cient Wi-Fi sensing. Clearly, a good Wi-Fi sensing policy should
factor in both inter-access point (AP) arrival time (IAT) and con-
tact duration time (CDT) distributions of each individual. How-
ever, prior work focuses on limited cases of those two distributions
(e.g., exponential) or proposes heuristic approaches such as Addi-
tive Increase (AI). In this paper, we first formulate a generalized
functional optimization problem on Wi-Fi sensing under general
inter-AP and contact duration distributions and investigate how
each individual should sense Wi-Fi APs to strike a good balance
between energy efficiency and performance, which is in turn intri-
cately linkedwith usersmobility patterns.We then derive a generic
optimal condition that sheds insights into the aging property, un-
derpinning energy-aware Wi-Fi sensing polices. In harnessing our
analytical findings and the implications thereof, we develop a new
sensing algorithm, calledWi-Fi Sensing with AGing (WiSAG), and
demonstrate that WiSAG outperforms the existing sensing algo-
rithms up to 37% through extensive trace-driven simulations for
which real mobility traces gathered from hundreds of smartphones
is used.
Index Terms—Aging, energy efficiency, functional optimization,

Wi-Fi sensing.

I. INTRODUCTION

A. Motivation

T HE NUMBER of mobile users with smartphones/pads is
rapidly increasing. Cisco reported that mobile data traffic

grew 2.6-fold in 2010, and forecasts that it will increase 26-fold

Manuscript received May 11, 2014; revised December 01, 2014 and July
12, 2015; accepted July 13, 2015; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor S. Puthenpura. This work was supported in part by the In-
stitute for Information & communications Technology Promotion (IITP) Grant
funded by the Korea Government (MSIP) (B0126-15-1078), the ICT R&D pro-
gram of MSIP/IITP (14-000-04-001), the International Research & Develop-
ment Program of the National Research Foundation of Korea (NRF) funded
by MSIP (K2013078191), the Seventh Framework Programme (FP7) funded
by the European Commission (611165), and the National Science Foundation
under Grants CNS-1217341 and CNS-1423151. The work of J. Jeong was sup-
ported by ERC and VR grants.
J. Jeong is with the Automatic Control Department, KTH Royal Institute of

Technology, 10044 Stockholm, Sweden (e-mail: jaeseong@kth.se).
Y. Yi and S. Chong are with the Department of Electrical Engineering, Korea

Advanced Institute of Science and Technology (KAIST), Daejeon 305-701,
Korea (e-mail: yiyung@kaist.edu, songchong@kaist.edu).
J.-W. Cho is with the School of Information and Communication Technology,

KTH Royal Institute of Technology, 16440 Kista, Sweden (e-mail: jwcho@kth.
se).
D. Y. Eun is with the Department of Electrical and Computer Engi-

neering, North Carolina State University, Raleigh, NC 27695 USA (e-mail:
dyeun@ncsu.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2015.2468590

between 2010 and 2015 [1]. Smarter applications generating
heavier traffic are expediting the scarcity of 3G capacity. 4G,
which has started to be deployed, seems to be only a tempo-
rary solution due to huge difference between traffic demands
and available physical resources in the cellular system.
Leveraging Wi-Fi is an intriguing solution that has high po-

tential in alleviating mobile data explosion. The very feature of
shorter-range communication of Wi-Fi than that of 3G or 4G
on the unlicensed bands brings considerable efficiency in spa-
tial frequency reuse. Wi-Fi access points (APs)1 also cost much
less than cellular base stations [2], so that they can be deployed
quickly as well as without heavy financial burden to operators
and even users. In fact, Wi-Fi APs have already been installed
around hotspots in many countries now. Very lately, researchers
have started to examine the effect of Wi-Fi offloading from the
theoretical and experimental perspectives [2]–[4]. For example,
Lee et al. [2] showed that about 70% cellular data can be of-
floaded to Wi-Fi if users would tolerate 2-h delayed data de-
livery. Wi-Fi is particularly useful for applications that periodi-
cally exploit the network, e.g., iCloud [5] and Microsoft Pocket
Outlook [6]. Urban Tomography System [7] allows users to cap-
ture video clips, and then automatically uploads them to a server
via Wi-Fi. Wi-Fi connectivity can also provide the location in-
formation, whose economic value is huge [8].
Yet, not every user seems to welcome Wi-Fi. The survey by

Devicescape [9] tells us that 64% of US consumers hit hotspots
at least once a day, but some of them sometimes spend a day
withoutWi-Fi connections. Frommobile users' perspective, one
of the biggest concerns lies in quick battery discharge by Wi-Fi
sensing [10]–[16]. It is reported [17] that 41% of iPhone 3G
users and 15% of iPhone 4 users mention such a battery con-
cern. Also, Wi-Fi-equipped wearable devices and sensors for
Internet of Things (IoT) whose markets are rapidly growing se-
verely suffer from the lack of battery capacity due to their size
limitation. Therefore, in order to maximally exploitWi-Fi's ben-
efits, it is essential to relax users' attention to battery drainage
by developing energy-efficient sensing schemes that sense scat-
tered APs while sparingly using mobiles' batteries.

B. Summary and Main Contributions

In order to design the “best” Wi-Fi sensing scheme, we can
gather that there exists a fundamental tradeoff between energy
efficiency and performance: Sensing with less frequency results
in bigger energy saving, but entails lower chances of data trans-
mission throughWi-Fi. To strike a good balance, two key factors
from a user's mobility pattern need to be carefully addressed:
1) how often users meet APs [referred to as inter-AP arrival

1We simply use “AP” throughout this paper.
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time (IAT)], and 2) how long a user is in contact with an AP
(called AP contact duration time).
Prior work [18], [13] studied optimal sensing intervals for

only limited cases, e.g., exponential inter-AP arrivals and
contact durations, in which periodic sensing interval is optimal.
They also introduced heuristic algorithms such as Additive
Increase (AI) [18] and WiFisense [13], both of which propose
to increase the sensing intervals whenever they fail to detect
an AP. However, the following questions still remain: 1) What
is an optimal sensing policy for the users who do not have
memoryless exponential inter-AP arrivals and contact duration
distributions? 2) When do the heuristic algorithms that increase
sensing intervals for AP meeting failures work well? These
questions are of significant importance because, as discussed in
Section VI, users have diverse mobility patterns, thus diverse
distributions on inter-AP arrival and contact duration times.
To answer the questions above, we take a holistic approach

by formulating a mathematical problem that captures a user's
mobility pattern under general distributions of inter-AP arrival
and contact duration time, and the tradeoff between energy con-
sumption and contact loss. More formally, we adopt a functional
optimization approach, where our objective is to minimize a
linear scalarization2 of energy consumption and contact loss,
both of which are functions of sensing process over time. By
computing a necessary condition for optimality, which is also
sufficient under mild cases, we first find that the key factor to
how we should sense APs optimally is simply the aging prop-
erty of an inter-AP arrival time, for a given AP contact du-
ration distribution. The notion of aging property is from reli-
ability theory [20], intuitively explained as follows: Consider
an event that a mobile node has not been in contact with an
AP until time . We say that aging of the inter-AP arrival time
is positive (resp. negative) if when increases, the remaining
time to meet an AP from stochastically decreases (resp. in-
creases). Analysis through the aging concept extremely simpli-
fies the understanding of the “best” sensing process, providing
diverse practical implications. Our theoretical study reveals how
sensing intervals should be chosen depending on a user's di-
verse mobility patterns measured by inter-AP arrival and con-
tact duration distributions, as summarized in Table I. Also, we
compute the optimality condition under another type of objec-
tive that minimizes a linear-fractional scalarization3 of energy
consumption and contact loss, and show that the dependency
structure between the optimal sensing process and mobility pat-
terns in Table I also holds. From the theory-driven implications,
we develop a new sensing algorithm, called Wi-fi Sensing with
AGing (WiSAG), which adaptively varies sensing intervals de-
pending on the features of inter-AP arrival and contact duration
times.
In order to study the distributions of inter-AP arrivals and

contact durations of real users and evaluate the performance
of WiSAG, we analyze Wi-Fi connectivity logs from the two

2In multiobjective optimization where both energy consumption and contact
loss should be minimized, scalarization is a method to convert a vector of mul-
tiple objectives to a scalar value to be optimized [19]. Linear scalarizationmeans
a weighted sum of multiple objectives.

3Linear-fractional scalarization means a fraction where the numerator and
denominator are linear combinations of energy consumption and contact loss,
respectively. In this paper, the linear-fractional scalarization of energy consump-
tion and contact loss represents sensing energy per transmission bit.

TABLE I
KEY FINDINGS FOR SENSING INTERVAL. OUR NEW FINDINGS: BOLD-FACE

different traces: 1) 84 3G/3GS iPhone users for 18 days where
users are recruited from an iPhone user community in South
Korea [2], and 2) 63 students in the Korea Advanced Institute
of Science and Technology (KAIST) campus using Android
smartphones for 14 days. Both traces reveal that a large fraction
of participants have a negative aging property, which claim
that their mobiles should sleep longer as the elapsed time from
the last AP contact increases. This shows the case when the
heuristic algorithms such as AI may work well. However,
from our simulations, WiSAG outperforms even AI by up to
about 30% on average because better parameter selection, e.g.,
amount of increasing intervals, can be made in WiSAG than AI.
We also observe the relatively regular AP contact patterns from
several users who have a positive aging in their distributions.
In this case, optimal sensing interval should decrease over time
from our theoretical findings. Thus, the existing sensing algo-
rithms [13], [18] that increase sensing intervals fail to achieve
high performance, showing about 47% performance gap on
average. The key performance improvement over existing
algorithms lies in the ability that our theory-inspired algorithm,
WiSAG, provides a macroscopic guideline on sensing intervals,
i.e., increase or decrease, and further proposes more exact
amount of intervals.

C. Related Work
There have been many studies on energy-efficient Wi-Fi

sensing [13]–[16], [18] based on the Wi-Fi sleep mode. Wi-Fi
sensing policies using surrounding information include cel-
lular fingerprint [14], Zigbee [15], accelerometer [13], and
Bluetooth logs [16], where the fact that the information is
closely correlated to Wi-Fi AP contacts is exploited. However,
utilizing that information incurs additional overheads, e.g.,
battery consumption for collecting the informations [10] and
additional resource usage for maintaining and processing the
information [14]. Despite the research results that those algo-
rithms are efficient in sensing in several practical scenarios,
there may exist some cases where: 1) the available surrounding
information is sparsely encountered; 2) the additional over-
heads become a crucial part; 3) the uncertainty of estimating
an AP contact time is still high even with those surrounding
information. Thus, considering the randomness of AP contact
patterns without explicit support from surrounding information
can also be an essential part of WiFi sensing. In fact, most of
current smartphones do not use the surrounding informations in
AP sensing, but sense only on-demand [13] for saving energy.
This paper provides key guidelines to choose sensing intervals
and proposes an energy-efficient sensing algorithm under a
random AP contact patterns, where such a “blind sensing”4 is
expected to still be important in smartphones.

4In this paper, we define “blind sensing” as a sensing scheme which does not
use any of surrounding information.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JEONG et al.: ENERGY-EFFICIENT WI-FI SENSING POLICY UNDER GENERALIZED MOBILITY PATTERNS WITH AGING 3

Fig. 1. Illustration of the model. (a) When AP contact duration is larger than
, a mobile successfully detects an AP. (b) When AP contact duration is

smaller than , a mobile node fails to detect it. Shaded areas denote the contact
loss time .

II. MODEL AND OBJECTIVE
A. System Model
Phases: Mobile nodes (or simply mobiles) move over time

and intermittently meet Wi-Fi APs. We divide the entire time
into a sequence of phases, where a phase corresponds to a time
interval ranging from: 1) the instant when a mobile node loses
a Wi-Fi contact, and 2) to the end of the next Wi-Fi contact, as
depicted in Fig. 1.
Inter-AP Arrival and Contact Duration: Each phase is split

into two intervals of when a mobile is not underWi-Fi coverage,
i.e., inter-AP arrival time (IAT), and when a mobile is under
Wi-Fi coverage, i.e., AP contact duration time (CDT). We say
that a mobile encounters an AP when it starts to be under the
coverage of an AP. We also say that the mobile is associated
with an AP when a mobile is aware of being under the AP's cov-
erage, and ready for data transmission at the average rate of .
Denote by and the random variables of inter-AP arrival and
contact duration times, respectively. Let
and , and we use and

. We assume that phases are independent,
i.e., and are i.i.d. across phases, which enables us to focus
on a single phase. Due to the recent papers [2], [21], and [22], it
has been shown that humans' movement patterns are highly reg-
ular. Thus, we assume that each mobile knows its distributions
of inter-AP arrival and contact duration times.
Sensing: As depicted in Fig. 1, let be the starting time of

a phase, and a mobile senses APs at times . A se-
quence is randomly generated by a sensing process

, which is a nonhomogeneous Poisson process with rate
. Since may take the form of a pulse train of Dirac

delta measures, called Dirac comb, can model determin-
istic sensing as well as stochastic one. Let be the sensing cost,
i.e., power consumption per one sensing operation. We assume
that mobiles stop sensing after being associated.We also assume
that the mobile is able to detect the end of each contact immedi-
ately after being outside of Wi-Fi coverage. This assumption is
reasonable since the connection loss can be quickly detected if
some data transmission is in progress. For the case where a mo-
bile misses a contact due to its large sensing interval, we will it
discuss later in Section V.

Loss Time: Note that a mobile can be associated with an AP
some time after encountering the AP [time in Fig. 1(a)]. Let
a random variable be the elapsed time until the next sensing
since encountering. We are interested in the loss time that quan-
tifies the duration that a mobile node misses the chance to use
an AP. In Fig. 1(a), a mobile senses while being in the AP's
coverage, where the loss time is . However, in Fig. 1(b), the
mobile moves fast, resulting in missing the AP contact, in which
case the loss time is . Thus, the average loss time (with
respect to the contact duration ) is

(1)

B. Problem Formulation

Sensing with less frequency saves larger energy, which in turn
increases the chance to missWi-Fi contacts, hence lower perfor-
mance. We set a functional optimization problem with a single
objective that combines energy efficiency with performance in a
linear fashion, where one metric is treated as a penalty term. To
be more specific, the optimization problem is to minimize the
average sensing cost, linearly penalized by missed Wi-Fi con-
tacts, over all feasible sensing policy . By doing so, two
conflicting objectives of energy efficiency and performance can
be appropriately considered in the formulation.

Minimize sensing cost penalized by lost Wi-Fi contacts

(OPT)

where is a penalty weight for the contact loss.

Recall that is the average number of sensings be-
fore the mobile encounters an AP, and corresponds
to the average volume of data that cannot be transmitted due to
the “lazy” association to the AP. Optimizing a linearly weighted
objective function as in (OPT) is a widely adopted approach
to encapsulate various tradeoffs of performance metrics in net-
working community, e.g., in [23] and [24]. is a weight of the
linear combination representing the amount of average sensing
cost to which each unit average contact loss is supposedly trans-
lated. In plain words, it can be determined by how highly each
mobile (or an application within the mobile) attempts to access
Wi-Fi values contact loss in terms of sensing energy.
Then, our main interest is now centered on minimizing (OPT)

by generating the random sequence (or choosing
for every ), and thereby determining the nonhomo-
geneous Poisson process , where and are
given. We first epitomize the notion of aging that will be fre-
quently used in many parts of the discussion throughout this
paper.

C. Preliminary: Aging

We define a failure rate [20] that quantifies the probability that
a r.v. (e.g., inter-AP arrival time in our case) is some value,
say , on the condition that (e.g., a mobile does not meet
an AP until time ).
Definition 1: Consider a r.v. with the probability density

function (PDF) and cumulative distribution function (CDF) of
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and , respectively. The failure rate of is:
, for the age such that .

We assume that is a real-valued, differentiable func-
tion. is said to be increasing failure rate (IFR) when
is strictly increasing function in , i.e., . Likewise,

is called decreasing failure rate (DFR) if .
Suppose that a r.v. follows a Weibull distribution,

. Then, the corresponding failure rate
is DFR (resp. IFR) for (resp. ).
Consider a r.v. with failure rate . We say that has

positive aging if is IFR. Similarly, is said to have nega-
tive aging if is DFR. When is said to have
constant aging. The aging property can be understood by the
notion of residual time. Let a r.v. be a life time and denote
the residual time until the end of life by , when the cur-
rent age is (i.e., on the condition that ). Note that is
also a random variable, and its complementary CDF (CCDF) is
given by . Then, when the
failure rate is DFR (or negative aging), the residual time

stochastically increases with time [20]. In case of IFR (or
positive aging), stochastically decreases with time .
To interpret it in our context where is inter-AP arrival time,

on the condition that is negative aging and a mobile has no
contact with an AP until , the remaining time until encoun-
tering an AP from stochastically increases with . As the re-
maining time increases, the sensing interval should accordingly
increase to save energy. For the case of IFR, a similar interpreta-
tion can be stated. This aging concept has recently been used in
[25], which proves that this memory structure arises from gen-
eral mobility patterns and can be used for a better design of mo-
bile wireless networks.

III. SOLUTIONS AND ALGORITHM

In this section, we first present the technical challenges of
(OPT) by introducing the examples for two types of sensing
policies. Then, we provide reasonable approximations of (OPT)
and develop a modified objective function that allows math-
ematical tractability. Then, we derive the conditions for opti-
mality, followed by the practical implications into a good Wi-Fi
sensing algorithm.

A. Challenges

1) Homogeneous Poisson Sensing: Let us first consider a
simple case when sensing is performed following a homoge-
neous Poisson process in order to clearly see the tradeoff be-
tween energy efficiency and performance as well as to have a
taste of challenges residing in our optimization problem. Con-
sider a homogeneous Poisson process with rate and an AP
contact duration time . Suppose can be expressed in terms
of another positive r.v. such that .5
Putting , (OPT) can be rearranged as

(2)

5In this case, is called a completely monotone (CM) distribution. We use a
CM distribution only to better illustrate the simplistic form of the tradeoff. Many
types of distribution including exponential and Weibull are known to belong to
CM class.

where is an exponential r.v. (because of homogenous Poisson
sensing), and

(3)

Then, it follows from (3) that (2) becomes

(4)

which clearly shows the tradeoff: As increases (i.e., sensing
with higher frequency), the energy consumption term
increases, whereas the contact loss term decreases.
Note that (4) is invariant with respect to the distribution of

except for , which is due to the restriction of our focus to
homogeneous Poisson sensing processes. To put it another way,
in order to find a more optimal sensing, it is inevitable that the
sensing policy is modeled by a more general stochastic process,
i.e., nonhomogeneous Poisson processes, which lends itself to
adaptation to distributional properties of and , along with

.
2) Deterministic Sensing: We now consider another class of

sensing processes: deterministic sensing. Recall that this case
can be regarded as nonhomogeneous Poisson processes, where
the rate is a Dirac comb (See Section II-A). Then, it is
not hard to see that computing the optimal solution of (OPT) is
equivalent to solving the following problem, expressed in terms
of distribution of the inter-AP arrival time

(5)

Yet, solving (5) is significantly challenging due to the following
facts.
1) Analytical solutions are hard to obtain because each objec-

tive is a function of an infinite sequence . On top
of that, even for well-known distributions of , there ex-
ists a complex coupling between a nonlinear function
and the PDF inside the integral.

2) Computing the solutions numerically is also challenging,
due to a large search space generated by an infinite number
of possible combinations [26].

A similar problem for deterministic sensing processes has
been studied in reliability theory, referred to as inspection
problem [27], only when the contact duration time is infinite
(w.p. 1). Barlow et al. [27] developed a recurrence formula,
instead of a fully analytical solution, only in the limited case.6
It still remains open as to how to solve the problem for general
distributions.

6When is (Pólya frequency function of order 2). As discussed in
[28, Remark 2.2], if the failure rate function is DFR, does not belong
to the class of . Note that DFR has been largely seen in the real mobility
traces (see Section VI for details).
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B. Approximations
Obtaining the analytical form of en-

tails two key obstacles: 1) the analytical form of 's distribution
(conditioned on ), given by

(6)

is difficult to compute; and 2) nonlinear loss time function
is involved there. Thus, to get a tractable form of the objective
function, we make two approximations, summarized in what
follows.
First, we use an upper bound of . Note that it is

easy to show that is concave in , verified by

(7)

whereupon we have . It follows from
Jensen's inequality that .
Manipulating becomes much more tractable due to
the absence of . Now, for the computation of the new
target , it is required to get the analytical form
of for . However, it is still challenging to
compute because an integral with is an exponent of the
function in (6). To tackle this problem that is of vital
importance to the optimization (OPT), we only assume that the
following two quantities vary smoothly with :

for , where the second term is the variance of .
This assumption implies that when a mobile conducts sensing,
the average and variance of the next sensing time should be
slowly varying with each sensing. It should be remarked that the
assumption specifies nothing else but the tendency of the first
two moments, so that is still allowed to vary with time .
Recall that our target is to compute , where

and is the next sensing time at , i.e.,
. To simplify exposition, we first adopt

such that

The practical value of this slowly varying moment assump-
tion lies in that it enables us to get a manipulative form of

, which is the mean residual time of a point process
at arbitrary time . Note the arbitrary time is more likely to
fall in larger sensing intervals around . Thus, it follows from
the Palm inversion formula [29, Theorem 7.3.1]

(8)

also known as Feller's paradox. To summarize,
can be further approximated when the first two moments of in-
tersensing times do not vary much with each sensing event.
Approximating the original contact loss time with

, and plugging (8) into (OPT), and the original
optimization objective can be rearranged as

(9)

where is the density function of the inter-AP arrivals.
Here, we can see that the first term inside the integral of (9) is

still a function of , which can be further simplified from the
fact that replacing the instantaneous rate with its short-term
average rate does not make significant difference to
(9) if inside its integral is a well-defined smooth function.
Finally, we present the modified objective approximating the
original optimization objective, expressed by , and

:

(xOPT)

C. Optimality Conditions
The optimal sensing sequence from (xOPT) is computed by

controlling the following two items: 1) the expectation ,
and 2) the variance . Since the mean and the vari-
ance are independent, we can freely adjust the variance
while keeping the same mean of intersensing time. Note that for
a fixed , (xOPT) increases with because the loss
function increases with . Thus, given , we
first search the space of the sensing process that minimizes
the variance. It is not hard to see that a deterministic sensing
process achieves the smallest variance, which is zero. This ob-
servation further simplifies the optimization (xOPT), where it
suffices to solve (xOPT) over the space of deterministic se-
quences of sensing intervals with rate . Putting

in (8) becomes . The objective function is then
expressed as a functional

(10)

Note here that we need to determine only
( : the length of sensing interval containing ) where the
the equality holds because is no longer random. To put it
another way, we have now demonstrated that optimal Wi-Fi
sensing algorithms should be deterministic. As compared to (5),
the deterministic formulation (10) has been properly justified
and, thanks to its simplistic integral form, it is amenable to
functional analysis that is applied to yield the following the-
orem. We apply the calculus of variations [30] to with the
objective of finding an optimal , which leads to Theorem 1
presenting necessary and sufficient conditions for optimality.
Denote by an optimal sensing interval function that
minimizes .
Theorem 1 (Optimality Condition):
i) Necessity: (Recall that is the failure rate of .)

(11)
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ii) Sufficiency: (11) is also sufficient under the following
condition:

(12)

The proof is presented in the Appendix. As expected,
Theorem 1 states that the optimal sensing sequence
highly depends on the distributions of both inter-AP arrival
and contact duration times, and . In Section III-D, we
will explain that the sufficient condition in (12) is highly likely
to be satisfied in practice, implying that the condition (11) is
nearly necessary and sufficient for optimality. This motivates
us to propose a novel sensing algorithm driven by (11) in
Section III-C.

D. Mildness of Sufficient Condition (12)

Now, we investigate the sufficiency region of the sensing
interval . Since the sufficient condition (12) depends only
on the distribution of contact duration time , we divide into
four representative cases in terms of the distribution of .
Throughout this section, we denote by the failure rate
of the contact duration time , hence the sufficient condi-
tion (12) can be rewritten as , where

. For notational simplicity, we drop the
superscript in in the rest of this section, unless confusion
arises.

a) Heavy-Tailed in Generalized Pareto: When fol-
lows a Generalized Pareto distribution with heavy-tail, we have

with a shape parameter and
a scale parameter . The term is always
positive since is always less than ,
meaning that the interval sequence always be within the suffi-
ciency region over time . Note that the actual lengths of the in-
creasing intervals can be numerically computed by solving the
optimality condition (11) for the given distribution of inter-AP
arrival time and contact duration time .

b) Not Heavy-Tailed in Generalized Pareto: When
is Generalized Pareto r.v and not heavy-tailed, we have

with . Then, (12)
becomes

Shape parameter ’s measured from our trace in
Section VI-B are greater than 0.5, meaning that the
intervals satisfy the sufficient condition when

.
c) Weibull : When follows a Weibull distribution, we

have . For a Weibull distribution
with the shape parameter and the scale parameter , the con-
dition for increasing interval is given by

(13)

The s of from our trace range over the interval [0.3, 2].
By rewriting (13) for such a range of the sufficiency interval
region is .

d) Exponential : Note that a Weibull r.v. with is
exponential. Thus, the condition for increasing intervals follows
from (13), given by: . This again means that the
optimality holds unless the sensing interval exceeds .
The sufficiency condition (12) states that the optimal sensing

intervals are not significantly large, compared to the AP contact
duration time , whose mildness can be checked by measuring
the distribution of from real traces. According to our mea-
surement, the optimal sensing interval is highly likely within the
sufficiency region because: 1) the penalty term from the con-
tact loss in our optimization problem makes the interval scale
smaller compared to , and 2) measured is more than
2 times of measured [2].

E. Increase/Decrease of Optimal Sensing Interval

We now present the increase/decrease of optimal sensing in-
tervals in relation to the notion of aging of the inter-AP arrival
time . To that end, consider three cases when is negative,
constant, and positive aging (i.e., respec-
tively). The trends are summarized as follows: Optimal sensing
intervals should increase, be periodic, and decrease if the
distribution of has negative, constant, and positive aging, re-
spectively, as stated in Table I in Section I.
To understand why, by rearranging the optimality condition

(11) with and , we get

(14)

Taking log on both sides of (14) and differentiating w.r.t. , we
have the following:

(15)

Once the failure rates of and are given, (15) enlightens
us upon the sign of . This further generates the conditions
for the signs of and , which provide the
information on when the sensing intervals should increase or
decrease, as elaborated upon shortly. We can easily check that

and the sufficient condition in (12) is exactly equal to
in (15). Therefore, whether optimal sensing

intervals should increase or decrease upon the failure of de-
tecting an AP (i.e., the sign of ) depends only on the sign of

, which directly represents the aging property of inter-AP
arrival time . When has constant aging (i.e., for
some constant , and hence is memoryless), becomes con-
stant over time as well, which in turn implies that the optimal
sensing process should be periodic.

IV. OPTIMALITY ON A DIFFERENT OBJECTIVE

We have so far studied the optimal sensing interval for mini-
mizing the scanning energy penalized by contact loss in (OPT),
and showed that the increase/decrease of the optimal sensing in-
terval only depends on aging of inter-AP arrival time. However,
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it still remains unclear whether such dependency between opti-
mality and aging holds for other types of objectives. Thus, in this
section, to strengthen our engineering insight on increase/de-
crease of sensing interval, we further investigate the connection
between optimality of sensing interval and aging of inter-AP ar-
rival time under a different type of objective, sensing energy per
a transmission bit, which was also handled in [13].

A. Objective

We consider the problem of minimizing the average sensing
energy per unit amount of data transmitted over Wi-Fi APs.

OPT2: Minimize average sensing power per bits

(OPT2)

where is the remaining contact duration after AP
detection (i.e., ).

B. Approximation

As mentioned in Section III-B, obtaining the analytical form
of is hard due to difficulty of computing the distribution
of and nonlinear function of . Thus, (OPT2) is also hard
to be directly analyzed, and hence needs to be approximated.
To handle this, we again use Jensen's inequality to approximate

to . Then, we assume slowly varying sensing
intervals to use Feller's paradox in (8). The approximated form
of (OPT2) is as follows:

(xOPT2)

Recall that . We now focus our
attention on the objective function in (xOPT2). Since the func-
tion is nonincreasing, the variance of sensing interval
should be zero to minimize (xOPT2), which means that the
sensing interval should be deterministic. If is a well-de-
fined smooth function, we can replace the rate function by
the interval without significant difference to (xOPT2). Note
that such approximation technique is similar to that of (10) in
Section III-B

(16)

C. Necessary Condition for the Optimal Sensing Interval

We apply the calculus of variations [30] to find an optimal
sensing interval for (xOPT2). The main challenge for this
optimization is that the form of the objective in (xOPT2) is a
fraction of functionals, which was not handled in Section III. In
the following theorem, we address this challenge and show the
necessary condition of the optimal sensing interval with
respect to (xOPT2).

Theorem 2 (Necessary Condition): The optimal sensing
interval in (xOPT2) holds the following necessary
condition:

(17)

where is a failure rate of AP interarrival time , and

.
The proof is presented in the Appendix. It is rather surprising

that the necessary condition for (xOPT2) in Theorem 2 is iden-
tical to that for (xOPT) in Theorem 1 except the unknown vari-
able . At the same time, this similarity gives us one funda-
mental illumination: The optimal sensing interval shares
the common aging properties summarized in Table I, whereas
the two corresponding optimal solutions can take vastly dif-
ferent forms depending on the distribution of [due to the
second factor in the left-hand sides of (11) and (17)]. To corrob-
orate this illumination, by rearranging the optimality condition
(17) with proportionality constant , we get

(18)

Then, we can take logarithm on both sides of (18) and differen-
tiate w.r.t. , which yields the following:

(19)

Since we have already shown that the condition
can be easily satisfied in Section III-D, whether

optimal sensing intervals should increase or decrease upon
the failure of detecting an AP (i.e., the sign of ) depends
only on the sign of that represents the aging property of
inter-AP arrival time . Thus, the optimal sensing interval for
(xOPT2) also has the common aging property summarized in
Table I.
While our finding holds only for a certain form of optimiza-

tion problems formulated in terms of sensing energy and contact
duration, it clearly delineates the overall correlation structure
between two distributions, i.e., sensing interval and inter-AP ar-
rival time. This finding also opens up new potential possibilities
for a variety of heuristic algorithms capitalizing on the correla-
tion structure.

V. WISAG: THEORY-INSPIRED SENSING ALGORITHM

We now develop a Wi-Fi sensing algorithm, called WiSAG
(Wi-fi Sensing with AGing), motivated and inspired by analyt-
ical findings in Theorems 1 and 2. The algorithm can be oriented
toward objective (OPT) and (OPT2) by adopting the (11) and
(17), respectively.

WiSAG (Wi-fi Sensing with AGing)

Preprocessing: A mobile computes a sensing interval function
according to (11) or (17) depending on the objective. The

computation is based on inputs of the distributions of inter-AP
arrival and contact duration, and .

At each phase :
1. Initialization.
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Set and .
Set the clock and the counter , and run the
clock.

2. If
Sense Wi-Fi
If no AP is sensed and associated,
Set and

Else communicate with the associated AP until the AP
connection is lost and then end the phase

End If
End If

A few remarks are in order. First, we assume that the distri-
butions of and are given to a user. This requires a mobile
user to have a reasonable amount of training time. Although
the detailed algorithm for training is beyond the scope of this
paper, we can employ the training methods for other similar sta-
tistics, e.g., visiting patterns to a specific location such as office
or home, used in other research [21], [22]. Second, a practical al-
gorithm like WiSAG is unable to know whether the user misses
an AP due to fast mobility or not, which differs from the model
used in the analysis. In such a case, in the model, a new phase is
assumed to start, yet in practice, the user is still in the old phase
and keeps increasing (or decreasing) the sensing intervals. We
later show that Section VI demonstrates that such a difference
is minor.
Computation of (17): To compute from (17), we should

compute , which can be computationally challenging because
the numerator and denominator of are functionals of ,
which hinder finding the closed form of .We further develop
a heuristic approach to address such infeasibility in computing
(17). The mathematical trick for circumventing direct compu-
tation of B lies in realizing the very fact that is the re-
ciprocal of the cost of (OPT2) with the interval . That is, if
sensing with computed with a certain constant leads to
the cost which coincides with inadvertently hap-
pens to satisfy the necessary condition. By exploiting this idea,
we propose an iterative algorithm for finding for (OPT2).
At each iteration, in order to get the cost of WiSAG with the in-
terval , we run a multitude of numerical simulations where
the parameters of the scenario are fitted from training data and
calculate the average cost. This iteration ends when the conver-
gence of is diagnosed or the iteration count exceeds a certain
threshold.

Approximation of in (17)

Initialization. Mobiles learn the distributions of inter-AP
arrival and contact duration, and and their
expectation and . They also decide the parameter

, and set .
At each iteration i,
1. Compute the interval using the following equation:

(20)

2. Run WiSAG with for times in numerical
simulations, and set as follows:

(21)

where and are the number of sensings and contact
duration captured by WiSAG at th simulation.

3. Repeat steps 1 and 2 until or .

VI. TRACE-DRIVEN EVALUATION

A. Dataset
We use Wi-Fi AP contact logs of 84 iPhone 3G/3GS users

and 63 Android users in the KAIST campus. In case of iPhone
measurement, users downloaded a measurement application
and tested it for about 18 days in February 2010, recruited from
a Korean iPhone user community. The measurement applica-
tion runs in the background to record Wi-Fi AP encounters
every 3 min. The granularity of 3 min may lose an event with
finer granularity, e.g., handoff. The choice of 3 min is made to
slow down the speed of consuming battery. We further measure
the Wi-Fi contact logs of KAIST campus students for 14 days.
We recruit 60 students with Android smartphones and let them
download a measurement application that logs Wi-Fi contacts
with the granularity of 1 min. In both measurements, the cap-
tured Wi-Fi APs include both private APs and commercial APs.
The log files are periodically uploaded to a log-server over ftp
connections. In addition, we also consider active hour (AH)
scenarios of both traces, i.e., the traces from 9:00 to 23:00,
because, in practice, many users may carry the mobile devices
during active hours and charge them at night.

B. Individual Aging Patterns
We started with searching for distributions that fit best IAT

and CDT of each individual. We selected three candidates
of Weibull, Exponential, and Generalized Pareto because:
1) Weibull and Exponential distributions [2], [13] are reported
to follow IAT and/or CDT in literature; and 2) Generalized
Pareto significantly differs from Weibull and Exponential,
possessing a power tail. We use a Cramer–Smirnov–Von–Mises
(CSVM) statistical hypothesis test [31], [32], which is pop-
ularly used to find a best fit. A CSVM test rejects a tested
distribution when its CSVM statistic value is less than the
Critical Values determined by a significance level. We test it
with a popular significance level 0.1 and summarize the result
of CSVM test in Table II. Each element in Table II consists
of: 1) % of accepted users, along with 2) % of users that have
the best match with the corresponding distribution, which is
in parentheses. We refer the readers to [31] and [32] for the
details of CSVM. Table II tells us that most users' IAT and
CDT distributions follow Weibull or Generalized Pareto (Gen.
Pareto), where Generalized Pareto's portion is larger.
It now remains to figure out the parameters of each distri-

bution, i.e., in Weibull and in Generalized Pareto, which
shows the aging property of IAT and CDT. The actual value of
and for each individual will also be used in determining

the actual sensing intervals of WiSAG. In Fig. 2(a) [resp. (b)],
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Fig. 2. Distribution of shape parameter and in IAT and CDT of each individual in the traces. (a), (b) CDFs of parameter and of IAT distributions of users
identified as experiencing Weibull and Generalized Pareto IATs. (c), (d) CDFs of parameter and of CDT distributions of users identified as having Weibull and
Generalized Pareto CDTs.

TABLE II
CSVM TESTS FOR THE DATASETS WITH SIGNIFICANCE LEVEL . EACH
ELEMENT % OF ACCEPTED USERS (% OF USERS WITH THE BEST MATCH)

we plot the CDF of for the users that experience a Weibull
(resp. for Pareto) IAT distribution, demonstrating that about
94% of overall users go through negative aging in their IAT
distributions, i.e., or . We also plot the CDF of
IATs during AH, which also shows that 85% users have nega-
tive aging IAT distributions. Remarkably, all students in KAIST
traces are perceived to undergo negative aging and most of them
show heavy-tail distributions. However, when we focus on their
IAT distributions during AH, 8% of students in KAIST appear
to have positive aging. For the case of CDT distribution, the
CDFs of and are shown in Fig. 2(c) and (d). The shape pa-
rameter of Weibull-fitted users ranges from 0.3 and 1.5, and
of Pareto-fitted users are greater than 0.5. These results sup-
port the fact that the sufficient condition (17) for the optimality
can be highly likely to be satisfied (see Section III-D).
The key message of our measurement-based analysis here is

that a large portion of users experience negative aging, thereby
implying that the sensing algorithms that increase the sensing
intervals, such as AI [18], ExBackoff [33], and also WiSAG,
take the right direction. However, just increasing intervals is
not sufficient to guarantee high performance: The simple pat-
terns of increasing intervals, such as linear in AI or exponential
in ExBackoff, do not always perform very well, and we need
to adaptively control the sensing intervals like WiSAG that ac-
tively exploit the diverse failure rates of IAT over time. Further-
more, the appearance of positive aging users during active hours
indicates that, in some cases, algorithms with increasing in-
terval, such as AI and ExBackoff, can perform poorly, whereas
WiSAG can easily adapt to the user pattern with the decreasing
sensing interval. We now verify such a reasoning through the
trace-driven simulations.

TABLE III
SENSING INTERVAL (IN THE UNIT OF SECONDS) USED IN EACH ALGORITHM.
THE SENSING INTERVALS FOR AI AND EXBACKOFF ARE GIVEN IN TERMS

OF INDEX , WHICH STANDS FOR THE TH SENSING ATTEMPT
(AI: INCREMENT , EXBACKOFF: CONSTANT BASE )

C. Tested Algorithms
We test three sensing algorithms in literature: PERD (Peri-

odic) [13], [18], which senses APs over fixed periodic inter-
vals; AI (Additive Increase) [18], which increases the sensing
interval by a fixed increment after each sensing; and finally
ExBackoff (exponential backoff) [33], which exponentially in-
creases the sensing interval. Each algorithm has a parameter
such as the period in PERD, the increment in AI, and the con-
stant and base in ExBackoff. In our comparison of the per-
formance, we use the “best” version of each algorithm in the
sense that the best parameter (which shows the minimum pe-
nalized cost) is searched by running the corresponding algo-
rithm offline multiple times over a large number of parameter
choices. Table III summarizes the sensing intervals of the com-
pared algorithms whose parameters are fitted for (OPT) with
and (OPT2). From Table III, we can observe a dependency be-
tween the resulting sensing intervals and the penalty weight for
Wi-Fi contact loss : The length of sensing interval is nega-
tively correlated with . As increases, each algorithm tends to
reduce the WiFi contact loss more aggressively, thereby short-
ening their sensing intervals. This means that the value of can
be viewed as a flexible knob representing the application-spe-
cific tradeoff between sensing interval and Wi-Fi contact loss.
In addition, we add one more algorithm, IDEAL. Recall that a
practical algorithm like WiSAG is unable to know whether the
user misses an AP due to fast mobility or not. An omnipotent al-
gorithm “IDEAL” with the optimal sensing intervals can detect
such AP missing events and initiate its sensing interval at the
start of every phase (see the end of Section V for the discussion).
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Fig. 3. Trace-driven comparison of the algorithms for (OPT) for and MB/s. The CDF of performance gains experienced by all users are plotted
in each scenario. The average gain and maximum gain among all users are marked. (a) 84 iPhone users, . (b) 84 iPhone users during AH, .
(c) 60 KAIST students (using Android smartphones), . (d) 60 KAIST students during active hours (using Android smartphones), . (e) 84 iPhone
users, . (f) 84 iPhone users during AH, . (g) 60 KAIST students (using Android smartphones), . (h) 60 KAIST students during active
hours (using Android smartphones), .

D. Results
We conduct trace-driven simulations based on the iPhone,

KAIST campus traces. In our simulation, each individual
mobile runs WiSAG with its own IAT and CDT distributions.
Throughout this section, to avoid the confusion between
WiSAG for (OPT) and (OPT2), we simply call WiSAG for
(OPT) as WiSAG. By referring to previous experimental
measurements on the energy consumption and throughput of
Wi-Fi [12], [16], we assume that a mobile consumes per
Wi-Fi sensing and an average throughput is 1 MB/s.
In Fig. 3, we plot the CDF of performance gains experienced

by all users in each scenario against four algorithms with respect
to (OPT). We test them for two penalty weights .
The performance gain over an algorithm ‘A’ is defined as the
increase of the penalized cost (in (OPT)) of ‘A’ over that of
WiSAG, ' ' . Fig. 3(a) shows that
the average gains of iPhone users over PERD (resp. AI) is 37%
(resp. 24%). The maximum gain among all users is 143% over
PERD and 128% over AI. In the scenario of Fig. 3(b) where
users carry their devices during active hours and charge them
at night, WiSAG still outperforms other algorithm by 17% over
PERD and 22.3% over AI on average. The maximum gain over
PERD (resp. AI) is 51% (resp. 58%). The average performance
gap between WiSAG and IDEAL is less than 1.7%, which
means that missing AP event due to fast mobility does not
have a huge effect on the performance. The average gains over
ExBackoff for all cases are more than 65%. Recall that PERD,
AI, and ExBackoff operate with the best parameters in terms of
our objective, acquired from offline computations over a large
set of parameter candidates, whereas WiSAG computes the
sensing intervals without any parameter tuning, relying only on
the IAT and CDT distributions.

Fig. 4. (a) Average performance gain of IFR (positive aging) and DFR (neg-
ative aging) users from both iPhone and KAIST traces during active hours.
(b) Tradeoff between the energy and data loss per Wi-Fi contact in KAIST
campus trace. In the -axis, and mean periodic sensing with fixed
sensing interval (seconds) and WiSAG with , respectively.

As shown in Fig. 3(c) of KAIST users, WiSAG outperforms
PERD by 26.5% and AI by 10.8% on average. The maximum
gain among all users is 134.7% over PERD and 69.9% over AI.
A larger fraction of users with small in Weibull and large
in Pareto (thus negative aging), plotted in Fig. 2(a) and (b),

leads to the worse performance in PERD and relatively better
performance in AI. However, the active-hour scenario causes
the poor performance of AI as shown in Fig. 3(d), where the
average gain over PERD (resp. AI) is 17% (resp. 20%). The
maximum gains among all users during active hours are 48%
over PERD and 57% over AI. We also observe as for such a
campus-wide trace that WiSAG performs closely to IDEAL and
outperforms ExBackoff more than 60% on average. In the sce-
narios of Fig. 3(e)–(h), we repeat the evaluation for the penalty
weight , where the contact loss becomes more weighty.
Since WiSAG computes its sensing interval in conformance to
the given penalty weight , WiSAG still outperforms the ex-
isting algorithms with comparable gains to the case of .
Also, we again observe that PERD performs better than AI for
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Fig. 5. Gain of WiSAG for (OPT2) for the tested algorithms (PERD, ExBackoff, AI, and IDEAL). (a) iPhone. (b) iPhone (AH). (c) KAIST. (d) KAIST (AH).

both traces and AI performs worse than PERD for active hour
traces.
The main reason behind the lower performance of AI during

the active hours in both traces is that their shape parameters
of IAT distributions tend to form light tails than those during
all times, as already observed in Fig. 2(a) and (b). Moreover,
due to the increase of the users with positive aging in their IAT
distributions, the algorithms with increasing intervals (e.g., AI,
ExBackoff) do not work well. To see this, we plot the average
gain for IFR (positive aging) and DFR (negative aging) users
in Fig. 4. Using a CSVM test on two traces, we pick: 1) IFR
users whose IAT distributions during active hours are accepted
to Weibull with or Pareto with , and 2) DFR
users who are fitted to Weibull with or Pareto with

. For IFR users, WiSAG outperforms AI by 47% on av-
erage since WiSAG successfully reduces the sensing intervals
by adapting to the IFR distributions. For DFR users where the
optimal sensing interval should increase over time, AI performs
better than PERD. However, WiSAG still outperforms AI by
20% because the increasing intervals in WiSAG are more ac-
curate. In Fig. 4(b), we show that the tradeoff between energy
and data loss in WiSAG can be controlled by . We observe that
controlling the balance between the energy and data loss in pe-
riodic sensing is conducted on much higher cost region of both
energy and data loss than WiSAG.
We also test the heuristic version of WiSAG tailored for

(OPT2) based on the heuristic computation of . In Fig. 5,
we plot the gain of WiSAG for (OPT2) against the tested algo-
rithms with 95% confidence interval in four traces. To select
parameters of the compared algorithms, we test a set of feasible
parameters through multiple numerical simulations and pick
the one that shows the best average performance in the nu-
merical simulations. Expectedly, it turns out that, in all traces,
WiSAG for (OPT2) outperforms the other algorithms, PERD,
ExBackoff, and AI. The gain against PERD and AI is 5%–16%
and 17%–50%, respectively. These positive gains over the
algorithms in comparison validate that proposed WiSAG for
(OPT2) performs well on average. However, in some cases,
the confidence interval may extend to the negative values,
which means that WiSAG for (OPT2) can perform worse for
a few users. This is mainly because: 1) the convergence of the
algorithm for computing sensing interval is not guaranteed;
2) the algorithm can be trapped into a local optimum. Note also
that it is not difficult to design a more sophisticated algorithm

avoiding these entrapments, which is beyond the scope of the
paper.

VII. CONCLUDING REMARKS

The main contributions of this paper are twofold. First, we
analyze the fundamental interconnection between the tendency
of “best” sensing intervals and distributions of inter-AP arrival
and contact duration times. We classify these distributions by
aging and show that the aging is the key property that decides
whether to increase or decrease sensing intervals. Second, in-
spired by our analytical work, we develop a near-optimal Wi-Fi
sensing algorithm, WiSAG, and show that WiSAG outperforms
other algorithms through the extensive trace-driven simulations.
The study on Wi-Fi sensing algorithms includes the ones that

use surrounding information [13]–[16]. In some cases, such al-
gorithms may outperformWiSAG, which does not use the extra
information. However, due to the additional overheads for using
them, our focus is first to study the sensing patterns without sur-
rounding information by figuring out which factor is the key
to the optimal blind sensing. We believe that WiSAG is widely
beneficial in current smartphones, most of which also use a blind
sensing policy [13]. It is left as a future work to extend our
framework in WiSAG to account for the advantage of the sur-
rounding information.

APPENDIX

A. Proof of Theorem 1
To simplify the exposition, we first denote the reciprocal of
by: .

(i) Necessity. Let be the functional in (xOPT), i.e.,

From the functional derivative techniques in [30] and [34], by
differentiating the functional w.r.t. and setting it to zero,
we obtain

(22)

By noting that from (7),
and , (11) follows from (22).
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(ii) Sufficiency. The necessary condition in (11) is also suffi-
cient if the functional is convex [35], i.e.,

for any two functions and . This is equiva-
lent to

(23)

which holds if and only if is convex in .
Now, the condition reads as

By replacing with and setting , we get (12).
This completes the proof.

B. Proof of Theorem 2
For the sake of notational brevity, we first denote the recip-

rocal of by: , and by the approximated
form of the objective in (16). For ease of development, put
the approximated form of the objective as , where

and are denoted as follows:

(24)

(25)

By the definition of functional derivative [30], we compute a
functional derivative of nonlocal functional as follows:

(26)

Then, we compute and

(27)

(28)

Equations (26)–(28) lead to the following equation:

(29)

Then, putting the right-hand side of (29) zero

(30)

where is a failure rate [20] of distribution and

. Note that the unknown coefficient does
not depend on because both denominator and numerator of
are functionals that have scalar values. Then, replacing to

, we arrive at the (17)
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