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Delay Optimal CSMA With Linear Virtual Channels
Under a General Topology
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Abstract—In the past few years, an exciting progress has been
made on CSMA (Carrier Sense Multiple Access) algorithms that
achieve throughput and utility optimality for wireless networks.
However, most of these algorithms are known to exhibit poor delay
performance making them impractical for implementation. Re-
cently, several papers have addressed the delay issue of CSMA and
yet, most of them are limited, in the sense that they focus merely on
specific network scenarios with certain conditions rather than gen-
eral network topology, achieve low delay at the cost of throughput
reduction, or lack rigorous provable guarantees. In this paper, we
focus on the recent idea of exploiting multiple channels (actually
or virtually) for delay reduction in CSMA, and prove that it is
per-link delay order-optimal, i.e., -asymptotic-delay per link,
if the number of virtual channels is logarithmic with respect to
mixing time of the underlying CSMA Markov chain. The loga-
rithmic number is typically small, i.e., at most linear with respect
to the network size. In other words, our contribution provides not
only a provable framework for the multiple-channel based CSMA,
but also the required explicit number of virtual-multi-channels,
which is of great importance for actual implementation. The key
step of our analytic framework lies in using quadratic Lyapunov
functions in conjunction with (recursively applying) Lindley equa-
tion and Azuma's inequality for obtaining an exponential decaying
property in certain queueing dynamics. We believe that our tech-
nique is of broader interest in analyzing the delay performance of
queueing systems with multiple periodic schedulers.
Index Terms—CSMA, delay performance, Glauber dynamics,

wireless ad-hoc network.

I. INTRODUCTION

I N WIRELESS and computer networks, multiple nodes
share a communication medium for transmitting their data

packets. In order to achieve an efficient channel utilization to re-
solve any potential conflicts or interferences between competing
nodes, designing a good scheduling algorithm, or medium
access control (MAC) protocol is of crucial importance. In
their seminal work, Tassiulas and Ephremides [1] proposed a

Manuscript received September 21, 2014; revised July 07, 2015 and October
02, 2015; accepted October 02, 2015; approved by IEEE/ACM TRANSACTIONS
ON NETWORKING Editor A. Wierman. This work was supported by the Korea
government (MSIP) under the National Research Foundation of Korea (NRF)
Grant No. NRF-2013R1A2A2A01067633. Part of this paper was presented at
IEEE INFOCOM 2014. D. Yun and D. Lee contributed equally to this work.
D. Yun, J. Shin, and Y. Yi are with the Department of Electrical Engineering,

Korea Advanced Institute of Science and Technology (KAIST), Daejeon
305-701, Korea (e-mail: dgyun@lanada.kaist.ac.kr; jinwoos@kaist.ac.kr;
yiyung@kaist.edu).
D. Lee is with Samsung Electronics, Suwon 443-742, Korea (e-mail: dm.twg.

lee@samsung.com).
S.-Y. Yun is with Microsoft Research, Cambridge CB1 2FB, U.K. (e-mail:

yunseyoung@gmail.com).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2015.2492602

scheduling algorithm known as ‘Max-Weight’ (MW) that
achieves the throughput optimality. However, the MW al-
gorithm requires to solve a NP-hard optimization problem
in a centralized manner at each time slot, which is its main
drawback for applying it to a large-scale network. Much efforts
for designing simpler or distributed implementations of MW
have been made since then, e.g., [2]–[4], but these algorithms,
though distributed, require heavy message passing.
In the past few years or so, there has been a breakthrough,

where the throughput/utility optimality can be achieved by just
locally controlling the CSMA (Carrier Sense Multiple Access)
parameters without explicit knowledge of neighboring informa-
tion [5]–[9] hence providing a simple and distributedMACwith
optimal performance guarantee. These algorithms are all based
on one of the Markov Chain Monte Carlo (MCMC) methods
called Glauber dynamics which can be used to sample the inde-
pendent sets of a graph according to a product-form stationary
distribution. However, it has been reported that the CSMA al-
gorithms in general are known to suffer from poor delay per-
formance [10]. Thus, it remains to develop or even verify the
existence of such fully-distributed, yet highly delay-efficient
MAC algorithms without message passing (possibly based on
CSMA).
In this paper, we resolve the delay issue of CSMA algorithms,

where we summarize our contributions in what follows.

A. C1—Provable Delay Order-Optimal CSMA
We show the existence of a throughput-optimal, CSMA-

based (thus fully-distributed) MAC with a provable per-link
order-optimal delay performance for general wireless network
topologies. To the best of our knowledge, this is the first
such work in the literature, where even the network-wide
order-optimal CSMA delay (which is weaker than our per-link
optimality) is not known (see Section II for more details).

B. C2—Connection Between Virtual Channels and Mixing
Time
The CSMA algorithm studied in this paper employ virtual

multi-channels, referred to as the delayed CSMA [11]. In par-
ticular, we prove that it has the -asymptotic-delay per link,
if the number of virtual channels is in the logarithmic order of
the mixing time of the underlying CSMA Markov chain. The
important implication of our result is that a small number of
channels suffices to achieve the optimal delay performance of
the CSMA algorithm since the logarithmic number is typically
small, i.e., at most linear with respect to the network size [12].
The algorithm is easy to implement and fully-distributed,

i.e., no message passing is necessary. The key part of our
analytic framework is the use of quadratic Lyapunov functions
in conjunction with (recursively applying) Lindley equation
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and Azuma's inequality for obtaining an exponential decaying
property in certain queueing dynamics (see Section V-A for
more details). We believe that our technique is of broader in-
terest in analyzing the delay performance of queueing systems
with multiple periodic schedulers.
The rest of this paper is organized as follows. We first re-

view the related work in Section II. Section III describes the
system model and introduces the notion of the delay-optimality.
Section IV explains the delayed CSMA algorithm and presents
the main theorem—the delay-optimality of the delayed CSMA.
The correctness of the main theorem is proved in Section V. In
Section VI, we present various simulation results to evaluate the
performance of the delayed CSMA under different scenarios.
Section VII concludes this paper.

II. RELATED WORK

In the literature, several papers proposed different
CSMA-based MACs, all of which are provably (close to be)
delay-optimal under certain restrictions. Shah and Shin [13]
proposed a modified queue-based CSMA algorithm where at
each time instance a very small fraction of frozen nodes do
not execute CSMA operations. By appropriately selecting such
frozen nodes, the proposed algorithm leads to the network-wide

queue length, where is the number of links. Lotfinezhad
and Marbach [10] prove that by periodically resetting all links
to become silent and then immediately restarting the classical
CSMA protocol, the algorithm leads to the per-packet
delay for grid or torus interference graphs. Jiang et al. [14]
study CSMA algorithms based on parallel Glauber dynamics.
The authors prove that the algorithms can achieve the net-
work-wide ) queue length, and Subramanian and
Alanyali [15] further tightened the bound. The limitations in the
above papers are (i) [10], [13] are only applicable to a specific
type of topologies, i.e., geometric or torus (inference) network
topologies, and (ii) [14], [15] require reduced offered loads and
a tradeoff between throughput and delay occurs (i.e., in both
papers, a certain amount of throughput should be sacrificed
for low delay). We overcome these limitations in the current
paper, and more importantly, we obtain the per-link
queue length, which is much stronger than the network-wide
(or mean) queue length bound.
Another direction of designing CSMA algorithms for better

delay performance is to use (actual or virtual) ‘multi-channels,’
which is in essence motivated by resolving the temporal link
starvation of CSMA via ‘de-correlating’ the temporal accessi-
bility to the wireless medium. Lam et al. [16] considers a CSMA
algorithm with multiple frequency agility, such that more than
one frequency channel is available yet a link can transmit on
at most one of the channels. They associate temporal starva-
tion to the mixing time and then show that the region of fast
mixing time implies that of low temporal starvation through
simulations. Huang and Lin [17] proposed an algorithm called
VMC-CSMA in which multiple virtual channels (defined by di-
viding the time line) are used to emulate a multi-channel system
and address the starvation problem. The algorithm randomly se-
lects a virtual channel, and the schedule corresponding to this
chosen channel is used at each time slot. The authors show that
the expected packet delay for each link equals to the inverse of
its long-term average rate, and the distribution of its head-of-
line (HOL) waiting time can be asymptotically bounded. The

multi-channel idea is also used in [11], where the authors pro-
pose the so-called delayed CSMA inducing multiple CSMA dy-
namics in a round robin manner. They showed that its asymp-
totic-delay performance can be improved by exploiting more
channels (i.e., more rounds in the delayed CSMA). However,
an explicit delay bound has yet to be studied, where especially
a precise relation between the CSMA delay and the number of
channels is practically important for implementation.
The question of designing MAC scheduling algorithms with

low delay, not restricted to CSMA, in wireless networks has
been also studied from a while ago. To name just a few, the
MW algorithm empirically has a good delay performance, but
its (network-wide or per-link) delay-optimality for general
topology is not analytically known. Neely et al. [18] proved
that maximal scheduling, which is suboptimal in terms of
throughput, achieves delay. Yi and Chiang [19] studied
the 3-D tradeoff among delay, throughput, and complexity for
a large class of queue-based scheduling schemes. A ‘batching’
policy, first considered by Neely et al. [20], is known to be
almost delay-optimal for input-queued switch networks (a
special topology of wireless networks), where its per-link delay
is . Recently, Shah et al. [21] developed a centralized
delay-optimal scheduling algorithm for wireless networks
including input-queued switch networks. On the negative side,
Shah et al. [22] showed that there exists no polynomial-time
scheduler (including CSMA) with a polynomial delay for arbi-
trary network topologies unless . However, the
authors consider the supremum of temporal delays over time,
which does not imply that the asymptotic time-averaged delay
performance is necessarily bad. Somewhat surprisingly, in the
current paper we show that even a simple fully-distributed
CSMA algorithm can achieve the asymptotic time-averaged

delay per link.
Other relevant approaches include the one recently studied

in [23], which proposes a CSMA-based utility optimal MAC
protocol with the worst case delay guarantee such that each
job is either scheduled for transmission or dropped before the
deadline. The main interest of [23] lies in ensuring the worst
delay of the admission control for jobs, while this paper focuses
on reducing the averaging queueing delay.

III. SYSTEM MODEL

A. Model

We consider a network model where the interference rela-
tionship among the wireless links can be represented by the
so-called interference graph where is the set of
links, and is the set of edges representing (symmetric) inter-
ference relationship between links. An edge exists be-
tween two links and if the corresponding wireless links inter-
fere with each other. We denote
as the set of neighbors of vertex . Time is divided into dis-
crete slots, indexed by . Let

be a schedule that represents the set of transmitting
links at time . A link (or vertex in the interference graph )
is active if it is included in the schedule, i.e., , and is
inactive otherwise. We denote by the set of all
feasible schedules on , where a feasible schedule should
satisfy the independent set constraint i.e.,
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Each link is associated with a queue that has a dedicated ex-
ogenous arrival process. Let denote the number of packet
(of unit-size) arrival of link at time . We assume Bernoulli
arrivals, i.e., with . Let

denote the vector of queue sizes at time .
Then it has the following dynamics:

which is known as the Lindley equation. We denote by
and the number of arrivals and (potential) departures
in the interval , respectively, i.e.,

and

In addition, we let . Then,
by recursively applying the Lindley equations, we obtain the
following:

(1)

The above equation will play a crucial role in our analysis.
We define the capacity region of a network as

the convex hull of the feasible scheduling set , i.e.,

Let and it is called admissible if , where

for some

The intuition behind this notion of comes from the fact that
any scheduling algorithm has to choose a schedule from at
each time and hence the arrival ratemust belong to (otherwise,
queues should grow over time). In addition, for given ,
is called – admissible if , where

for some

Finally, is called strictly admissible if where
.

B. Performance Metric

A scheduling algorithm decides a sequence of
over . In this section, we introduce the main per-
formance metrics, which are the throughput and delay of sched-
uling algorithms. First, we define the throughput-optimality:
Definition 3.1 (Throughput-Optimality): A scheduling algo-

rithm is called throughput-optimal if for any strictly admissible
arrival rate , queues remain finite with probability 1
under the algorithm, i.e.,

with probability (2)

A popular approach for showing the throughput-optimality is
(a) defining the underlying network Markov chain induced by
a scheduling algorithm and (b) proving its positive recurrence.
We now introduce the delay optimality studied in this paper.
Definition 3.2 (Delay-Optimality): A scheduling algorithm is

called per-link delay-optimal (or simply delay-optimal),1 if for
any -admissible arrival rate with ,

for all

In the above definition, the orders and are with re-
spect to the network size , i.e., delay-optimality means that
the per-link queue-size remains ‘constant’ as the network size
grows.

IV. MAIN RESULT

Our interest is in fully-distributed CSMA scheduling algo-
rithms, where in particular, we study the delayed CSMA pro-
posed in [11]. The main idea of the delayed CSMA is to use
multiple schedulers in a round-robin manner in order to effec-
tively reduce the correlations between the link state process,
in an attempt to alleviate the so-called starvation problem, i.e.,
once a schedule is chosen, it keeps being scheduled without any
change for a large number of slots. In this section, we explain
the delayedCSMA algorithm inmore detail and then present the
main result of this paper—the delay-optimality of the delayed
CSMA algorithm. We first summarize the main contribution of
our paper beyond [11]. The authors have shown that under de-
layed CSMA, the probability that a queue length is larger than
some value , is approximated by a function that is exponen-
tially decreasing in and , where is the number of sched-
ulers. However, the result is quite asymptotic and does not imply
delay-optimality, i.e., it is not clear whether the expected queue
length becomes as grows. Furthermore, a more precise
relation between the queue length and is of significant im-
portance for its actual implementation, which we characterize
in this paper using the mixing time of the underlying CSMA
Markov chains.

A. Delayed CSMA

The delayed CSMA algorithm is formally described in
Algorithm 1. In the delayed CSMA, at each time slot, a de-
cision schedule is chosen , which corresponds
to a selection of an independent set of . The active links
in the decision schedule become the candidate links which
may change their state. There are various ways to choose a
decision schedule at each time slot. For example,
each link simply attempts to access the medium with a fixed
access probability and then with probability

, or a randomized scheme with light control
message exchanges can be used, as in [24]. In general, we
assume that is a set of independent identical random
variables such that for all . Under this
assumption on and given the ‘fugacity’ , the schedule

forms a (discrete-time) irreducible
and aperiodic Markov chain for , e.g., the

1This per-link optimality is much stronger than the ‘network-wide’ optimality
defined by the averaged delay over all links.
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Algorithm 1 Delayed CSMA [11]

1: Initialize: for all links , , .
2: At each time : links find a decision schedule,
3: through a randomized procedure, and
4: for all links do
5: if then
6: with probability
7: with probability
8: else
9:
10: end if
11: end for
12: for all links do
13:
14: end for

-th Markov chain is .2 The
common stationary distribution is given by

(3)

where is a normalizing constant. Hence,
one can think that the algorithm utilizes multiple (almost) in-
dependent Markov chains (or schedulers). From their ergodici-
ties, we know that for all ,

The essence of recently developed throughput-optimal
CSMA algorithms [7], [8] is finding an appropriate fugacity
such that the long-term link throughput
is (strictly) greater than the arrival rate (whenever is
strictly admissible). Given such a fugacity, it is not hard to
prove the desired positive recurrence of the underlying network
Markov chain [8]. Several authors proposed different adaptive
updating rules on fugacities, which converge to the appropriate
fugacity [7]–[9], [25]. Since the main focus of this paper
is to analyze the delay performance of the delayed CSMA,
we assume that links initially start with the desired fugacity.
Formally speaking, for given -admissible arrival rate , we
assume that

for all (4)

This is merely for simple presentation of our proof, and one can
easily extend it without the assumption, i.e., under the known
adaptive fugacity updating rules in [8]. This is because our delay
metric is defined in an asymptotic manner (i.e., uses ‘limsup’)
and the exact convergence in the fugacity updating rules is not
crucial in our proof strategy.3

2We say if is an integer multiple of . It is called
congruent modulo .

3The ‘fixed’ fugacity assumptions have also been taken in other papers
dealing with CSMA delay, e.g., [14].

B. Preliminaries: Mixing Time
To describe our result formally, we first introduce the nec-

essary definitions of the total variation distance and the corre-
sponding mixing time of the CSMA Markov chain. The total
variation distance between two probability distributions

and on state space is

Using this distance metric, the mixing time of the -th CSMA
Markov chain is defined as
follows:

where is some constant (which we will choose later)
and denotes the probability distribution of random vari-
able . The mixing time measures how long it takes for the
-th CSMAMarkov chain to converge to the stationary distribu-

tion for arbitrary initial distribution . Since we assume the
fixed common fugacity across the Markov chains, the mixing
time is identical for . Hence,
for simplicity, we use instead of , for any

.

C. Main Result: Delay-Optimality
Now we are ready to state the main result of this paper, i.e.,

the delay-optimality of the delayed CSMA algorithm.
Theorem 4.1: For any -admissible arrival rate , there

exists such that for all , the
corresponding delayedCSMA algorithm is delay-optimal, more
formally,

for all

The above theorem states that the per-link average queue-size
is bounded by a constant for sufficiently large , the number of
CSMA schedulers. The purpose of choosing large is to ef-
fectively reduce the dependency among consecutive link states,
which promotes much faster link state changes and hence alle-
viates the starvation problem.
We further remark that Theorem 4.1 is optimal with respect

to the network size, but not with respect to , e.g., the best order
of delay in both parameters is . In this paper, we do not
make much efforts to optimize our analysis for the better delay
dependency in and the tighter bound of . For example, in
our simulation results (see Section VI), we observe that
is enough for the order-optimal delay for grid-like graphs. We
provide the proof of Theorem 4.1 in the following section.

V. PROOFS: THEOREM 4.1 AND NECESSARY LEMMAS

A. Proof Strategy
We first describe our proof strategy at a high level, followed

by the detailed proof in Section V-B. We use the popular ap-
proach using a quadratic Lyapunov function to prove the desired
delay bound in Theorem 4.1. In this approach, one has to define
an appropriate network Markov chain and show a certain nega-
tive drift property for the Lyapunov function (see Lemma 5.1).
In particular, the network Markov chain under the de-
layed CSMA algorithm is
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Two major technical challenges for deriving the desired nega-
tive drift property are:
• It is necessary that the CSMA Markov chains mix, which
takes the mixing time . Otherwise, the
scheduling dynamics is hard to analyze.

• Even after the CSMA Markov chains mix, schedules
are correlated (i.e., they are not i.i.d random vari-

ables), but one has to show that they still satisfy some
version of law of large numbers.

For the first issue, we design a stopping time obtaining the nega-
tive drift property to be much later than the mixing time so that
the negative drift in the mixing period dominates the (poten-
tial) positive drift in the initial non-mixing one. For the second
issue, we first observe that schedules in each time in-
terval of length are almost i.i.d random variables (after the
CSMA Markov chains mix) due to the design of the delayed
CSMA algorithm. Hence, we choose large enough so that
(a) the ‘variance’ of the sum of schedules in each time interval
of length is small enough (b) the possible correlation across
the time intervals is compensated. Specifically, for (a) we use
Azuma's inequality for obtaining an exponential decaying prop-
erty of queueing dynamics in each time interval of length , and
for (b) the union bound is used under Lindley recursions.

B. Proof of Theorem 4.1
We now start toward proving Theorem 4.1. First observe that

the network Markov chain is aperiodic and irreducible.
Its ergodicity (i.e., positive recurrence) can be derived using the
following key lemma whose proof is presented in Section V-C.
Lemma 5.1: For any -admissible arrival rate , there

exist positive numbers such that for all
and ,

(5)

Define the quadratic Lyapunov function .
By summing the inequality (5) in Lemma 5.1 over , we get:

Then, from the Lyapunov-Foster criteria, is positive
recurrent.
Furthermore, taking expectations with respect to the distribu-

tion of in both sides of the conclusion of Lemma 5.1, we
have

Due to the the ergodicity of ,
and are finite and should be

equal. Therefore, we obtain the conclusion of Theorem 4.1 :
.

C. Proof of Lemma 5.1
It will be clear that our proof technique for Lemma 5.1 can

be applied to any , for notional simplicity we henceforth
omit the subscript and use and instead of and

. We first present the following lemma which plays a crucial
role for proving Lemma 5.1.

Lemma 5.2: For any and , it holds that

where and

The proof of the above lemma is provided in Section V-D.
Lemma 5.2 implies that given a network state at time , the dis-
tribution of the (per-link) queue length at time has
an exponential decaying property (i.e., light tail). We will use
this property to bound the expected quadratic queue length at
time for completing the proof of Lemma 5.1.
We will also use the following standard equality for the ex-

pectation of a nonegative integer-valued random variable.
Lemma 5.3: If is a nonnegative integer-valued random

variable, then

Since the proof of the above lemma is straightforward, we omit
it here.
We proceed the proof by studying two disjoint cases:

Case (i): and Case (ii): , where
is some large constant.

Case (i): : In this case, we obtain

where is because

with Lemma 5.3 and we apply Lemma 5.2 for since
, i.e., and .

Observe that

(6)
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where is due to large enough with
and . Therefore, it suffices to

bound the term for the proof of Lemma 5.1.
Let . Then, it follows that

by substituting

(7)

Combining (6) and (7) completes the proof of Lemma 5.1 for
Case (i).
Case (ii): : In this case, we define the fol-

lowing (sub-)events of :

We also let . Using those nota-
tions, we have

where is from Lemma 5.3 and Lemma 5.2 and we also apply
Lemma 5.2 for the last inequality and one can show that the term

is smaller than 1/2 if and is a large
enough constant, similarly as we bound the term in Case (i):

(8)

The complete proof of the above inequality is given in the
Appendix. This completes the proof of Lemma 5.1 for Case (ii).

D. Proof of Lemma 5.2
From the Lindley recursion (1) and the union bound, we have

Hence, it suffices to bound both terms and for the proof
of Lemma 5.2, which we present in what follows.
Bound for : We will use Azuma's inequality and the union

bound for obtaining the bound of .
To this end, we define the appropriate supermartingale under

the condition as follows: for a given integer
and each integer

, let

and initially . Then, using the definition of the
mixing time , the conditional independence of

, and the fact that
, we can easily check that

the following random variables form a supermartingale (whose
formal proof is presented in Appendix):

(9)

Using this notation, we have

(10)

where is due the the union bound and
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Fig. 1. Example: torus interference graph, where . We scale to
see how the delay scales with .

and is due to Azuma's inequality on the supermartingale
. Note that the bound (10)

is identical for all .
Bound for : One can bound similarly as we did for .

In particular, we obtain

(11)

We provide the complete proof of (11) in the Appendix.
Combining (10) and (11) leads to the desired conclusion of
Lemma 5.2.
Remark: In Lemma 5.2, we consider time spacing.

Our main interest is to show that asymptotic queue lengths be-
come a constant order with respect to the network size. In this
sense, the important part is to space “enough time” itself. We
does not optimize the time spacing and chooses a proper value,
which is , inducing simpler coefficients of many terms
in our proofs.

VI. SIMULATION RESULTS
In this section, we provide simulation results to verify our

analytical findings. We consider two interference graph topolo-
gies, Torus and Random, in the following two subsections.

A. Torus Topology
Setup: As depicted in Fig. 1, we first study grid-like graphs,

which have been popularly used as representative interference
graphs. We consider torus interference graphs composed
of total number of links ( ), where every link has exactly
four interfering neighbors.
We vary the scale size of the torus graph to see how the

delay performance (measured by the queue lengths) behaves.
We assume that the arrival rate of every link is the same, thus we
simply denote the common arrival rate by . Instead of finding
appropriate fugacity values in advance, we adaptively adjust
fugacities by running the algorithm in [8], which utilizes both
of empirical average arrival rates and service rates. In all plots
except for Fig. 2(d) (which shows the delay performance for
varying loads), we use a reasonably high load i.e.,

, where note that corresponds
to the boundary of the capacity region. We set the access prob-
ability to 0.2 for decision schedules in the delayed CSMA,
which maximizes the expected number of nodes in a decision
schedule under the torus topology. We run for
all simulations.

Compared Algorithm: U-CSMA [10]: We also compare
the delayed CSMA for various with U-CSMA [10] that
is provably delay-optimal in torus graphs. We comment that
the original U-CSMA has been developed under a continuous
time framework, which means that a procedure of determining
decision schedules is not required. Recall that the key idea of
U-CSMA lies in resetting the underlying CSMA Markov chain
with a given period, say . A naive candidate discrete-time
version of U-CSMA is just the delayed CSMA with ,
that restarts itself every time slots. However, our simulation
experience of such a version of U-CSMA showed that it per-
forms significantly poorly, because the step of finding decision
schedules makes U-CSMA start with a very small number of
active links at each reset period, which leads to scheduling only
a small number of links during each period. This problem can
be relaxed by enlarging , but then it weakens the effect of
resetting. Thus, for a fair comparison, we employ an almost
“ideal” version of U-CSMA which magically has a good deci-
sion schedule, i.e., its number of links in a decision schedule is
close to that of a maximum independent set.
Results: We first verify the delay optimality proved in The-

orem 4.1. Fig. 2(a) shows the average queue-size vs. the scale
size in the torus. Indeed, we observe that while queue size of
the “conventional CSMA” (i.e., in the delayed CSMA)
linearly increases with , that of the delayed CSMA for
does not increase with , i.e., delay. We comment that at
least in the tested torus topology, just suffices to achieve
very low delays, even for highly large scales, e.g.,
(thus 400 links). This is highly valuable in practice, because
a small significantly simplifies practical implementation.
Fig. 2(b) shows the average queue size traces over time for
various values of , 2, 4, 6, where we observe significant
difference between and other values of 's, whereas
marginal difference among is observed.
We now compare the delayed CSMA with U-CSMA in

Fig. 2(c), where we have plotted the queue size traces for
. For U-CSMA, as indicated in [10], we use

for the reset period. First, we observe that U-CSMA out-
performs the delayed CSMA with , which is because
resetting reduces the correlations among schedules over time.
However, we also see that the delayed CSMA with
is significantly better than U-CSMA (recall that -axis is
log-scaled). This demonstrates that an approach of weakening
temporal correlations by running multiple Markov chains leads
to much higher delay performance gain than that of re-starting
new Markov chains periodically. The simulation result for
different values of loads in Fig. 2(d) also shows a significant
decrease of delay by the delayed CSMAwith . We further
report ‘snapshots’ of active ‘even’ and ‘odd’ links under the
delayed CSMA with in Fig. 3, where the torus graph
is bipartite with edges between even and odd nodes (or links).
They also explain why is better than for the delay
performance of the delayed CSMA: when and ,
the sets of active links change little and much, respectively,
between two consecutive times.

B. Random Topology

Setup: To simulate a scenario closer to practical ones, we
construct a random geometric graph, as shown in Fig. 4(a). To
do that, we set up a grid square (1000 1000 m ), and put 30
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Fig. 2. Simulation results for the torus interference graphs. (a) Average queue length (over both time slots and links) vs. scale size in torus graphs: -axis
is log-scaled. (b) Average queue length traces (over links) for the delayed CSMAs with different values of ( ). (c) Average queue length traces (over links)
for the delayed CSMA with , 2 and U-CSMA ( ). (d) Average queue length (over both time slots and links) for different values of loads ( ).

Fig. 3. Snapshots of the schedules of the delayed CSMA with ((a) and (b)) and ((c) and (d)) for 80 80 torus. (A magenta star represents an even
active link and an indigo diamond represents an odd active link.). (a) Time for . (b) Time for . (c) Time for .
(d) Time for .

wireless nodes uniformly at random in the square. The transmis-
sion range of each node is set to 250 m which is a typical range
of an outdoor WiFi node. Two nodes are connected if they are
placed within the transmission range. Through this procedure,
for the random nodes in Fig. 4(a), 57 wireless links are created.
Regarding the interference relationship, we adopt an one-hop
interference model so that any two links which share a node
interfere with each other. Fig. 4(b) shows the corresponding in-
terference graph of the topology Fig. 4(a), having 57 vertices
(i.e., links in the original graph) and 188 edges. The simulation
setting is similar to that of the torus topology, except that we use

in choosing decision schedules. Note that the number
of nodes selected in the decision schedule, which is controlled
by in Section IV-A, should be large enough to reduce the
mixing time of the service process. If all nodes have the same

degree (e.g., torus topology in the previous section), the value
of maximizing the number of selected nodes, is the inverse
of the degree. However, the degree of every node is different in
a general topology like the one here. Thus, we set to be just
the inverse of the average degree of vertices, which is 0.15. We
remark that other values of show similar trends to what is
presented in this subsection, unless its value is not too extreme.
Results: We show the simulation results for the effect of dif-

ferent values of for varying arrival rates. As expected, our
simulation results reveal that large leads to less delay. First,
Fig. 5(a) displays the average queue size traces over time for

, 2, 10, 50, 500 when the arrival rate is 0.05. If we use
just , we can reduce the average delay by about 30% ~
50% compared to the conventional CSMA (notice that Y-axis
of Fig. 5(a) is log-scale), and we have the diminishing results in



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YUN et al.: DELAY OPTIMAL CSMA WITH LINEAR VIRTUAL CHANNELS UNDER A GENERAL TOPOLOGY 9

Fig. 4. A wireless network topology and its interference graph. (a) A random wireless network topology. We generate 30 nodes, and connect two nodes and
when 's transmission range includes , where 57 links are created. (b) The interference graph for the random topology, where 188 edges (i.e., pairwise interference
relationships) are generated.

Fig. 5. Simulation results for the interference graph (Fig. 4(b)). (a) Average queue length traces (over links) for the delayed CSMAs with different values of
( ). (b) Average queue length (over both time slots and links) for different values of arrival rates .

terms of delay reduction, as grows. This result is consistent
with that of the Torus topology, where due to its regular pattern,
only was enough to achieve significant delay reduction.
Fig. 5(b) shows the average queue length with varying arrival
rates . Those curves start to rise steeply after some threshold
value of , and such threshold becomes larger if we utilize
more in the delayed CSMA.

VII. CONCLUSION
In this paper, we have addressed the open question for de-

signing a CSMA algorithm that is both throughput and delay op-
timal for general wireless network topology.We proved that one
of the throughput-optimal CSMA algorithms based on the no-
tion of virtual channels proposed in the literature has the per-link

-asymptotic-delay for general wireless network topology if
the number of virtual channels has the logarithmic order of the
mixing time of the underlying CSMAMarkov chain, which is at
most linear order of the network size. The significance of our re-
sult lies in the proof of the existence of a scheduling policy that
achieves optimality in both throughput and delay, operating in
a fully distributed manner.

APPENDIX

Proof of (8): The first term in (8) is bounded by:

(12)

where the last inequality is because , are large enough
so that and .
On the other hand, for the second term in (8), we observe that

where one can check that the first and second summations in
the above inequality can be made arbitrarily small by choosing
large , with and

, respectively, i.e.,
. Combining the above inequality with (12) leads to the proof

of (8).
Proof of (9)'s Supermartingale: For given and all

,
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The last inequality can be explained as follows. Note that is
the point of time at which time longer than the mixing time has
elapsed since time . Hence,

become independent when is given. Further, since
we take the mixing time as ,

, which in turn implies that
. Therefore, forms

a supermartingale.
Proof of (11): Wefirst characterize two inequalities that are

used to prove (11). For and ,
it follows that

(13)

where we use Azuma's inequality on the supermartingale
. Similarly, for , we have that

(14)

Using (13) and (14), we have:

for

and

and

for

In , we consider a time interval that
are partitioned into two disjoint sub-intervals

and ,
and we let be the maximization point in . Then, if ,

and imply , and if , is equivalent
to . This completes the proof of (11).
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