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CSMA using the Bethe Approximation:
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Abstract—CSMA (Carrier Sense Multiple Access), which re-
solves contentions over wireless networks in a fully distributed
fashion, has recently gained a lot of attentions since it has been
proved that appropriate control of CSMA parameters guarantees
optimality in terms of stability (i.e., scheduling) and system-wide
utility (i.e., scheduling and congestion control). Most CSMA-
based algorithms rely on the popular MCMC (Markov Chain
Monte Carlo) technique, which enables one to find optimal CSMA
parameters through iterative loops of ‘simulation-and-update’.
However, such a simulation-based approach often becomes a
major cause of exponentially slow convergence, being poorly
adaptive to flow/topology changes. In this paper, we develop
distributed iterative algorithms which produce approximate so-
lutions with convergence in polynomial time for both stability
and utility maximization problems. In particular, for the stability
problem, the proposed distributed algorithm requires, somewhat
surprisingly, only one iteration among links. Our approach is
motivated by the Bethe approximation (introduced by Yedidia,
Freeman and Weiss [1]) allowing us to express approximate
solutions via a certain non-linear system with polynomial size.
Our polynomial convergence guarantee comes from directly
solving the non-linear system in a distributed manner, rather than
multiple simulation-and-update loops in existing algorithms. We
provide numerical results to show that the algorithm produces
highly accurate solutions and converges much faster than the
prior ones.

Index Terms—CSMA, Bethe approximation, Wireless ad-hoc
network.

I. INTRODUCTION

A. Motivation

Recently, it has been proved that CSMA, albeit simple and
fully distributed, can achieve high performance in terms of
throughput (i.e., the stability problem) and fairness (i.e., the
utility maximization problem) by joint scheduling/congestion
controls [2], [3], [4], [5]. These advances show that even
an algorithm with no or little message passing can actually
be close to the optimal performance, achieving significant
progress in terms of algorithmic complexity over the seminal
work of Max-Weight [6] and its descendant researches, each
of which often takes a tradeoff point between complexity
and performance, see [7], [8]. The main idea underlying the
recent CSMA developments is to intelligently control access
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intensities (i.e., access probability and channel holding time)
over links so as to let the resulting long-term link service rate
converge to the target rate [9].

However, one of the main drawbacks for such CSMA algo-
rithms is slow convergence, which is problematic in practice
due to its poor adaptivity to network and flow configuration
changes. The root cause of slow convergence stems from the
fact that all the above algorithms are based on the MCMC
(Markov Chain Monte Carlo) technique, where even for a fixed
CSMA intensity, it takes a long time, called mixing time, to
reach the stationary distribution to observe how the system
behaves. Note that the mixing time is typically exponentially
large with respect to the number of links [10]. For the mixing
time issue, there exist algorithms updating CSMA intensities
before the system is mixed, e.g., without time-scale separation
between the intensity update and the time to get the system
state for a given intensity update [4], [5]. However, they
are not free from the slow convergence issue since their
convergence inherently also requires the mixing property of
the underlying network Markov process. In summary, all prior
CSMA algorithms suffer from slow convergence explicitly or
implicitly. The main goal of this paper is to develop ‘mixing-
independent’ CSMA algorithms to overcome the issue at the
marginal cost of performance degradation.

B. Goal and Background

We aim at drastically improving the convergence speed by
using the techniques in artificial intelligence and statistical
physics (instead of the MCMC based ones) for both stability
under unsaturated case and utility maximization under sat-
urated case. For instance, in order to reach the convergent
service rates as the solution of the utility maximization prob-
lem, the intermediate target service rates should be iteratively
updated toward the optimal rates, from which the transmission
intensities are consequently updated. Our key contribution lies
in designing message-passing mechanisms to directly compute
the required access intensity for given target service rates in
a distributed manner, rather than estimation-based approaches
in the MCMC technique. In what follows, we present some
necessary backgrounds before we describe more details of our
main contributions.

The CSMA setting can be naturally understood by a certain
Markov random field (MRF) [11], which we call CSMA-MRF,
in the domain of physics and probability. In CSMA-MRF,
links induce a graph where links are represented by vertices
and interfering links generate edges. Access intensities over
links correspond to MRF-parameters in CSMA-MRF. Then,



2

the service rate of each link becomes the marginal distribution
of the corresponding vertex in CSMA-MRF. In the area of
MRFs, free energy concepts such as ‘Gibbs free energy’
function and ‘Bethe free energy’ function defined by the graph
and MRF-parameter have been studied to compute marginal
probabilities in MRFs. For example, it is known by [1] that
finding a minimum (or zero-gradient) point of a Bethe function
can lead to approximated values for marginal distributions,
where its empirical success has been widely evidenced in
many areas such as computer vision, artificial intelligence and
information theory [1], [12], [13]. The main benefit of this
approach is that zero-gradient (non-linear) equations of a free
energy function can provide low-complexity (approximate)
consistency conditions between marginal probabilities and
MRF-parameters.

C. Contribution

First, for the stability problem, we assume that each link
is aware of only its local load, i.e., its targeted marginal
probability in CSMA-MRF.1 Given targeted marginal proba-
bilities, we show that the Bethe equation (corresponding to the
stability problem) is solvable, somewhat surprisingly, in one
iteration among links. Equivalently, each link can calculate its
approximate access intensity for targeted throughputs of links
in one iteration of message-passings between neighbors. The
result relies on the following special property of CSMA-MRF
(which is not applicable for other general MRFs):
(†) The higher-order marginal probabilities needed by the

Bethe free energy (BFE) functions are decided by the
first-order marginal probabilities in CSMA-MRF.

Our algorithm, called BAS, for the stability problem are
presented in Section III.

Second, we provide a distributed CSMA algorithm, called
BUM, for the utility maximization problem, and show that
it converges in a polynomial number of iterations, which is
dramatically faster than prior algorithms based on MCMC. The
BUM algorithm consists of two phases: the first and second
phases aim at computing targeted service rates (i.e., marginal
distributions) and corresponding CSMA intensities (i.e., MRF
parameters), respectively. We formulate these computational
problems as minimizing Bethe free energy (BFE) functions.
We show that the Bethe function in its first phase is convex
for the popular α-fairness utility functions [14], and develop
a distributed gradient algorithm for minimizing it. For the
second phase, we use the BAS algorithm developed for the
stability problem. We also characterize the error of the BUM
algorithm in terms of that of the BAS algorithm, i.e., if BAS
is accurate, BUM is as well. The description and analysis of
BUM are given in Section IV.

Our main technical contribution for the BUM algorithm
lies in developing a distributed gradient algorithm in the
first phase. Even though we prove that the BEF function
is convex, it is still far from being clear that a distributed
gradient algorithm can achieve its minimum since its domain
is a bounded polytope, i.e., the BFE function is constrained

1The knowledge about the local (offered) load may be learnt by empirical
estimations or provided by the admission control of the incoming flows.

by linear inequalities. To overcome this issue, we use the
following special property of the BFE function in CSMA-MRF
(which is not generally true for other BFE functions):
(‡) The minimum of the BFE function is strictly inside of its

domain.
Using the property (‡), we carefully choose a (dynamic) pro-
jection scheme for the gradient algorithm so that it never hits
the boundary of the BFE function after a number of iterations,
say T . Then, after T iterations, the gradient algorithm is
analyzable to converge similarly as its optimizing function is
unconstrained.

Our simulation results show that the proposed schemes
converge fast and the approximation is accurate enough. First,
we test the actual service rate of BAS and verify that the
service rates are close to the target rates. Next, BUM is
compared with conventional utility optimal CSMA algorithms.
In the results, BUM converges within 1000 iterations, whereas
the conventional schemes do not converge even until 10000
iterations. Moreover, the achieved network utility is almost
the same with the utility by conventional algorithms. We also
note that BUM can converge much quickly. Since each update
of BUM does not require to estimate the underlying service
rates, we can run BUM as an offline algorithm which can be
done without any packet transmission.

In addition to MCMC-based approaches on developing
CSMA algorithm for the stability and utility maximization
problems, the authors of [15] studied the Belief Propagation
(BP) algorithm for solving them. BP and BFE functions are
connected as discussed in [1], in that there is an one-to-one
correspondence between fixed points of BP and local minima
of BFE functions. However, the proposed algorithms in [15]
may take a long time to converge for the stability problem, and
may not converge at all for the utility maximization problem.
Our work differs from [15] in that BFE functions are exploited
not to find marginal distributions in CSMA-MRF but to find
MRF-parameters given the targeted marginal distributions.

Related work also includes [16], [17], [10], [18], [19], [20]
which study how to improve the delay performance of CSMA.
The authors in [21] studies the throughput performance of
CSMA for time-varying channels. Real implementation of the
aforementioned theoretical results of CSMA has been made in
[22], [23], [24], [25].

II. MODEL AND PROBLEM DESCRIPTION

A. Model

Network model. In a wireless network, each link i, which
consists of a transmitter node and a receiver node, shares
the wireless medium with its ‘neighboring’ links, meaning
the links that are interfering with i, i.e., the transmission
over i cannot be successful if a transmission in at least one
neighboring link occurs simultaneously. We assume that each
link has a unit capacity. The interference relationship among
links can be represented by a graph G = (V,E), popularly
known as the interference graph, where links in the wireless
network are represented by the set of vertices V, and any
two links i, j share an edge (i, j) ∈ E if their transmissions
interfere with each other.
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TABLE I
NOTATIONS

Network model
V the set of vertices (nodes)
n the number of vertices (nodes)
E the set of edges such that (i, j) ∈ E if their transmissions interfere with each other

G = (V,E) the interference graph defined by V and E
N (i) {j : (i, j) ∈ E}, the set of the neighboring links of link i
σ(t) [σi(t) ∈ {0, 1} : i ∈ V ], the scheduling vector at time t
I(G) {σ ∈ {0, 1}n : σi + σj ≤ 1, ∀(i, j) ∈ E}, the set of all feasible schedule vectors

C(G)
{∑

σ∈I(G) ασσ :
∑

σ∈I(G) ασ = 1, ασ ≥ 0, ∀σ ∈ I(G)
}

, the set of all possible service rate
vectors

r [ri : i ∈ V ], the transmission intensity vector
si(r) the service rate of link i under CSMA with transmission intensity vector r
λi the packet arrival rate at link i

Free energies
FG(·; r), HG(·) Gibbs free energy function with intensity vector r and Gibbs entropy (they are functions of probability

distributions on space I(G))
FB(·; r), HB( · ) Bethe free energy function with intensity vector r and Bethe entropy

DB {y : yi ≥ 0, yi + yj ≤ 1, for all (i, j) ∈ E}, the domain of FB and HB

eB(r) Bethe error (refer to Definition 3.2)
Utilities

Ui(·) the utility function of link i
KB(y), y ∈ DB β ·

∑
i∈V Ui(yi) +HB(y), the objective function of BUM

Feasible rate region. We let σ(t) , [σi(t) ∈ {0, 1} : i ∈ V ] 2

denote the scheduling vector at time t, i.e., link i is active
or transmits packets (if it has any) with unit rate at time t
if σi(t) = 1 (and does not otherwise). The scheduling vector
σ(t) is said to be feasible if no interfering links are active
simultaneously at time t, i.e., σi(t) + σj(t) ≤ 1, ∀(i, j) ∈ E.
We use N (i) , {j : (i, j) ∈ E} to denote the set of the
neighboring links of link i, d(i) , |N (i)| and d , maxi d(i).
Then, the set of all feasible schedules I(G) is given by:

I(G) , {σ ∈ {0, 1}n : σi + σj ≤ 1,∀(i, j) ∈ E}.

The feasible rate region C(G), which is the set of all possible
service rates over the links, is simply the convex hull of I(G),
defined as follow:

C(G),

 ∑
σ∈I(G)

ασσ :
∑

σ∈I(G)

ασ=1, ασ≥0, ∀σ∈I(G)

.
CSMA (Carrier Sense Multiple Access). Now we describe a
CSMA algorithm which updates the scheduling vector σ(t) in
a distributed fashion. Initially, the algorithm starts with the null
schedule, i.e., σ(0) = 0. Each link i maintains an independent
Poisson clock of unit rate, and when the clock of link i ticks
at time t, update its schedule σi(t) as
◦ If the medium is sensed busy, i.e., there exists j ∈ N (i)

such that σj(t) = 1, then σi(t+) = 0.
◦ Else, σj(t+) = 1 with probability exp(ri)

exp(ri)+1 and σj(t) =
0 otherwise.

In above, ri > 0 is called the transmission intensity (or simply
intensity) of link i. The schedule σi(t) of link i remains
unchanged while its clock does not tick.

2Let [xi : i ∈ V ] denote the vector whose i-th element is xi. For notational
convenience, instead of [xi : i ∈ V ], we use [xi] in the remainder of this
paper.

Under the algorithm, the scheduling process {σ(t) : t ≥ 0}
becomes a time reversible Markov process. It is easy to check
that its stationary distribution for given r = [ri] becomes:

πr=[πrσ :σ∈I(G)] where πrσ=
exp
(∑

i∈Vσiri
)∑

ρ∈I(G)

exp
(∑

i∈V ρiri
) . (1)

In other words, the stationary distribution is expressed as a
product form of transmission intensities over links. Then, due
to the ergodicity of Markov process {σ(t)}, the long-term
service rate of link i is a function of transmission intensity r,
which is the sum of all stationary probabilities of the schedules
where i is active. We denote by si(r) the service rate of link
i, which is

si(r) =
∑

σ∈I(G)

:σi=1

πrσ =

∑
σ∈I(G):σi=1 exp(

∑
i∈V σiri)∑

σ′∈I(G) exp(
∑
i∈V σ

′
iri)

. (2)

B. Problem Description: P1 and P2
In this section, we describe two central problems for design-

ing CSMA algorithms of high performances. We consider a
wireless network where CSMA is used as the medium access
control (MAC) mechanism and suppose packets arrive with
rate λi > 0 at link i. Then, the first-order question is about
its stability, i.e., whether the total number of packets remains
bounded as a function of time. Under the wireless network
model considered in this paper, it is not hard to check that
the necessary and sufficient condition for stability is that the
service rate si is larger than the arrival rate λi. Therefore,
this motivates the following question for the CSMA algorithm
design.

P1. Stability. For a given rate vector λ = [λi] ∈ C(G),
how can each link i find its transmission intensity ri in a
distributed manner so that

λi = si(r), for all links i ∈ V ?
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For the simple presentation of our results, we consider λi =
si(r) instead of λi < si(r) in the description of the stability
problem. However, one can also obtain λi < si(r) by solving
P1 with λi ← λi + ε for small ε > 0.

The second problem arising in wireless networks is control-
ling congestion, i.e, how to control the CSMA’s intensity r so
that the resulting rate allocation maximizes the total utility
of the network. Formally speaking, we study the following
question.

P2. Utility Maximization. Assume that each link i has its
utility function Ui : [0, 1] → R+. How can each link i
find its transmission intensity ri in a distributed manner
so that the total utility

∑
i∈V Ui(si(r)) is maximized?

Our main optimizing goal is

(OPT) max
r

∑
i∈V

Ui(si(r)), (3)

when Ui follows the class of α-fair utility functions [14].

III. STABILITY

In this section, we present an approximation algorithm for
the stability problem. The problem finding a TDMA schedule
(i.e., finding a repetitive scheduling pattern over frames) to
generate a target service rate vector has long been studied,
where the problem turns out to be NP-hard in many cases (a
variation of graph coloring) or allows polynomial time com-
plexity only for a special interference pattern such as node-
exclusive interference, see Chap. 2 of [26] for a survey. Even a
distributed random access based distributed algorithm requires
exponentially long convergence time in terms of the number
of links [27]. The slow convergence of the prior CSMA-based
iterative algorithms [2] for stability is primarily due to the fact
that it is hard to compute si(r) given transmission intensity
r, i.e., it is not even clear whether the stability problem is in
NP.

To overcome such a hurdle, we use a notion of free energy
concepts in artificial intelligence and statistical physics which
allow to compute si(r) efficiently in an approximate manner.

A. Preliminaries: Free Energies for CSMA

Free energy functions. We introduce the free energy functions
for CSMA Markov processes for transmission intensity r.

Definition 3.1 (Gibbs and Bethe Free Energy):
Given a random variable σ = [σi] on space I(G) and
its probability distribution ν, Gibbs free energy (GFE) and
Bethe free energy (BFE) functions denoted by FG(ν; r) and
FB(ν; r) are defined as:

FG(ν; r) = E(ν; r)−HG(ν), FB(ν; r) = E(ν; r)−HB(ν),

where E(ν; r) = −E[r · σ], HG(ν) = H(σ), and

HB(ν) =
∑
i∈V

H(σi)−
∑

(i,j)∈E

I(σi;σj).

In above, E, H, and I are the expected value, standard entropy,
and mutual information, respectively. BFE can be thought as

an approximate function of GFE,3 where HB is called the
‘Bethe’ entropy. We note that in general the energy term
E(ν; r) can have a (different) form other than −E[r · σ].

How free energy meets CSMA. The following theorem is a
direct adaptation of the known results in literature (cf. [28]).

Theorem 3.1: The stationary distribution πr in (1) of the
CSMA Markov process with intensity r is the unique mini-
mizer of FG(ν; r), i.e., πr = arg minν FG(ν; r).

Theorem 3.1 provides a variational characterization of πr

(and thus the service rate vector [si(r)]). Since BFE ap-
proximates GFE, the (non-rigorous) statistical physics method
suggests that a (local) minimizer or zero-gradient point (if
exists) of FB(ν; r) can approximate πr (and [si(r)]). The
main advantage of studying BFE (instead of GFE) is that
BFE depends only on the first-order marginal probabilities of
joint distribution ν, i.e., its domain complexity is significantly
smaller than that of GFE.

Specifically, by letting yi = E[σi] and y = [yi], which is the
service rate of link i, one can obtain the following expression:

FB(ν; r)

=−
∑
i∈V

yiri +
∑

(i,j)∈E

(1− yi − yj) log(1− yi − yj)

−
∑
i∈V

[
(d(i)− 1)(1− yi) log(1− yi)− yi log yi

]
. (4)

Namely, FB(ν; r) is represented by service rate (or marginal
probability) vector y. Thus, without loss of generality, we
redefine BFE as a function of y as following: FB(y; r) =
E(y; r)−HB(y), where E(y; r) = −

∑
i∈V yiri and HB(y)

includes the other terms in (4). The underlying domain DB of
FB is

DB = {y : yi ≥ 0, yi + yj ≤ 1, for all (i, j) ∈ E}. (5)

Hence, a (local) minimizer or zero gradient point y of
FB(y; r) under the domain DB provides a candidate to
approximate [si(r)], i.e., yi ≈ si(r). It is known [1] that
the popular Belief Propagation (BP) algorithm for estimating
marginal distributions in MRFs can find the zero gradient point
y if it converges. To summarize, the advantage of studying
BFE instead of GFE is that finding service rates (or marginal
distribution) reduces to solving a certain non-linear system
∇FB(y; r) = 0 or ∇Λ(y, ·) = 0, where Λ is the Lagrange
function of FB(y; r). Furthermore, one can prove that there
always exists a solution to ∇FB(y; r) = 0 using the Brouwer
fixed-point theorem.

In general, the service rates estimated by BFE do not
coincide with the exact service rates. We formally define
the error for this Bethe approach as the maximum difference
between the estimated rate and the exact service rate across
all links.

Definition 3.2 (Bethe Error): For a given transmission in-
tensity r, the Bethe error eB is defined by:

eB(r) = max
y:∇FB(y;r)=0

max
i∈V
|yi − si(r)|.

3FB(ν; r) = FG(ν; r) if the interference graph G is a tree.
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It is not easy to bound the Bethe error for loopy graphs, since
it reduces to analyze the BP error. Despite the hardness of
analyzing the BP error, BP often shows remarkably strong
heuristic performance beyond tree-like graphs. This is the main
reason for the growing popularity of the BP algorithm, and
motivates our approach in this paper. Although there is no
known generic bound on the Bethe error for general graphs,
one can prove that the Bethe error goes to 0 in the large-system
limit, if the graph has no short cycle and its maximum degree
is at most 5, i.e., sparse ‘tree-like’ graph. For instance, the
ring topology is an example of such graphs, the Bethe error
over the ring topology goes to 0 as the number of nodes goes
to infinity [15]. The degree 5 condition is due to the known
correlation decaying property [29], where quantifies the long
range correlations in spin systems.

B. BAS: Algorithm using Bethe Free Energy

As discussed in Section III-A, an approximate solution to
the stability problem can be obtained by the Bethe free energy
function: given a target service rate si(r), s.t. si(r) = λi,
find the transmission intensity r such that ∇FB(λ; r) = 0.
Motivated by it, we propose the following algorithm:

Bethe Algorithm for Stability: BAS(λ)

◦ Through message passing with neighbor links, each link
i knows λj for all the neighbor links j ∈ N (i)

◦ Each link i sets its transmission intensity ri:

ri = log

(
λi(1− λi)d(i)−1∏
j∈N (i)(1− λi − λj)

)
. (6)

In BAS, a link sets its own transmission intensity based on
the its own and neighbors’ arrival rates. With the closed form
of equation (6), each link can easily compute the transmission
intensity without any further iterations. We now state the main
property of BAS.

Theorem 3.2: For the choice of r = [ri] by (6), it follows
that

∇FB(λ; r) = 0.

From (4), it is trivial to prove Theorem 3.2. It is noteworthy
that the BFE function with some r = [ri] may not have any
local minima strictly inside of its domain, which indicates
that ‘estimation-and-update’ using BP or BFE even may not
converge at all whereas BAS requires just one computation.

Since the Bethe free energy function does not give the exact
solution except for tree graphs, si(r) under BAS might be
less than λi for some links i. To guarantee si(r) ≥ λi for
every link i, we can use conventional CSMA algorithms such
as [2] and [3] after BAS. Since BAS is a sort of ‘offline’
algorithms which does not need estimations on service rates,
BAS can choose ‘good’ initial transmission intensities for the
conventional CSMA algorithms to boost up the convergence
speeds of CSMA algorithms, while guaranteeing the maximal
stability.

IV. UTILITY MAXIMIZATION

In this section, we present an approximation algorithm for
the network utility maximization problem (3). To design a
distributed algorithm finding transmission intensity r for (3),
the approaches in literature [2], [4], [5], instead, considers the
following variant of (3): for β > 0,

max
r

β ·
∑
i∈V

Ui(si(r)) +HG(πr). (7)

The proposed algorithms [2], [4], [5] converge to the solution
to (7). Since the entropy term HG(πr) is bounded above and
below, the solution to (7) can provide an approximate solution
to (3) if β is large.

A. BUM: Algorithm using Bethe Free Energy

In BFE functions, the Bethe entropy HB(y) is exploited
instead of the Gibbs entropy HG(πr), which significantly re-
duces the complexity to find a solution. As the BFE functions,
we modify (7) as follows:

max
y∈DB

KB(y) = β ·
∑
i∈V

Ui(yi) +HB(y) (8)

where the Bethe entropy allows to replace the term si(r) by
a new variable yi, and the domain constraint DB given by (5)
is necessary to evaluate HB(y). Once (8) is solved, one has
to recover r from y such that si(r) = yi. To summarize, our
algorithm for utility maximization consists of two phases:

1. Run a (distributed) gradient algorithm solving (8) and
obtain y.

2. Run the BAS algorithm to find a transmission intensity
r for the target service rate y.

The algorithm is formally described in the following:

Bethe Utility Maximization: BUM

◦ Initially, set t = 1 and yi(1) = 1/4, i ∈ V . 4

◦ Intensity-update based on y.
Obtain (yj , j ∈ N (i)) through message passing with the
neighbors, and set transmission intensity ri(t) of link i
for time t :

ri(t) = log

(
yi(t)

(
1− yi(t)

)d(i)−1∏
j∈N (i)(1− yi(t)− yj(t))

)
. (9)

◦ y-update based on time-varying gradient projection.
yi(t+ 1) is updated for time t+ 1 at each link i:

yi(t+ 1) =

yi(t) +
1√
t

∂KB

∂yi

∣∣∣∣∣
y(t)


∗

,

where the projection [·]∗ is defined as follows:

[x]∗ =


c1(t) if x < c1(t)

1− κ(t) if x > 1− κ(t)

x otherwise
,

4The initial point can be any feasible point in DB . The point, yi = 1/4
for all i, is such a feasible point.
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κ(t) =
1− yi(t) + maxj∈N (i) yj(t) + c2(t)

2
.

y-update. In the y-update phase, each link i updates yi in
a distributed manner based on a gradient-projection method.
However, our projection [·]∗ is far from a classical projection,
where our projection varies over time (see c1(t) and c2(t)),
which our algorithm’s convergence and distributed operation
critically relies on. We delay the discussion on why and how
our special projection contributes to the theoretical perfor-
mance guarantee of BUM, and first present its feasibility of
distributed operation. Note that the gradient ∂KB

∂yi
in the y-

update phase is:

∂KB

∂yi

∣∣∣∣∣
y(t)

= β · U ′i(yi(t))− (d(i)− 1) log(1− yi(t))

− log yi(t) +
∑

j∈N (i)

log(1− yi(t)− yj(t)),

(10)

Indeed, this gradient can be easily obtained by the link i via
local message passing only with its neighbors. Since y(t) has
to be an interior point of DB for computing the gradient (10),
the projection [·]∗ is necessary in BUM.

Performance guarantee. We now establish the theoretical
performance guarantee of BUM for the popular class of α-
fair utility functions [14], i.e.,

Ui(x) =

{
log x if α = 1
x1−α

1−α otherwise
.

The parameter α represents the degree of fairness for the
throughput allocation: when α = 0, the total link throughput is
maximized; α = 1 gives the proportional fair allocation when
α→∞, it corresponds to the max-min fairness.

Let y∗ be an optimum point of KB , i.e., y∗ =
arg max

y∈DB
KB(y). The following theorem shows that, for any

given α, with sufficiently large β, KB(y(t)) by BUM always
converges to KB(y∗) in polynomially large enough time T
with resepct to n.

Theorem 4.1: Let µ be a probability distribution on
{1, . . . , T}, such that

µ(t) =
t−1/2∑T
s=1 s

−1/2
for t ∈ {1, . . . , T}.

Then, if β > 2d/α,

lim
t→∞

max{c1(t), c2(t)} = 0 and

lim
t→∞

1√
t

(c1(t))−α − log
(
c1(t)c2(t)

)
min{c1(t), c2(t)}

= 0, (11)

it follows that

E [KB(y∗)−KB(y(t))] ≤ O
(
n log T√

T

)
, (12)

where the expectations are taken over the distribution µ.
The proof of the above theorem is given in Section IV-C. Our
key intuition underlying the proof is that the projection [·]∗

of BUM is designed so that the updating y(t) never hits the
projection boundary of DB after a time instance t∗. Then, one
can observe that the algorithm behaves as a gradient algorithm
without any projection after time t∗, and hence it is possible to
analyze its convergence using traditional techniques. We note
that for β > 2d/α, y(t) always converges to the unique y∗

when (11) holds, since KB is a (strictly) concave function.
There exist many paris of (c1(t), c2(t)) satisfying (11), e.g.,

c1(t) = −C1 log c2(t), c2(t) = C2t
−γ ,

where C1 and C2 are some constants and 0 < γ < 1/2.
The following theorem further bounds the gap between the
achieved utility of BUM and the maximum utility.

Theorem 4.2: The transmission intensity

r∗ :=

[
log

(
y∗i
(
1− y∗i

)d(i)−1∏
j∈N (i)(1− y∗i − y∗j )

)]
satisfies

max
x∈C(G)

∑
i∈V

Ui(xi)−
∑
i∈V

Ui

(
si(r

∗)
)
≤
∑
i∈V

eB(r∗)

si(r∗)α
+
n log 2

β
.

The proof of the above theorem is given in Section IV-D.
We recall that eB(r∗) is the Bethe error with transmission
intensities r∗ which is defined in Definition 3.2. As we
mentioned earlier, the Bethe error eB(r∗) is small5 empirically
in many applications [1], [12], [13], and then the remaining
error term is negligible for large β.

B. Comparison with Prior Approach

In [2], [4], gradient based algorithms solve (7). In this
section, we denote by JW and EJW (the names are used in
[5]) the algorithms in [2] and [4], respectively. Technically, the
algorithms take the dual problem of (7) where transmission in-
tensity ri is Lagrangian multiplier and U ′−1

(
ri(t)
β

)
−si(r(t))

is the gradient of the dual problem (7) for ri. Thus, trans-
mission intensities are commonly described as the following
distributed iterative procedure:

ri(t+ 1) = ri(t) + αi(t)

(
U ′−1

(ri(t)
β

)
− si(r(t))

)
, (13)

where αi(t) > 0 is the step size of link i. In both schemes,
αi(t) = 1/t which guarantees the convergence of ri(t).
However, to update ri(t + 1) as per (13), si(r(t)) is hard
to compute. For the issue, a empirical service rate ŝi(t) has
been used instead of si(r(t)).

The authors in [2] take a large and increasing length of
intervals (i.e., ri(t) is fixed during each interval) so that
si(r(t)) can be estimated well by its empirical estimation ŝi(t)
at the end of each interval. On the other hand, the authors in
[4], with a fixed length of intervals (which does not have to be
very large), use the empirical estimation ŝi(t). By stochastic
approximation, with sufficiently large T,

lim
t→∞

ri(t+T )−ri(t) =

t+T∑
j=t

α(j)

(
U ′−1

(ri(j)
β

)
− si(r(j))

)
.

5In particular, eB(r∗) = 0 if the interference graph is a tree.
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Both approaches, however, suffer from slow convergence: the
updating interval should be extremely large in [2] and αi(t)
should be extremely small in [4] for ŝi(t) ≈ si(r(t)).

In [5], the authors propose an algorithm called Simu-
lated Steepest Coordinate Ascent (SSCA) algorithm con-
verging to the same point with the above two algorithms,
where the algorithm is not a gradient based approach but a
steepest ascent based algorithm. In SSCA scheme, at each
iteration t, link i sets transmission intensity as ri(t) =
βU ′( 1

t

∑t
j=1 ŝi(j)). Then, πrσ is maximized at σ∗ :=

arg maxσ∈I(G)

∑
i∈V σiU

′
(

1
t

∑t
j=1 ŝi(j)

)
, which is the ex-

act steepest ascent direction. As the steepest ascent algorithms
converge to the optimal service rates in many applications,
the SSCA algorithm makes the service rates converge to
the optimal rates quickly, compared to the gradient based
algorithms. To guarantee the convergence, however, SSCA
algorithm may still have to spend extremely large iterations
since schedules are stochastically selected over time.

C. Proof of Theorem 4.1

We first give an overview for the proof of Theorem 4.1. The
formal complete proof will follow.

Overview of the proof of Theorem 4.1. We first prove that the
function KB is concave for large enough β, stated as follows.

Lemma 4.1: When β ≥ 2d/α, KB(y) is concave.

Proof: The proof is presented in Appendix.

We note that KB is not obvious to be concave (or convex)
since the Bethe entropy term HB (in the expression of KB)
is neither concave nor convex. In essence, we observe that the
non-concave term HB is compensated by the concave term
β ·
∑
i∈V Ui(yi) for large enough β.

The concavity property of KB might allow to use known
convex optimization tools such as the interior-point method,
the Newton’s method, the ellipsoid method, etc. However,
these algorithms are not easy to implement in a distributed
manner, and it is still far from being clear whether a simple
distributed gradient algorithm can solve (8) (in a polynomial
number of iterations) since the optimization is ‘constrained’,
i.e., yi ≥ 0 and yi + yj ≤ 1 for (i, j) ∈ E. Thus, we
carefully design the dynamic projection [·]∗, where c1(t) and
c2(t) enforce y(t) to be strictly inside of DB . Lemma 4.2
is the key lemma of this proof, where we show that c1(t) <
yi(t) < 1 − c2(t) after large enough t. Since the algorithm
does not hit the ‘boundary’ of [·]∗ anymore after large enough
updates, BUM acts like a gradient algorithm in ‘unconstrained’
optimization.

Lemma 4.2: For all time t, y(t) = [yv(t)] ∈ D∗B , where

D∗B := {y = [yv] : yv ∈ [δ1, 1− δ2] and yu + yv ≤ 1− δ3,
for all (u, v) ∈ E},

where

δ1 := min

{
c1(t∗),

β2αδd2
4(1 + β2αdδd−12 )

}
,

δ2 := min

{
c2(t∗),

1

2(exp(β2α) + 1)

}
,

δ3 := min

{
c2(t∗),

δ1

2 exp(βδ−α1 )

}
,

and

t∗ := inf
{
τ :

1√
t

∣∣∣∣∂KB(y(t))

∂yi

∣∣∣∣ <1

2
min{c1(t), c2(t)}

for all t ≥ τ
}
.

Proof: The proof is presented in Appendix.

Completing the proof of Theorem 4.1. Now we proceed
toward completing the proof of Theorem 4.1.

First, from δ1, δ2, and δ3 in Lemma 4.2, we define δ and
tδ as following:

tδ := max
{
c−11 (δ1), c−12 (min{δ2, δ3})

}
.

Then, Lemma 4.2 implies that for every time t ≥ tδ,

yi(t+ 1) = yv(t) +
1√
t

∂KB(y(t))

∂yi
.

Namely, the projection [·]∗ is not necessary after time tδ . Thus,
it follows that for t > tδ ,

‖y(t+ 1)− y∗‖22 =‖y(t) +
1√
t
∇KB(y(t))− y∗‖22

=‖y(t)− y∗‖22 +
1

t
‖∇KB(y(t))‖22+

2
1√
t
∇KB(y(t))T · (y(t)− y∗)

(a)

≤‖y(t)− y∗‖22 +
1

t
‖∇KB(y(t))‖22+

2
1√
t
(KB(y(t))−KB(y∗)),

where (a) stems from the concavity of KB(y) in Lemma 4.1.
By rearranging terms in the above inequality, we have

1√
t
(KB(y∗)−KB(y(t))) ≤

1

2

(
‖y(t)− y∗‖22 −‖y(t+ 1)− y∗‖22 +

1

t
‖∇KB(y(t))‖22

)
.

(14)

We are now ready to complete this proof. We divide∑T
t=1 µ(t)(KB(y∗)−KB(y(t))) into two parts:

T∑
t=1

µ(t)(KB(y∗)−KB(y(t)))=

tδ−1∑
t=1

µ(t)(KB(y∗)−KB(y(t)))+

T∑
t=tδ

µ(t)(KB(y∗)−KB(y(t))),
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where the first part can be bounded by some constant. We also
obtain the upper bound of the second part by (14).

T∑
t=tδ

µ(t)(KB(y∗)−KB(y(t)))

≤ 1

2
∑T
t=1

1√
t

(
‖y(0)−y∗‖22−‖y(T )−y∗‖22

)
+

1

2
∑T
t=1

1√
t

(
T∑
t=tδ

1

t
‖∇KB(y(t))‖22

)

≤ 1∑T
t=tδ

1√
t

(
O(n)+O(n)

T∑
t=tδ

1

t

)
Finally, we can conclude that

T∑
t=0

µ(t)(KB(y∗)−KB(y(t))) = O

(
n log T√

T

)
.

D. Proof of Theorem 4.2

There are two reasons for the error: the additional term of
entropy in KB(y) and the Bethe error because of intensity
updating by (9). Thus, we devide the utility gap between the
optimal value and the achieved value to represent the error
due to each reason.

max
s∈C(G)

∑
i∈V

Ui(si)−
∑
j∈V

Ui(si(r
∗))

=

 max
s∈C(G)

∑
i∈V

Ui(si)−
∑
j∈V

Ui(y
∗
i )

+

∑
j∈V

Ui(y
∗
i )−

∑
j∈V

Ui(si(r
∗))


(b)

≤HB(y∗)

β
+

∑
j∈V

Ui(y
∗
i )−

∑
j∈V

Ui(si(r
∗))


(c)

≤ n log 2

β
+
∑
i∈V

Ui
(
si(r

∗) + eB(r∗)
)
−
∑
j∈V

Ui(si(r
∗))

(d)

≤eB(r∗)
∑
i∈V

si(r
∗)−α +

n log 2

β
,

where for (b) we use β
∑
i∈V Ui(s

∗
i ) ≤ KB(y∗), for (c) we

use the definition of Bethe error eB(r∗) and HB(y) ≤ n log 2,
and (d) holds since Ui(·) is an α fairness function and concave.
This is the end of this proof.

V. SIMULATION RESULTS

In this section, we provide simulation results to verify
how our proposed algorithms perform under various scenarios.
First, we compute the Bethe error eB(r) (i.e., the difference
between the target service rate and the actual service rate)
for various interference graphs and target service rates. The
tested interference graphs are shown in Fig. 1. Second, BUM
are compared with the three conventional algorithms intro-
duced in Section IV-B regarding to convergence speed and

achieved network utility, where we choose α = 1, β = 1,
c1(t) = 1

100 log(t+e) , and c2(t) = 1
5t1/4

just for simplicity. We
observed that other values of α and β show similar results.

A. Stability

As we stated in Section III, the stability algorithm BAS does
not lead to the exact target service rate for the topologies that
are not tree. Fig. 2 represents the Bethe error for complete,
ring, and random topologies. In the graphs, we define “Load”
as the fraction of the traffic rate over the capacity of the
network and the y-axis represents the normalized Bethe error
by the target service rate. In this experiment, we assume
symmetric arrivals where the target service rates of all links
are equal.

Varying traffic loads. The graphs in Fig. 2 show the nor-
malized Bethe error on three topologies: complete, ring, and
grid. The normalized Bethe errors grow up to at most 0.2,
which means that the Bethe error is within 20% of the
corresponding target service rate. In addition, for all three
topologies, the Bethe error increases as the traffic load in-
creases. Although BAS experiences more errors with higher
transmission intensity, it is noteworthy that the mixing time
also increases with higher transmission intensity. Thus, the
MCMC based algorithms need far more convergence time with
the higher transmission intensity although they can get the
accurate service rate estimation.

Impact of topology. Bethe error should strongly depend
on the underlying topology. As stated in Section III, tree
topologies do not have error, while other types of topologies
have positive Bethe error. Trees are the ones that are connected
and have no cycle. In general, cycles are the major reasons
for large Bethe errors, where errors tend to grow with the
increasing number of cycles in the topology. In this context,
we observe that for complete graphs, the error becomes more
significant as the number of links increases, mainly because
the number of cycles also increases with the number of links.
For ring graphs, we also see the effect of the size of cycle. In
Fig. 2(b), the error of 12-links is smaller than that of others,
because the cycle becomes similar with a line topology as the
number of links increases.

B. Utility Maximization

Convergence speed. Fig 3 shows the transmission intensity
where the graph structure is tree. Note that in tree graphs, all
of the algorithms have to converge to the same point, because
eB(y) = 0 for all y when the graph is tree. In the results,
BUM becomes stable within only 1000 iterations, whereas
the other algorithms does not converge until 10000 iterations.
Although the lines of JW and EJW seems to be converged,
they grow up very slowly. For the other interference graphs,
the trace patterns look similar with the trace of tree graph. All
of the algorithms do not converge until 10000 iterations except
BUM which converges within 1000 iterations for all graphs. In
this simulation, we assume that each update of BUM spends
a time slot for one packet transmission. Indeed, since each
node i broadcasts just yi(t) at each update, BUM does not
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(a) Complete (b) Ring (c) Tree (d) Grid
Fig. 1. Interference graph topologies
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Fig. 2. Bethe error for various graphs (where ‘Load’ means arrival rate / capacity when arrival rates are the same)

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0
0

2

4

6

8

1 0

 

 

Tra
nsm

iss
ion

 In
ten

sity

I t e r a t i o n s

 J W
 E J W
 S C A
 B U M

(a) Tree (Star)

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0
0

2

4

6

8

1 0

Tra
nsm

iss
ion

 In
ten

sity

I t e r a t i o n s

 J W
 E J W
 S C A
 B U M

(b) Complete

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0
0

2

4

6

8

Tra
nsm

iss
ion

 In
ten

sity

I t e r a t i o n s

 J W
 E J W
 S C A
 B U M

(c) Grid
Fig. 3. Trace of transmission intensity

need the entire time slot. Thus, we can use BUM as an offline
algorithm to find the initial transmission intensities so that the
network utility becomes very close to the maximum network
utility at the beginning.
Network utility. As we stated in Theorem 4.2, BUM generates
error due to the Bethe approximation on intensity update.
However, the error is not significant in our test scenarios. By
numerical analysis, we get the network utility when BUM
is used:-19.9 (for a 5 × 5 grid interference graph) and -8.1
(for a complete interference graph links). The utility is close
to that from the conventional algorithms based on MCMC:
-20.6 (for a 5 × 5 grid interference graph) and -8.05 (for a
complete interference graph with 5 links). For the star graph
with 5 links, all of the algorithms converge to -3.3. We found
that all of the algorithms achieve similar utilities, while BUM
converges much faster than prior algorithms.

VI. CONCLUSIONS

Recently, throughput and utility optimal CSMA algorithms
are proposed. The simple and distributed MAC protocol can
achieve the both throughput and utility optimal with just
locally controlling of parameters. In the previous algorithms,
links iteratively update their parameters by their own empirical

service and arrival rates. However, their convergence speed is
often slow because of the stochastic behavior of scheduling.
In this paper, we firstly connect Bethe Free Energy (BFE)
with CSMA so as to dramatically reduce the convergence
speed. The motivation of this work is that the estimation on
the service can be replaced by finding maximum point of the
Bethe free energy function since the maximum point gives
a good estimation on the service rate. From this motivation,
we propose an algorithm by which the CSMA parameters
can be nearly optimal without the investigation on service
rate when links know the arrival rate of neighbor links by
message exchange. In view of network utility, we propose
an utility-maximizing algorithm BUM based on the intensity
update algorithm using BFE. Since the algorithm does not
use empirical values, BUM provably converges in polynomial
time, where such a guarantee cannot be achievable via prior
known schemes.
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APPENDIX

A. Proof of Lemma 4.1

Let H(y) denote the Hessian matrix of KB(y) and H(y)ij
denote the element of H(y) on i-th row and j-th column.
When the Hessian matrix H(y) is negative definite (i .e. x ·
H(y) · x ≤ 0 for all x) for all feasible y, KB(y) is
concave. Therefore, we conclude the concaveness of KB(y)
after showing that x · H(y) · x ≤ 0 for all x.

The diagonal elements H(y)ii are computed as follows:

H(y)ii =β · U ′′i (yi) + (d(i)− 1)
1

1− yi
− 1

yi
−∑

j∈N (i)

1

1− yi − yj

=− αβ · y−α−1i − 1

yi
− 1

1− yi
−∑

j∈N (i)

(
1

1− yi − yj
− 1

1− yi

)

<−
∑

j∈N (i)

(
1

1− yi − yj
− 1

1− yi

)

=−
∑

j∈N (i)

(
yj

1− yi
· 1

1− yi − yj

)
,

since −αβ ·y−α−1i − 1
yi
− 1

1−yi < 0. Moreover, when yi < 1/2,
we can get more tight bound as follows:

H(y)ii <− 2d · y−α−1i + (d(i)− 1)
1

1− yi
− 1

yi
−∑

j∈N (i)

1

1− yi − yj
(a)
< − d · y−α−1i −

∑
j∈N (i)

1

1− yi − yj
(b)
< −

∑
j∈N (i)

(
1

yi
+

1

1− yi − yj

)

=−
∑

j∈N (i)

(
1− yj
yi

· 1

1− yi − yj

)
,

where for (a) we use that y−α−1i > 1
1−yi when yi < 1/2 and

(b) stems from y−α−1i > 1/yi.

One can easily compute the non-diagonal elements such that

H(y)ij = H(y)ji =

{
− 1

1−yi−yj < 0 if (i, j) ∈ E
0 otherwise.

Without loss of generality, let yu ≤ yv when (u, v) ∈ E.
If yu > yv , we denote by (v, u) the edge between u and v.
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Then,

xTH(y)x =
∑
i∈V

x2iH(y)ii +
∑

(i,j)∈E

2xixjH(y)ij

< −
∑

i∈V :yi<
1
2

∑
j∈N (i)

1− yj
yi

x2i
1− yi − yj

−

∑
i∈V :yi≥ 1

2

∑
j∈N (i)

yj
1− yi

x2i
1− yi − yj

−
∑

(i,j)∈E

2xixj
1− yi − yj

< −
∑
i∈V

∑
j∈N (i):yi≤yj

1− yj
yi

x2i
1− yi − yj

−

∑
j∈V

∑
i∈N (j):yi<yj

yi
1− yj

x2j
1− yi − yj

−
∑

(i,j)∈E

2xixj
1− yi − yj

= −
∑

(i,j)∈E

(
1− yj
yi

· 1

1− yi − yj
x2i +

2xixj
1− yi − yj

)
−

∑
(i,j)∈E

(
yi

1− yj
· 1

1− yi − yj
x2j

)

= −
∑

(i,j)∈E

1

1− yi − yj

(√1− yj
yi

xi +

√
yi

1− yj
xj

)2
≤ 0.

Therefore, H is negative definite matrix.

B. Proof of Lemma 4.2

In this proof, for notational simplicity, we introduce ε1 :=
β2αδd2

4(1+β2αdδd−1
2 )

, ε2 := 1
2(exp(β2α)+1) , and ε3 := δ1

2 exp(βδ−α1 )
.

We first state three key lemmas which play key roles in
the proof of Lemma 4.2. First, by Lemma A.1, the gradient
of KB(y(t)) is bounded above with 1

2 min{c1(t), c2(t)} after
time t∗. Next, we show that y(t + 1) goes away from the
boundary of D∗B when y(t) is within 2 min{c1(t), c2(t)}
away from the boundary, by Lemma A.2, Lemma A.3, and
Lemma A.4. Then, we can conclude that the update of y(t)
does not hit the boundary of D∗B always.

Lemma A.1: There exists t∗ such that , for every link i

1√
t

∣∣∣∣∂KB(y(t))

∂yi

∣∣∣∣ < 1

2
min{c1(t), c2(t)}, ∀ t ≥ t∗.

Proof: To conclude this proof, we will show that

lim
t→∞

1

min{c1(t), c2(t)}
√
t

∂KB(y(t))

∂yi
= 0.

The proof starts from the range of first derivative function at

time t:

∂KB(y(t))

∂yi
=U ′i(yi(t))− (d(i)− 1) log(1− yi(t))−

log yi(t) +
∑

j∈N (i)

log(1− yi(t)− yj(t))

≤βyi(t)−α − log
yi(t)

1− yi(t)
+∑

j∈N (i)

log
1− yi(t)− yj(t)

1− yi(t)

≤βyi(t)−α − log
yi(t)

1− yi(t)
≤
(
c1(t)

)−α − log(c1(t)),

where the last inequality stems from the fact that yi(t) ≥ c1(t).
Therefore, from (11),

lim
t→∞

1√
t

1

min{c1(t), c2(t)}
∂KB(y(t))

∂yi
≤ 0.

Now, the remaining part is

lim
t→∞

1

min{c1(t), c2(t)}
√
t

∂KB(y(t))

∂yi
≥ 0.

Since 1− yi(t)− yj(t) ≥ c2(t) for all i 6= j,

∂KB(y(t))

∂yi
=U ′i(yi(t))− (d(i)− 1) log(1− yi(t))−

log yi(t) +
∑

j∈N (i)

log(1− yi(t)− yj(t))

≥
∑

j∈N (i)

log(1− yi(t)− yj(t)) ≥ d(i) log(c2(t)).

Therefore, from (11),

lim
t→∞

1

min{c1(t), c2(t)}
√
t

∂KB(y(t))

∂yi
≥ 0.

Lemma A.2: If yi ≥ 1− 2ε2 and y ∈ D∗B , ∂KB(y)
∂yi

< 0.
Proof:

∂KB(y)

∂yi
= βy−αi − (d(i)− 1) log(1− yi)− log yi+∑
j∈N (i)

log(1− yi − yj)

= βy−αi − log
yi

1− yi
+
∑

j∈N (i)

log
1− yi − yj

1− yi

< βy−αi − log
yi

1− yi
≤ β(

1

2
)−α − log

1− 2ε2
2ε2

≤ 0,

where the last inequality is from our choice of

ε2 =
1

2(exp(β2α) + 1)
.

Lemma A.3: If yi ≤ 2ε1 and y ∈ D∗B , ∂KB(y)
∂yi

> 0.
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Proof:

∂KB(y)

∂yi
= βy−αi − (d(i)− 1) log(1− yi)− log yi+∑
j∈N (i)

log(1− yi − yj)

> βy−αi − log yi + d log (δ2 − yi)

= log
exp(βy−αi ) (δ2 − yi)d

yi

= log
exp(βy−αi )δd2

(
1− yi

δ2

)d
yi

≥ 0,

where the last inequality stems from the fact that yi ≤ 2ε1
with our choice of ε1 =

β2αδd2
4(1+β2αdδd−1

2 )
as

βy−αi δd2

(
1− yi

δ2

)d
yi

≥
βy−αi δd2

(
1− d yiδ2

)
yi

≥
β2αδd2

(
1− d yiδ2

)
yi

≥1

and exp(βy−αi ) ≥ βy−αi since βy−αi ≥ 1.
Lemma A.4: If yi+yj ≥ 1−2ε3 and y ∈ D∗B , ∂KB(y)

∂yi
< 0.

Proof:

∂KB(y)

∂yi
= βy−αi − (d(i)− 1) log(1− yi)− log yi+∑
k∈N (i)

log(1− yk − yi)

= βy−αi − log yi + log(1− yi − yj)+∑
k∈N (i)\j

log
1− yk − yi

1− yi

< βy−αi − log yi + log(1− yi − yj)
≤ βy−αi − log δ1 + log 2ε3 ≤ 0,

where the last inequality is from our choice of ε3 =
δ1

2 exp(βδ−α1 )
.

Completing the proof of Lemma 4.2. For proving y(t) ∈ D∗B ,
we need the following three inequalities:

yi(t) < 1− δ2 (15)
yi(t) > δ1 (16)

yi(t) + yj(t) < 1− δ3. (17)

Proof of (15). Let t2 := c−12 (δ2). Then, for time t < t2,
yi(t) < 1 − δ2 from the dynamic bound. For time t ≥ t2,

yi(t) < 1− δ2, since 1√
t

∣∣∣∂KB(y)
∂yi

∣∣∣ < c2(t)
2 ≤ δ2

2 from Lemma

A.1 and ∂KB(y)
∂yi

< 0 if yi > 1− 2δ2, from Lemma A.2.

Proof of (16). Similarly, let t1 := c−11 (δ1). Then, for time
t < t1, yi(t) > δ1 from the dynamic bound. For time t ≥ t1,

yi(t) > δ1, since 1√
t

∣∣∣∂KB(y)
∂yi

∣∣∣ < c1(t)
2 < δ1

2 from Lemma A.1

and ∂KB(y)
∂yi

> 0 if yi < 2δ1, from Lemma A.3.

Proof of (17). Let t3 := c−12 (δ3). Then, for time t < t3,
yi(t)+yj(t) < 1−δ3 from the dynamic bound. For time t ≥ t3,
yi(t) + yj(t) < 1 − δ3, since 1√

t

(∣∣∣∂KB(y)
∂yi

∣∣∣+
∣∣∣∂KB(y)

∂yj

∣∣∣) <
c2(t) ≤ δ3 from Lemma A.1 and max{∂KB(y)

∂yi
, ∂KB(y)

∂yi
} < 0

if yi + yj > 1− 2δ3, from Lemma A.4.

By combining (15), (16) and (17), it follows that y(t) ∈ D∗B
for all t.
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