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Distributed Medium Access Over
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Abstract—Recent studies on MAC scheduling have shown
that carrier sense multiple access (CSMA) algorithms can be
throughput optimal for arbitrary wireless network topology.
However, these results are highly sensitive to the underlying
assumption on ‘static’ or ‘fixed’ system conditions. For example,
if channel conditions are time-varying, it is unclear how each
node can adjust its CSMA parameters, so-called backoff and
channel holding times, using its local channel information for the
desired high performance. In this paper, we study ‘channel-aware’
CSMA (A-CSMA) algorithms in time-varying channels, where
they adjust their parameters as some function of the current
channel capacity. First, we assume that backoff rates can be arbi-
trary large and show that the achievable rate region of A-CSMA
equals to the maximum rate region if and only if the function
is exponential. Furthermore, given an exponential function in
A-CSMA, we design updating rules for their parameters, which
achieve throughput optimality for an arbitrary wireless network
topology. They are the first CSMA algorithms in the literature
which are proved to be throughput optimal under time-varying
channels. Moreover, we also consider the case when back-off
rates of A-CSMA are restricted compared to the speed of channel
variations, and characterize the throughput performance of
A-CSMA in terms of the underlying wireless network topology.
Our results not only guide a high-performance design on MAC
scheduling under highly time-varying scenarios, but also provide
new insights on the performance of CSMA algorithms in relation
to their backoff rates and underlying network topologies.
Index Terms—CSMA, time-varying channel, backoff, wireless

ad-hoc network.

I. INTRODUCTION
A. Motivation

H OW TO access the shared medium is a crucial issue in
achieving high performance in many applications, e.g.,

wireless networks. In spite of a surge of research papers in this
area, it's the year 1992 that the seminal work by Tassiulas and

Manuscript received November 20, 2013; revised May 31, 2014; October
05, 2014; April 13, 2015; and September 23, 2015; accepted October 25,
2015; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor X.
Lin. This work was supported by BK21 plus, the Basic Science Research
Program through the National Research Foundation of Korea (NRF) under
Grant NRF-2013R1A2A2A01067633 and the Ministry of Science, ICT and
Future Planning under the Center for Integrated Smart Sensors as Global
Frontier Project CISS-2012M3A6A6054195. This work was presented in part
at ACM MobiHoc 2013.
S. Yun is with theMSR-INRIA Joint Center, Palaiseau 91120, France (e-mail:

seyoung.yun@inria.fr).
J. Shin and Y. Yi are with the Department of Electrical Engineering, KAIST,

Daejeon 305-701, Korea (e-mail: jinwoos@kaist.ac.kr, yiyung@kaist.edu).
This paper has supplementary downloadable material available at

http://ieeexplore.ieee.org.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2015.2503394

Ephremides proposed a throughput optimal medium access al-
gorithm, referred to as Max-Weight [29]. Since then, a huge
array of subsequent research has been made to develop dis-
tributed medium access algorithmswith high performance guar-
antee and low complexity. However, in many cases the tradeoff
between complexity and achievable rate region has been ob-
served, or even throughput optimal algorithms with polynomial
complexity have turned out to require heavy message passing,
which becomes a major hurdle to becoming practical medium
access schemes, e.g., see [7], [30] for surveys.
Recently, there has been exciting progress that even fully dis-

tributed medium access algorithms based on CSMA (Carrier
Sense Multiple Access) with no or very little message passing
can achieve optimality in both throughput and utility, e.g., see
[6], [17], [21], [24]. The main intuition underlying these re-
sults is that nodes dynamically adjust their CSMA parameters,
backoff and channel holding times, using local information such
as queue-length so that they solve a certain network-wide opti-
mization problem for the desired high performance. We refer
the readers to a survey paper [32] for more details.
However, the recent CSMA algorithms assume static channel

conditions, and it is far from being clear how they perform for
time-varying channels, which frequently occurs in practice.
Note that it has already been shown that the Max-Weight is
throughput optimal for time-varying channels [28] and joint
scheduling and congestion control algorithms based on the
optimization decomposition, e.g., [2], are utility optimal by se-
lecting the schedules over time, both of which essentially track
the channel conditions quickly. However, a similar channel
adaptation for CSMA algorithms may not be feasible for the
following two reasons. First, each node in a network only
knows its local channel information, and cannot track channel
conditions of other nodes. Second, there exists a non-trivial
coupling between CSMA's performance under time-varying
channels and the speed of channel variations, since CSMA
algorithms might not react quickly to the channel variations.
In this paper, we formalize and quantify this coupling, and

study when and how CSMA algorithms perform depending on
the network topologies and the speed of channel variations.

B. Our Contribution
In this paper, we model time-varying channels by a Markov

process, and study ‘channel-aware’ CSMA (A-CSMA) algo-
rithms where each link adjusts its CSMA parameters, backoff
and channel holding times, as some function of its (local)
channel capacity. We compare A-CSMA with ‘channel-un-
aware’ CSMA (U-CSMA) algorithms where backoff and
channel holding times do not depend on the channel capacity
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(see Section II-C for the formal definitions of A-CSMA and
U-CSMA). In what follows, we first summarize our main
contributions and then describe more details.
C1—Achievable rate region of A-CSMA. We show that the

achievable rate region of A-CSMA is maximized if and only
if the function for backoff and channel holding times is expo-
nential. In particular, we prove that A-CSMA can achieve an
arbitrary large fraction of the capacity region for exponential
functions (see Theorem 3.1) with arbitrary large backoff rates,
which turns out to be impossible for non-exponential functions
(see Theorem 3.2).
C2—Dynamic throughput optimal A-CSMA. We develop two

types of throughput optimal A-CSMA algorithms, where links
dynamically update their CSMA parameters based on both
(a) the exponential function of the channel capacity in C1 and
(b) the empirical local load or the local queue length, without
knowledge of the speed of channel variation and the arrival
statistics (such as its mean) in advance (see Theorems 4.1 and
4.2).
C3—Achievable rate region of A-CSMA with limited backoff

rates.We provide a lower bound for the achievable rate region
of A-CSMA when their backoff rates are highly limited com-
pared to the speed of channel variations (see Theorem 5.3).
Our bound depends on a combinatorial property of the under-
lying interference graph, i.e., its chromatic number ,1 and is
independent of backoff rates or the speed of channel variations.
Moreover, it is noteworthy that the achievable rate region of
A-CSMA includes the achievable rate region of channel-un-
aware CSMA (U-CSMA) for any limited backoff rate (see
Theorem 5.2).
A typical necessary step to analyze and design a CSMA

algorithm of high performance in static channels is to char-
acterize the stationary distribution of the Markov chain of
schedules induced by it [6], [17], [21], [24]. However, this task
is much harder for A-CSMA in time-varying channels, since
the Markov chain induced by A-CSMA is non-reversible (see
Theorem 2.1), i.e., it is unlikely that its stationary distribution
has a ‘clean’ formula to analyze, being in sharp contrast to the
CSMA analysis for static channels. To overcome this technical
issue, we first show that the stationary distribution approxi-
mates to a product-form distribution when backoff rates are
sufficiently large. Then, for C1, we study the product-form to
guarantee high throughput of A-CSMA, where the exponential
functions are found. The main novelty lies in establishing
the approximation scheme, using the Markov chain tree the-
orem [1], which requires counting the weights of arborescences
induced by the non-reversible Markov process to understand
its stationary distribution.
For C2, we combine C1 with existing techniques: our first

and second throughput optimal algorithms are ‘rate-based’ and
‘queue-based’ ones originally studied in static channels by
Jiang et al. (cf. [6], [5]) and Rajagopalan et al. (cf. [24], [26]),
respectively. To extend these results to time-varying channels,
our specific choice of holding times as exponential functions

1Given a graph, its chromatic number is the smallest number of colors
needed to color the vertices so that no two adjacent vertices share the same
color.

of the channel capacity plays a key role in establishing the de-
sired throughput optimal performance. To our best knowledge,
they are the first CSMA algorithms in the literature which are
proved to be throughput optimal under general Markovian
time-varying channel models.
C3 is motivated by observing that a CSMA algorithm in

fast time-varying channels inevitably has to be of high backoff
rates for the desired throughput performance, i.e., high backoff
rates are needed for tracking time-varying channel conditions
fast enough. However, backoff rates are bounded in practice,
which may cause degradation in the CSMA's performance. We
note that CSMA algorithms with limited backoff or holding
rates have been little analyzed in the literature, despite of their
practical importance.2 C3 provides a lower bound for A-CSMA
throughputs regardless of restrictions on their backoff rates or
sensing frequencies. For example, if the interference graph is
bipartite (i.e., its chromatic number is two), our bound implies
that A-CSMA is guaranteed to have at least 50%—throughput
even with arbitrary small backoff rates.

C. Related Work

The research on throughput optimal CSMA has been initiated
independently by Jiang et al. (cf. [5], [6]) and Rajagopalan et al.
(cf. [24], [26]), where both consider the continuous time and col-
lision free setting. Under exponential distributions on backoff
and holding times, the system is modeled by a continuous time
Markov chain, where the backoff rate or channel holding time
at each link is adaptively controlled by the local (virtual or ac-
tual) queue lengths. Jiang et al. proved that the long-term link
throughputs are the solution of an utility maximization problem
assuming the infinite backlogged data. Rajagopalan et al. [24]
showed that if the CSMA parameters are changing very slowly
with respect to the queue length changes, the realized link sched-
ules provably emulate Max-Weight very well. Although their
key intuitions are apparently different, both require to under-
stand the long-term behavior (i.e., stationarity) of the Markov
chains on schedules formed by CSMA.
These throughput optimality results motivate further research

on design and analysis of CSMA algorithms. The work by
Liu et al. [17] proves the utility optimality using a stochastic
approximation technique, which has been extended to the
multi-channel, multi-radio case with a simpler proof in [22].
The throughput optimality of MIMO networks under SINR
model is also shown in [23]. As opposed to the continuous-time
setting where carrier sensing is perfect and instantaneous (and
hence no collision occurs), more practical discrete time settings
that carrier sensing is imperfect or delayed (and hence colli-
sions occur) have been also studied. The throughput optimality
of CSMA algorithms in discrete time settings with collisions
is established in [8], [27] and [10], where the authors in [10]
consider imperfect sensing information. In [17], the authors
studied the impact of collisions and the tradeoff between
short-term fairness and efficiency. The authors in [21] con-
sidered a synchronous system consisting of the control phase,
which eliminates the chances of data collisions via a simple

2Even in static channels, restrictions on backoff or holding rates may degrade
the throughput or delay performances of CSMA algorithms.
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message passing, and the data phase, which actually enables
data transmission based on the discrete-time Glauber dynamics.
There also exist several efforts on improving or analyzing delay
performance [3], [4], [11], [15], [18], [25], speeding up the con-
vergence [31], and developing a practical protocol based on the
CSMA theory with experimental validation [12], [13], [19]. To
the best of our knowledge, CSMA under time-varying channels
has been studied only in [16] for only complete interference
graphs, when the arbitrary backoff rate is allowed. Besides
CSMA, distributed scheduling under time-varying channel was
recently studied in [9]: the authors provide an algorithm with

throughput guarantee where is the maximum degree of
the interference graph. Our proposed A-CSMA algorithm pro-
vides the best throughput guarantee in time-varying channels
among low complexity distributed scheduling algorithms in the
literature: it achieves throughput even with limited backoff
rates (see Theorem 5.3) and due to the Brook's theorem.

II. MODEL AND PRELIMINARIES

A. Network Model
We consider a network consisting of a collection of links

where each link has a queue and time is indexed by
. Let denote the amount of work in the

queue of link at time and let . The
system starts empty, i.e., . The arrival process is as-
sumed to be discrete-time with unit-sized packets arriving to
queues as in [24], for convenience. Let denotes
the cumulative arrival to link in the time interval . For
simplicity, we assume are independent Bernoulli
processes with parameter for all . Each link can
be serviced at rate representing the potential depar-
ture rate of work from the queue . We consider dis-
crete channel states such that
and for all link and time

. We consider finite state Markov time-varying chan-
nels: is a continuous-time,
time-homogeneous, and irreducible Markov process. We de-
note by the ‘transition-rates’ on the channel state for

. For the time-varying channels, we as-
sume that each link knows the channel state before it
transmits.3 We call the channel
varying speed. The channel varying speed indicates the max-
imum of the expected number of channel transitions during the
unit-length time interval. We let denote the stationary distri-
bution of Markov process . We consider only single-hop
sessions (or flows), i.e., once work departs from a queue, it
leaves the network.
The links are offered service as per the constraint imposed

by interference. To model this constraint, we adopt a popular
graph-based approach, where denote by the infer-
ence graph among links, where the vertices
represent links and the edges represent inter-
ferences between links: if links and interfere

3The channel information can be achieved using control messages such as
RTS and CTS in IEEE 802.11, and links can adapt their transmission parameters
to channel transitions for every transmission by changing coding and modula-
tion parameters.

with each other. Let and
denote the neighbors of link and

a schedule at time , i.e., whether links transmit at time re-
spectively, where represents transmission of link
at time . Then, interference imposes the constraint that for all

, where

The resulting queueing dynamics are described as follows. For
and

where denotes the indicator function. Finally, we define
the cumulative actual and potential departure processes

and , respectively, where

B. Scheduling, Rate Region and Metric
The main interest of this paper is to design a scheduling al-

gorithm which decides for each time instance
. Intuitively, it is expected that a good scheduling al-

gorithm will keep the queues as small as possible. To formally
discuss, we define the maximum achievable rate region (also
called capacity region) of the network, which is the
convex hull of the feasible scheduling set , i.e.,

and for all

where and denotes the stationary distribution
of channel state under the channel-varying Markov process.
The intuition behind this definition comes from the facts: (a) any
scheduling algorithm has to choose a schedule from at
each time and channel state where denotes the fraction of
time selecting schedule for given channel state and (b) for
channel state , the fraction in the time domain where

is equal to is . Hence the time average of the
‘service rate' induced by any algorithm must belong to .
We call the arrival rate admissible if there is

such that corresponds to the component-wise inequality.
Thus, the admissible arrival rate region is defined as

, where

for some

If , queues cannot be stabilized under any scheduling
algorithm. Further, is called strictly admissible if

and

for some

We now define the performance metric.
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Definition 2.1: A scheduling algorithm is called rate-stable
for a given arrival rate , if

with probability (1)

Furthermore, we say a scheduling algorithm has -throughput
if it is rate-stable for any . In particular, when

, it is called throughput optimal.
We note that (1) is equivalent to since

(because the arrival process is stationary
ergodic). The following lemma implies that the potential depar-
ture process suffices to study the rate-stability [20].
Lemma 2.1: A scheduling algorithm is rate-stable if

C. Channel-Aware CSMA Algorithm: A-CSMA

The algorithm to decide utilizing the local carrier
sensing information can be classified as CSMA (Carrier Sense
Multiple Access) algorithms. In between two transmissions,
a link waits for a random amount of time—also known as
backoff time. Each link can sense the medium perfectly and
instantly, i.e., knows if any other interfering link is transmit-
ting at a given time instance. If a link that finishes waiting
senses the medium to be busy, it starts waiting for another
random amount of time; else, it starts transmitting for a random
amount of time, called channel holding time. We assume that
link 's backoff and channel holding times have exponential
distributions with mean and , respectively, where

and may change over time.
We define A-CSMA (channel-aware CSMA) to be the class of
CSMA algorithms where and are decided by some
functions of the current channel capacity, i.e.,
and for some functions and . In the
special case when and are decided independently
of current channel information (e.g., 's and 's are constant
functions), we specially say a CSMA algorithm is U-CSMA
(channel-unaware CSMA).
Then, given functions and , it is easy to check that

under A-CSMA is a continuous time
Markov process, whose kernel (or transition-rates) is given by:

with rate
with rate

with rate (2)

where and denote two ‘almost’ identical schedule vectors
except -th elements which are 0 and 1, respectively. Since

is a time-homogeneous irreducible Markov process,
is ergodic, i.e., it has the unique stationary

distribution . For example, when functions and are
constant (i.e., U-CSMAwith fixed and ),

and if is (time-)reversible, is as well. In
general, is not reversible unless functions
are constant, as we state in the following theorem. The non-
reversible property, unfortunately, makes it hard to characterize
the stationary distribution of the Markov process induced
by A-CSMA.
Theorem 2.1: If is reversible,

for all

Proof: Denote by and two almost identical channel
state vectors except -th elements, which are and respec-
tively. Suppose that is reversible. From the re-
versibility, the transition path
has to satisfy the following balance equations:

(3)
Similarly, for the transition path

,

and
(4)

From (3) and (4),

(5)

which indicates that . This completes the proof
of Theorem 2.1.

III. ACHIEVABLE RATE REGION OF A-CSMA
In this section, we study the achievable rate region of

A-CSMA algorithms given (fixed) functions and . We
show that the achievable rate region of A-CSMA is maximized
for the following choices of functions:

(6)

where is some constant. Namely, the ratio
is an exponential function in terms of . We let EXP-A-CSMA
denote the sub-class of A-CSMA algorithms with functions sat-
isfying (6) for some . The following theorem justifies the op-
timality of EXP-A-CSMA in terms of its achievable rate region.
Theorem 3.1 (Optimality): For any interference graph , and

channel transition-rate , and arrival rate
there exists and satisfying (6) such that the corre-
sponding EXP-A-CSMA algorithm is rate-stable.

Proof: The proof is given in Section III-A.
We also establish that Theorem 3.1 is tight in the sense that it

does not hold for other A-CSMA algorithms that have different
ways of reflecting channel capacity in adjusting CSMA param-
eters. To state it formally, given a non-negative monotonically
increasing continuous function , we define
EXP -A-CSMA as the sub-class of A-CSMA algorithms with
the following form of functions:

for (7)
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where is some constant. The following theorem states
that EXP-A-CSMA is the unique class of A-CSMAmaximizing
its achievable rate region.
Theorem 3.2 (Uniqueness): If the conclusion of Theorem 3.1

holds for EXP -A-CSMA, then is a linear function.
Proof: The proof is given in Sections III-D.

In the following proofs (and throughout this paper), we com-
monly use to denote the stationary distribution of Markov
process (with fixed channel state ) induced by an
A-CSMA algorithm. It is noteworthy that with fixed channel
state EXP-A-CSMA algorithms are the samewith U-CSMAand

A. Proof of Theorem 3.1
To begin with, we recall that the channel varying speed is

defined as: . We first state
Lemmas 3.1 and 3.2, which are the key lemmas to the proof of
Theorem 3.1.
Lemma 3.1: For any , arrival rate

, interference graph and channel transition-rate ,
there exists such that

and every EXP-A-CSMA algorithm with

for all

satisfies

for all

Proof: This proof is presented in Section III-B.
Lemma 3.2: For any , interference graph and

channel transition-rate and EXP-A-CSMA algorithm with
functions and satisfying (7) and

it follows that

Proof: This proof is presented in Section III-C.
Lemma 3.2 implies that if are large enough, the sta-

tionary distribution approximates to a product-form dis-
tribution , where under EXP-A-CSMA,

due to the reversibility of Markov process . On the
other hand, Lemma 3.1 implies that arrival rate is stabilized
under the distribution . Therefore, combining two above
lemmas will lead to the proof of Theorem 3.1.

Proof of Theorem 3.1: We now complete the proof of
Theorem 3.1 using Lemmas 3.1 and 3.2. Consider a given
arrival rate with . If we apply
Lemmas 3.1 and 3.2 with (i.e.,

and ), we have that there exists an EXP-A-CSMA
algorithm with constant and functions and such that

where we choose

(8)

(9)

and

(10)

Therefore, it follows that

where the last equality is from the ergodicity of Markov process
. This leads to the rate-stability using Lemma 2.1,

and hence completes the proof. Since
, we can stabilize any arrival rate with some EXP-A-

CSMA algorithms.

B. Proof of Lemma 3.1
We remark that Lemma 3.1 is a non-trivial generalization of

Lemma 8 in [5] (for static channels), which corresponds to a
special case of Lemma 3.1 with for . The proof of
Lemma 3.1 uses a similar strategy with that of Lemma 8 in [5].
Since , there exists

such that and there exists such
that for all . Let .
Then, , and

for all

For such a choice of , we consider the following function
:

One can easily check that is strictly concave and bounded
above. Hence, there exists a unique maximizer such
that and . We prove the
following.

(11)

(12)
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Proof of (11): We introduce such that

,

and

(13)

There exists such . From the definition of
there exists satisfying that

and for all

since . When we let be a trivial
vector such that for all and for
all satisfies the
conditions (13).
Suppose there exists such that

Then, cannot be a maximizer of since

This completes the proof of (11).
Proof of (12): From (11) it suffices to prove that cannot

be a maximizer of if there exists such that, for all

and

The proof is completed by the following:

where the first inequality stems from the empty schedule
.

Then, from (11) and (12),

Furthermore, computing the first derivative of gives us

(14)

where we now choose an EXP-A-CSMA algorithm such that
. Therefore, it follows that

This completes the proof of Lemma 3.1.

C. Proof of Lemma 3.2
Let denote a weighted directed graph induced

by Markov process and
if the transition-rate (which becomes

the weight of the edge) from to is non-zero in
Markov process . Hence, there are two types of
edges:

I. and
II. and

A subgraph of is called arborescence (or spanning tree) with
root if for any vertex in , there is exactly one
directed path from the vertex to root in the subgraph. Let

and denote the set of arborescences of which root
is and the sum of weights of arborescences in , where
the weight of an arborescence is the product of weight of edges.
Then, since the induced Markov process is irreducible, Markov
chain tree theorem [1] implies that

(15)

Now we further classify the set of arborescences. We let
denote the set of arborescences consisting of

edges of type I. Since there are at least type I edges,
. Then, we have
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For we can transform every arborescence in to
one of arborescences in by removing type I
edges, adding type II edges, and changing directions
of at most type II edges. From the definition of
and the condition in Lemma 3.2, the transformation increases

the weight of arborescence at most
times larger than before. Thus, in the above equation,
holds. For of the above equation, we use the inequality

. Therefore, using the above inequality, it
follows that

where the first equality follows from (15) and

(16)

Similarly, one can also show that . This com-
pletes the proof of Lemma 3.2.

Proof of (16): We analogously define arborescences for
Markov process and arborescences for Markov process

, where and denote the sets of arborescences
of which roots are and ,4 respectively. Then,

We can deduce (16) from the following:

D. Proof of Theorem 3.2

We will show that if we suppose that is not linear,
EXP -A-CSMA is not throughput-optimal, i.e., there
exists a channel model and an interference graph where
EXP -A-CSMA is not rate-stable for some arrival rate vector
within the maximum achievable rate region.
First, from our hypothesis that is not linear, we can first

find positive constants , and such that
and for all

(17)

4SinceMarkov process changes only , the state space is the sched-
uling set.

The above equation roughly means that there exist two “line
segments” (where each line segment is generated by two points
over ), whose slope difference exceed one.
Second, we now present an interference graph and a channel

model of our interest, and the achievable rate vector under the
assumed interference graph and the channel.

Interference graph:We consider a complete bipartite in-
terference graph with four links , where each
odd link 1 and 3 is connected to (thus interferes with) each
even link 2 and 4.
Channel model: For and in (17), we consider

the following 5 channel states, each of which is character-
ized by the capacities of four links:

(18)

Note that in the channel state , the sum of channel capaci-
ties of odd links is constructed to be larger than that of even
links by and analogously for the channel state . The
channel transition rates are assumed to be: if

or but
otherwise. Under these transition rates, we can

easily check that the stationary channel occurrence proba-
bility is equal to 1/5 for all channels.
Arrival vector. Consider the following arrival rate vector

:

and (19)

which clearly leads to because is constructed
by considering the service rates from a scheduler that for
the channel states even links are scheduled and
for the channel states odd links are scheduled, from
which is subtracted in and .

In what follows, we denote by the stationary proba-
bility that a schedule holds channel under
each channel state .5 To prove that with the
non-linear it is impossible to stabilize , we will take the
following two steps. Step (i): we will first show that the fol-
lowing C1 is a necessary condition to stabilize :

C1. when and
when .

Condition C1 means that even (resp. odd) link schedule should
be played more than odd (resp. even) ones, when channel state

(resp. ). For instance,
since and .

Next, in Step (ii), we will show that satisfying (17) cannot
satisfy C1.

5For ease of presentation, we temporarily use this notation only in this
proof to mean that and is a schedule (i.e., a subset of non-interfering links)
and a channel state, respectively, different from elsewhere.
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Step (i).We start by noting the following, which provides the
bound on the “distance” between the rate region boundary and
the given arrival rate (19):

(20)

A necessary condition for -stabilization is that the sum of the
potential service rates over even links exceeds the sum of
arrival rates over those links, i.e., and

(21)
where the last inequality is due to (thus

) and the following upper bound on the even links' poten-
tial service rates for the channels:

(22)

which holds because from (20) and the sum of channel capaci-
ties of odd links exceeds that of even links by for the channel
state .
Note that the capacity of each link for every channel state

is at least from our channel construction in (18).
Then, since an idle link makes at least rate loss and

, (20) requires to satisfy:

(23)

By dividing LHS and RHS of (21) by , we deduce
another bound

(24)

Recall that for all channel states . Then, from
(22) and (23), and from (23)
and (24), , which
implies C1.
Step (ii).We will prove that under C1, non-linear leads

to a contradiction. We first let denote the capacity of link
at channel state . Then, we first present the key lemma to this
proof, which tells us the relation of the links' intensities under
C1 for the channel states and .
Lemma 3.3: Under Condition C1, we should have:

Proof: This proof is presented in the supplementary
material.
To intuitively understand why Lemma 3.3 holds, let's con-

sider the case when the backoff rates and the holding
rates significantly exceed the channel varying speed, so

that the condition of Lemma 3.2 holds for sufficiently small .
Then, Lemma 3.2 and Condition C1 leads to:

(25)

where is the stationary probability of the schedule
given the channel state . In order for (25) to hold,

the sum of transmission intensities of even links should be
larger than that of odd links (i.e.,

). Lemma 3.3 formalizes this intuition by
considering the general and .
By using the actual capacities in (18) for each channel state

and , under C1 Lemma 3.3 gives us the following:

(26)
(27)

(28)
(29)

(30)

Suppose that (27), (28), (29), and (30) holds. Then, from (27)
and (28), we can derive that

where for the last inequality we use (17) from our hypothesis
of the non-linearity of . Analogously, from (29) and (30), we
can conclude . Since , and is a
positive function, we must have that

which, however, contradicts with (26), completing the proof of
Step (ii). Then, the proof of Theorem 3.2 is completed.

IV. DYNAMIC THROUGHPUT OPTIMAL A-CSMA
In the previous section, it is shown that, for any feasible ar-

rival rate, there exists an EXP-A-CSMA algorithm stabilizing
the arrivals. In this section, we describe EXP-A-CSMA algo-
rithms which dynamically update its parameters so as to sta-
bilize the network without knowledge of the arrival statistics.
More precisely, the CSMA scheduling algorithm uses and

to compute the value of parameters
and at time , respectively, and update them
adaptively over time. We present two algorithms to decide
and . They are building upon prior algorithms in conjunc-
tion with the properties of EXP-A-CSMA established in the pre-
vious section, referred to as a rate-based (extension of [5]) and
queue-based algorithm (extension of [26]).
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A. Rate-Based Algorithm
The first algorithm, at each link , updates at

time instances with . Thus,
is fixed for each time-interval . Let

for and, with an abuse of nota-
tion, denote the value of for

, respectively. To begin with, the algorithm sets
(i.e., ) for all and

all .
Now we describe how to choose a varying update interval
. We select for and choose

a step-size of the algorithm as for .
Given this, link updates and as follows. Let
be empirical arrival and service observed at link in

, i.e.,

and

Then, the update rule is defined by, for

(31)

where

with initial condition .
Note that, under this update rule, the algorithm at each link
uses only its local history. Despite this, we establish that this

algorithm is rate-stable, as formally stated as follows:
Theorem 4.1: For any given graph and channel transition-

rate , the A-CSMA algorithm with updating functions as per
(31) is throughput optimal.

Proof: This proof is presented in the supplementary
material.

B. Queue-Based Algorithm
Now we describe the second algorithm which chooses

as a simple function of queue-sizes as follows.

and
(32)

where with
weight function and

. One can interpret this as an EXP-A-CSMA
algorithm since

The global information of can be replaced by its
approximate estimation that can be computed through a very

simple distributed algorithm (with message-passing) in [24] or
a learning mechanism (without message-passing) in [27]. This
does not alter the rate-stability of the algorithm that is stated in
the following theorem.
Theorem 4.2: For any given graph and channel transition-

rate , the A-CSMA algorithm with functions as per (32) is
throughput optimal.

Proof: This proof is presented in the supplementary
material.
Note that we design and such that they

grow as the maximum queue length increases, i.e.,
backoff and holding rates of nodes become large when
does. Then, from Lemma 3.2, the stationary distribution
induced by the queue-based algorithm is approximated well
by a product-form (channel and scheduling) distribution when

is large. Once we have such a property, we can use
identical proof arguments in [26] for establishing the desired
throughput optimality. Irrespective of such a technical reason,
increasing backoff and holding rates with respect to the max-
imum queue length is quite natural since it is necessary for
chasing arbitrarily fast channel variations.

V. ACHIEVABLE RATE REGION OF A-CSMA WITH LIMITED
BACKOFF RATE

In practice, it might be hard to have arbitrary large backoff
rate due to physical constraints. This motivates us to investigate
the achievable rate region of A-CSMA algorithms with limited
backoff rate. Note that, in the proof of Theorem 3.1, we choose
the backoff rates to be proportional to the channel varying
speed. Thus, when the backoff rate is limited and the channel
varying speed grows up, it is clear that we cannot guarantee
the optimality of EXP-A-CSMA. It can be simply shown that,
for given channel transition rate the rate region of EXP-A-
CSMA grows as the backoff limit decreases, where the backoff
limit (denoted by ) is a bound of backoff functions such
that . It is because the decreasing
backoff limit removes some possible choices of in EXP-A-
CSMA. In this section, we will give lower bounds of achievable
rate region for such limited backoff rate.
When the backoff limit is large, EXP-A-CSMA algorithm can

achieve -close the capacity. In Theorem 5.1, we establish a suf-
ficient condition to achieve fraction of capacity region,
where the sufficient condition can be tightened more for com-
plete graphs.
Theorem 5.1: For any given interference graph
channel transition-rate and arrival rate there

exists a rate-stable EXP-A-CSMA algorithm with functions
and such that if

where and are defined in (9) and (10), respectively. If
is a complete graph, the above condition on can be tightened
further as:
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where we recall the channel varying speed is defined as
.

Proof: This proof is presented in Section V-A.
The above theorem implies that backoff rates might be

necessarily huge for throughput optimality of EXP-A-CSMA.
On the other hand, in the following theorems, we show that
EXP-A-CSMA even with limited backoff rates is no worse
than U-CSMA in throughput and achieves at least a constant
fraction of the maximum throughput region, where only
depends on the stationary distribution and the interference
graph .
Theorem 5.2: For any , interference graph ,

channel transition-rate and U-CSMA parameters, there exists
a EXP-A-CSMA algorithm with functions and such that

and

for all

where and denote the cumulative potential departure
processes of the EXP-A-CSMA and the U-CSMA, respectively.

Proof: This proof is presented in Section V-B.
Theorem 5.3: For any , interference graph , channel

transition-rate and arrival rate , there exists a
rate-stable EXP-A-CSMA algorithm with functions and

such that

where

(33)

In above, is the chromatic number of .
Proof: This proof is presented in Section V-C.

The above theorem implies that for a bipartite interference
graph, at least 50%-throughput can be achieved under EXP-A-
CSMA regardless of constraints on backoff rates since its chro-
matic number is two.

A. Proof of Theorem 5.1

1) General Graphs: From the proof of Theorem 3.1, we nat-
urally get this bound. We have shown that, in (8), any arrival
rate can be stabilized by an EXP-A-CSMA al-
gorithm with

for all link and channel state , since and
in the proof of Theorem 3.1.
2) Complete Graphs: Let us consider a EXP-A-CSMA with

and . For notational conve-
nience, let be the stationary distribution induced by EXP-
A-CSMA with the above and that the link holds
the channel and channel state is .

From (11), for arrival rate there exists
such that and

We will later show the following lower bound on : For each
link ,

(34)

where . Therefore, for
, and EXP-A-CSMA satisfies

and stabilizes an arrival vector
such that , since

which implies that for any arrival rate there exist
an EXP-A-CSMA that stabilizes .

Proof of (34): To complete the proof, we now show (34).
Note that since is a complete graph, only one link can be
active at any time. We divide the entire time into three phases
P1, P2 and P3:

Whenever any link becomes active, P1 starts.
P1 moves to P2 when the channel of any link changes.
P1 or P2 moves to P3 if no link is active.

Based on these time phases, we define two random processes
and as follows:

and , if is in P1.
and , if is in P2.
and , if is in P3.

One can observe that the media is sensed busy at time if and
only if .
Using consider a random process

such that

if for some
otherwise

where

and when the channel state at time is and 0 other-
wise. In other words, is a (truncated) random process
on the schedule under the complete graph, where it considers
only the phases P1, P3 and when the channel state is . Then,
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one can easily check that is a Markov process, whose
transition rates are given by: for all and ,

with rate
with rate
with rate

Note that the transition is not allowed between any two sched-
uled links and , because removes P2 and takes into
account only when the channel state is . Let be the
stationary distribution of , which has the following
form:

(35)

We now introduce another random process which is
equal to in the phase P2 (i.e., if ). The
random process , however, is possibly different from
in the phases P1 and P3. At every channel transition in the phase
P3, we set for a random time period while .
More precisely, when a channel transition occurs at time in
the phase P3, set for where
is an exponential random variable withmean and is the

next channel transition time. Note that if there is no active link
at (i.e., is in the phase P3), we analogously set for
a random time period; otherwise, the phase P2 begins and thus

. Therefore, every channel transition makes
and from the memoryless property of the exponential

distribution, keeps 1 for an exponential random time with
mean . We provide an exapmle to show the difference be-
tween and in the supplementary material. Using
we define a random process :

and

Then, from the definition of is a Markov process
where the transition rate from 0 to 1 is the channel transition
rate since every channel transition makes , and
the transition rate from state 1 to state 0 becomes from the
memoryless property of the exponential distribution. We plot
the state transition diagram of in Fig. 1. Therefore, we have

(36)

We denote by (resp. and ) the long-term
time fraction that link is active, channel state is , and
(resp. and ), i.e.,

Then, for each link ,

(37)

Fig. 1. State transition diagram of , where (Px,y) refers to the phase Pxwith
.

(38)

(39)

(40)

(41)

where (37) is due to the fact that . (38)
holds, since
and removes P2. (39) is induced from ,
and (40) is obtained from

. We finally get (41) from
(35) and (36). This completes the proof of (34).

B. Proof of Theorem 5.2
Let denote the arrival rate region stabilized by U-CSMA.

For any and arrival rate there exist
an U-CSMA algorithm with arbitrary small parameters and

, which stabilize arrival rate , i.e.,

where is the stationary distribution of Markov process
induced by the U-CSMA algorithm. In particular, given
, one can assume . For the choice of and

, we consider an EXP-A-CSMA algorithm with functions

and

where we choose to satisfy .

Note that satisfying the above equality always exists for given
, and . Furthermore,

one can observe that the maximum value of and
for can be made arbitrarily small due to arbitrarily
small . Using this observation and the Markov chain tree
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theorem (as we did for the proof of Lemma 3.2), one can show
that

where denotes the stationary distribution of Markov
process by the EXP-A-CSMA algorithm. There-
fore, it follows that

where the last inequality is from the ergodicity of Markov
process . Due to Lemma 2.1, this means that the
EXP-A-CSMA algorithm is rate-stable for the arrival rate .
This completes the proof of Theorem 5.3.

C. Proof of Theorem 5.3
The main strategy for the proof of Theorem 5.3 is that we

study U-CSMA (channel-unaware CSMA) to achieve the per-
formance guarantee of A-CSMA. We start by stating the fol-
lowing key lemmas about U-CSMA.
Lemma 5.1: Let be the independent-set polytope,

for all (42)

Then, for , there exists a U-CSMA algorithm with
parameters and such that

Proof: The proof of Lemma 8 in [5] goes through for the
proof of Lemma 5.1 in an identical manner. We omit further
details.
In what follows, we show that, for any , interference

graph , channel transition-rate and arrival rate ,
there exists a rate-stable U-CSMA algorithm with parameters

and where is defined in (33). Then, by
Theorem 5.2, we can conclude this theorem.
To this end, it suffices to show that there exists a U-CSMA

algorithm stabilizing any arrival rate such that

First, consider . From Lemma 2.1 and the er-
godicity of Markov process and under U-CSMA,
it suffices to prove that there exists a U-CSMA algorithm
satisfying

for all

Fig. 2. Topologies. (a) Star, (b) Complete, (c) Random.

Since and are independent, the above condition
is equivalent to

for all

Since (otherwise,
), it is enough to prove that for an appropriately

defined ,

for all

There exists a U-CSMA algorithm with parameter
and satisfying the above inequality from Lemma 5.1
and , since from the definition of chro-
matic number there exists subset such
that and for all .
Furthermore, we can make and arbitrarily small since

under U-CSMA is invariant as long as ratios
remain same.

Now the second case can be
proved in an similar manner, where we have to prove that there
exists a U-CSMA algorithm satisfying

for all

since for all . By

Lemma 5.1, it is sufficient to show that

for all , which is trivial

since from the definitions of and .
This is the end of this proof.

VI. SIMULATION RESULTS
In this section, we provide simulation results to demonstrate

our analytical findings.
U-CSMA vs. A-CSMA. We first consider a 5-link complete

interference graph, i.e., all 5 links interfere with each other.
All links are homogeneous and independent in terms of time-
varying channels, where we assume that the channel space is
simply . With an abuse of notation, let denote the
transition-rate for which translates from state to state .
We consider the transition-rate .We com-
pare A-CSMA and U-CSMA, with the following setups:
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Fig. 3. Numerical results on A-CSMA. (a) 5-link complete graph, (b) Star: A-CSMA vs U-CSMA, (c) Complete: A-CSMA vs U-CSMA, (d) Random: A-CSMA
vs U-CSMA.

so that for A-CSMA and
for U-CSMA, respectively. Throughputs of A-CSMA and
U-CSMA are evaluated by estimating the average rate in the po-
tential departure process, i.e., . Fig. 3(a) shows
the results, where in -axis, we vary the ratio of backoff
rate to the channel varying speed (determined by )
and -axis represents the fraction of achievable rate region

(note that in a complete interference graph, the rate re-
gion is symmetric). Since the maximum rate point in is

for all , in Fig. 3(a),

. We observe that (i) by
reflecting the channel capacity in the CSMA parameters as
an exponential function, A-CSMA has -throughput where

approaches 100% (see Theorem 3.1), and (ii) U-CSMA
has 76%-throughput. Note that % even with limited
backoff rates (i.e., small ), and this matches Corollary 5.2
which states that A-CSMA's throughput is at least U-CSMA's
throughput.
Linear vs. non-linear adaptation. Here, we test dynamic

A-CSMA and U-CSMA algorithms. Let A-CSMA de-
note the EXP -A-CSMA with queue-based algorithms. We
test and to compare concave
and convex rate adaptation with the linear adaptive function.
Each link updates the functions and according to its own
queue length as stated in Section IV-B except the channel adap-
tation function . In terms of channels, each link has inde-
pendent and identical channels, where .
For each link
and 0 otherwise. We increase the arrival rates homogeneously
across all links, and plot the average queue lengths to study
which arrival rates start to make the system unstable across all
the tested algorithms. The average queue length will blow up
when the algorithm cannot stabilize the given arrival rate.
Star graph. Fig. 3(b) shows the results of the 5-link star graph,

where the average queue blows up at 0.42 (A-CSMA ), 0.36
(A-CSMA ), and 0.39 (A-CSMA and U-CSMA).
Note that for star graphs, we should schedule the inner and
outer links alternatively, depending on the channel conditions
to stabilize the system. Due to the channel adaptivity of and

, A-CSMA and A-CSMA outperform U-CSMA.
A-CSMA , however, is even worse than U-CSMA. This is
because is a convex adaptive function, and thus the sum of
intensities of the outer links is smaller than that of the inner link
when the channel capacity of the inner link is the same with
the sum of outer links' capacities. Therefore, outer links tend to
loose transmission chances even for good channel conditions.

Complete graph. Fig. 3(c) shows the results of the 10-link
complete graph, where the average queue blows up at 0.07
(A-CSMA , A-CSMA ), and 0.06 (A-CSMA and
U-CSMA). To understand this trend, note that for complete
graphs, to achieve throughput optimality, we have to schedule
the link having the largest channel capacity at each channel
state. A-CSMA and A-CSMA outperforms U-CSMA
because the transmission chance increases as the channel ca-
pacity increases. However, A-CSMA performs similarly
with U-CSMA, because with the concave function the
transmission intensity of a link changes less aggressively, so
small difference from U-CSMA's performance. The results
for star and complete graphs validates the uniqueness of our
analysis on how the system should adapt to channel variations,
irrespective of interference graphs (see Theorem 3.2).
From Theorem 4.2, we know that A-CSMA is throughput

optimal. The results, however, are not tight with the maximum
rate point in , which is

whereas the average queue blows up at 0.07. This stems from
the backoff rate and channel-varying speed. In Theorem 5.1, the
backoff rate should exponentially grow up as the arrival rate
closes to the maximum rate point. Thus, we need large enough

in (32) to stabilize the arrivals with nearly maximum rate.
Random graph. We now study A-CSMA and U-CSMA for

a random topology by uniformly locating 20 nodes in a square
area and a link between two nodes are established by a given
transmission range, as depicted in Fig. 2(c). To model interfer-
ence, we assume the two-hop interference model (i.e., any two
links within two hops interfere) as in 802.11. Fig. 3(d) shows
that again A-CSMA outperforms others.

VII. CONCLUSION

Recently, it is shown that CSMA algorithms can achieve
throughput (or utility) optimality where ‘static’ channel is
assumed. However, in practice, the channel capacities are
typically time-varying. In this paper, we study a generic criteria
of throughput-optimal CSMA algorithms in the time-varying
scenarios, and propose the A-CSMA algorithm by exploring
certain sufficient conditions, e.g., high back-off rates. The tight
analysis of throughputs of CSMA algorithms with general
backoff rates is an interesting open question in the future
research.
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