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Abstract—In this paper, we address the problem of associating
mobile stations (MSs) with base stations (BSs) in an energy-
efficient manner. We take a population game approach, which
allows tractable analysis of many selfish mobiles without growing
mathematical complexity. From our game-theoretical analysis, we
prove that a simple power-dependent pricing by operators leads
a Nash equilibrium to be equal to the optimal solution of a
social optimization problem (i.e., no price-of-anarchy). We study
three evolution dynamics of associating MSs, each expressed as
a differential equation, all of which provably and/or numerically
converge to the Nash equilibrium. Based on several consider-
ations regarding implementation of association algorithms in
practice, we found that asynchronicity and fast load tracking
are the key components to practical algorithms. Motivated by
this, we propose a practical energy-efficient user association
mechanism, named BRUTE. To evaluate the performance of
BRUTE, we implement a cellular network simulator using an
event-driven simulator, SimPy, and perform extensive simulations
under various scenarios including a real BS topology in UK.
Our simulation results show that BRUTE outperforms other
conventional user association techniques.

Index Terms—User association, population game, evolutionary
dynamics, load balancing, cellular networks;

I. INTRODUCTION

IN response to high data demand in cellular systems, user
association, the problem of associating a mobile station

(MS) 1 with an appropriate base station (BS) is of prime
importance. It has been evidenced in literature that a simple
approach of connecting an MS to the BS providing the
highest received signal strength has substantial performance
degradation due to its load-agnostic behavior. In fact, the user
population in a cell has significant impact on the actual indi-
vidual MS throughput, thereby many load-aware association
schemes have been proposed so far [1]–[12].
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1We use ‘user’, ‘MS’, and ‘player’ interchangeably throughout this paper.

In addition to performance, energy-efficiency in wireless
networks is another important metric. Specifically, recent inter-
ests in greening such as the CO2’s potential harms (e.g., global
warming) to the environment as well as the economic issues
recently motivate a surge of energy-efficient research. There
are many components to save energy in cellular networks,
ranging from cooler and power amplifiers to dynamic switch-
ing on/off of BSs. User association also highly affects energy
consumption in the network, energy and load aware user
association is getting more important. There exists, however, a
complex interplay between energy-efficiency and performance
(such as throughput or delay), often showing a tradeoff. This
is because high performance requires load balancing of MSs,
whereas energy efficiency increases when MSs are associated
with nearby BSs, which often results in load-imbalance.

In this paper, we study an energy-efficient user association
problem from a population game-theoretic perspective. Popu-
lation game [13] groups the entire MSs into a finite number of
classes of infinitesimal MSs having similar attributes, e.g., the
set of connectable BSs, their link conditions, and the spatial
traffic distribution. This enables us to have a mathematically
tractable framework without growing mathematical complexity
and easily obtain the implications into distributed BS asso-
ciation mechanisms. Our model uses a flow-level dynamic
where data traffic is initiated at random and its workload is
also random, so that after a random amount of sojourn time
in the system it leaves. This flow-level dynamic seems to
provide more practical intuitions and results than the statically
backlogged setting often taken in other researches. In our
flow-level dynamic, we model spatially heterogeneous traffic
distribution and also capture signal degradation incurred by
interference from other BSs.

In our game, we model the payoff function by the com-
bination of the selfish performance objective of users and
the cost for using BSs’ energy, where a user’s selfish per-
formance objective is described by the delay performance
conditioned on the user’s offering load. We first prove that
the population game designed by the aforementioned payoff
function becomes a potential game. In potential game, Nash
equilibrium (NE) is characterized by the Karush-Kuhn-Tucker
(KKT) condition of the potential function, offering an easy
path to the equilibrium analysis. Then, we prove that the NE
coincides with the socially optimal point, implying there is no
price-of-anarchy. This remarkable result stems from a smart
association pricing scheme, instilled as a cost part of user’s
payoff function.
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Next, we consider three kinds of evolutionary dynamics,
(i) best response dynamic, (ii) replicator dynamic, and (iii)
Brown-von Neumann-Nash (BNN) dynamic, each of which
captures how mobiles evolve over time as the system state
changes. As studied in literature, the best response and BNN
dynamics provably converge to the NE. Unfortunately, the
replicator dynamic may not converge to a stationary point that
is NE, but under some reasonable conditions of initial points,
we experimentally show that the replicator dynamic is also
highly likely to converge to NE.

Finally, we aim at developing a practical energy-efficient al-
gorithm inspired by the theoretical analysis mentioned above.
Note that three dynamics were originally developed to model
selfish players in population games, but we connect them
to energy-efficient, distributed association control algorithms.
To that end, we carefully examine the convergence speed
and the required complexity (e.g., message passing) of three
dynamics, when converted to practical association protocols,
from which we propose an association algorithm motivated
by the best-response dynamic due to its fast convergence and
small complexity. In fact, we show that a distributed asso-
ciation algorithm [9], [10] developed from an optimization’s
perspective can be “almost” reverse-engineered by our game-
theoretic approach, with more practical advantages.

Our new approach strengthens the practicality of the user
association because the proposed user association achieves the
socially optimum without time-scale separation assumption,
which becomes possible by a traffic estimation technique. Note
that the prior work based on flow-level dynamics such as [9],
[10] assumed time-scale separation between BS load estima-
tion and actual BS association, which renders the problem
more manageable, but differs from the practice. By perform-
ing discrete event simulations we verify that the proposed
association algorithm, named BRUTE (Best Responding User
association with Traffic Estimation), is highly efficient, in
relation to the conventional user association scheme which
only considers the received data rate when choosing BSs. Also,
our proposed BRUTE outperforms the algorithm introduced
in [10]—namely SYNC throughout the paper, which has
exactly same payoff function as BRUTE but without traffic
estimation.

Related work

Recently, the authors in [10] formulate an optimization
problem that trade offs performance and energy efficiency,
and study both energy-efficient association and dynamics
BS on/off switching. They use a time-scale separation be-
tween association and on/off operations, enabling two different
problems—the authors assumed that BS on/off operations run
in much slower time scale than association, which enables
two problems to be decoupled. The social objective function
in our paper is equivalent to that in [10] without BS dynamic
on/off switching. However, our paper significantly differs from
[10] in that we approach the problem from the game-theoretic
perspective. Specifically, using a population game framework,
we consider a finite number of classes in describing different
heterogeneous traffic characteristics and a discrete set of
MS data rates; in [9], [10], it was assumed that there exist

an infinite number of classes, and available data rates are
continuous just for simplicity. However, this simplification
does not capture the real systems well, and thus the resulting
deterministic user association [9], [10] does not generally
achieve optimality with a finite number of classes in practice.
This is because the cell boundary should be a region, not a line
as in [9], [10] when adaptive modulation and coding (AMC) is
employed. We tackle user association problem with the finite
class setting using the population game gheory, and investigate
the optimality condition of the distributed algorithm in [9],
[10] in Section VI.

There exists work, see e.g., [11], [14]–[22] that studies a
BS/WLAN association problem in a game-theoretic setting.
The authors in [14] used the user performance of UDP/TCP
throughput with varying frame lengths over WLAN APS
(access points), whereas we use the flow-level delay as a
performance metric which depends on BS load. The authors in
[11] suggested the general concave utility function, formulated
a game, and proved that the total utility is maximized at the
Nash equilibrium. The work in [15] studied a Stackelberg
game between BS placement and user association. The main
difference from the above lies in that we consider both energy-
efficiency and flow-level dynamic using a population game.
The authors in [16] considered airtime cost as the metric
of the load of AP and formulated a non-cooperative game
between WLAN stations, which has been extended to [17]
that jointly solves AP association and channel assignment.
The work [20], [22] took account of QoS of mobile users
and modeled a matching game between cellular users and
small cell base stations. The authors in [21] provided an
analogy of uplink user association as college admission game
between mobile users and BSs who have conflicting interests,
where they solved the problem using matching theory and
coalitional game. In [19], a two-tier game framework of cell
selection and channel selection is proposed and they proved
the existence of NE and convergence of a proposed dynamic
algorithm. In [18], the evolutionary game approach was taken
for user association problem in femtocell networks, where they
assumed a logarithmic revenue and a linear payoff for the
performance metric and used reinforcement learning technique
in order to decentralize the evolutionary dynamics.

Other related work includes [23], which studies the load
balancing problem among server farms (where a server can be
considered as a BS in our case) using game theory. In [23],
the authors assumed a fixed processing capacity of each server
and the capacity does not depend on users. We model spatially
heterogeneous users, and thus BS-user capacity should differ
across users, which makes the problem much more challeng-
ing. There exists an array of research on BS load-balancing.
Some of earlier studies assumed a centralized processor that
establishes cell load-balancing [1]–[7]. Due to its weakness in
terms of scalability and flexibility, the distributed algorithms
were proposed [8]–[10]. We refer the readers to [24] for a list
of networking problems analyzed by population game theory.
Greening with focusing on dynamic BS on/off switching has
been studied in [10], [25]–[28].

There also exist the work based on the population game
theory which studied energy-efficiency issues in wireless net-
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works [29]–[32]. Mériaux et al. [31], [32] investigated a power
control problem in CDMA-type wireless networks using the
mean field game theory. They took account of energy con-
straints in the payoff function, and solved the problem using
mean field approximation under the assumption of the large-
scale system. Tembine, Altman et al. [29], [30] formulated
the stochastic population games to analyze a non-cooperative
power control scheme in ALOHA-type wireless networks. The
authors considered energy constraints by separating different
battery levels of wireless nodes, and proved the existence
of equilibrium point. All of these works mainly investigated
non-cooperative situations when the end users behave to
maximize its own throughput and save the battery power,
in ALOHA/CDMA-type wireless systems. Our work differs
from those existing works in the fact that we focused on the
energy savings of the infrastructures nodes, not that of the end
users. With a proper load balancing algorithm inspired from
the population game theory, which trade offs the flow-level
performance and the energy efficiency, we develop a practical
energy-efficient user association algorithm.

II. PRELIMINARIES: POPULATION GAME

Basic concepts. We briefly provide the basics of population
game, which we refer the readers to [13] for more details. A
population game F is defined by the society of continuous
mass of user groups called classes. Denote the set of classes
by Q and the number of classes by Q. Each class q ∈ Q has
continuous mass dq . Each class q has its own strategy sets
Sq = {1, ..., Sq}. A single entity in the class is called player,
and each player in class q selects its own strategy among the
strategy set Sq . The state of class q is defined as its distribution
of strategic decisions, denoted as yq = [yq1, ..., y

q
Sq ], where yqi

represents the mass of players in class q who plays strategy
i ∈ Sq . The set of states of class q is denoted as Yq = {yq ∈
RSq

+ |
∑
i∈Sq y

q
i = dq}. The social state y = [y1, ..., yQ] is

simply a Cartesian product of the class states. Again, the set
of all possible social states is denoted as Y =

∏
q∈Q Yq . The

marginal payoff function F qi per unit mass of each class q
for each strategy i is defined on each social state. Thus, we
have a collection of marginal payoff functions F = (F qi :
i ∈ Sq, q ∈ Q). We also use F to name a population game
for notional simplicity. Each player in each class receives its
payoff depending on its own strategic decision. The aggregate
payoff of class q is

∑
i∈Sq y

q
i F

q
i (y).

Best response and Nash equilibria. A solution concept gen-
erally used in game theory is Nash equilibrium. This notion is
also used in population games. We first define the concept of
best response correspondence, which means a set of selfishly
optimal strategies given a social state. In class q, the pure
best response correspondence bq : Y → Sq is defined by
bq(y) = arg maxi∈Sq F

q
i (y). Also, the mixed best response

correspondence for class q is defined as Bq(y) = {xq ∈ Yq :
xqi > 0→ i ∈ bq(y)}.

Definition 1: A social state y ∈ Y is a Nash equilibrium
of the population game F if every player in the society is
choosing the best response of y, i.e., the set of all Nash

BS 1

BS 2
Class 1

Class 2

Class 3

Fig. 1. System model and notations.

equilibria NE(F ) is:

NE(F ) = {y ∈ Y : yq ∈ Bq(y) for all q ∈ Q}.

Potential game. If the payoff function F has a special form,
the characterization and analysis of Nash equilibria becomes
much more tractable.

Definition 2: A population game F is a potential game if
there exists a function in C1 space2 called potential function
Φ : Y → R, satisfying ∂Φ

∂yqi
(y) = F qi (y), i.e., ∇Φ(y) = F (y),

for all y ∈ Y, i ∈ Sq , and q ∈ Q.
The concept of potential game has first appeared in [33].

This potential game has been extended in the large population
context by [34], which we apply to our problem in this paper.
Note that the potential game in this paper is an exact potential
game, since the derivative of potential function is exactly equal
to the payoff function. There are other kinds of potential
games, such as ordinal potential game, which is the game
where only the signs of the derivative of the potential function
and the payoff function match. In the potential game, the
strategic improvement of users increases potential function.
Thus, at the local maxima of the potential function, there exist
no incentives for each player to deviate from its own decision.
In other words, the local maximum of the potential function
is equivalent to a Nash equilibrium, as summarized as the
following theorem [13]:

Theorem 1 ( [13]): If a population game F is a potential
game with the potential function Φ, then NE(F ) = KKT(Φ),
where KKT(Φ) is the set of points satisfying the KKT
condition of Φ.

III. SYSTEM MODEL

Network and Users. We consider a cellular network consisting
of a set S of BSs. The society corresponds to the set Q of all
users, composed of a finite set of classes, where a class q is a
population of users who commonly share (i) the set Sq of BSs
allowing association to the entities of class q and (ii) the link
capacity from each of such BSs, (iii) the traffic characteristic.
As mentioned earlier, we assume that each class q has a

2This is the space of continuously differentiable functions.
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continuous mass of users, and the class-q mass is denoted
by dq . Let Qs be the set of classes that can be potentially
associated with the BS s ∈ S. Here yqi denotes the mass of
users in a class q who select BS i. Note that

∑
i y
q
i = dq and

the overall selection profile y determines the overall system
state.
Traffic, Capacity, and Load. All users in class q have a
Poisson arrival of file transfer requests with rate λq , and each
file size is independently distributed with mean 1/µq . Thus,
the total request rate of class q is λqdq . Let the traffic load
density of class q per unit mass be γq = λq/µq. As mentioned
earlier, we assume that all users in the same class receive the
same link capacity from each BSs. Denote cqi the link capacity
that each user in class q can achieve from the BS i. Note that
cqi may differ among all pairs of user classes and BSs and
cqi can capture the inter-cell interference as well. The system-
load density %qi is defined as the time fraction required by
BS i to serve the request from the unit mass of the class q,
i.e., %qi = γq/cqi , where it is assumed mini %

q
i < ∞, which

means there exists at least one BS which provides positive
link capacity to the class q and thus can serve the request
from the class q. Let ρi be the load of the BS i. The load ρi
is represented as the sum of the traffic loads in BS i from all
classes, i.e., ρi =

∑
q∈Q %

q
i y
q
i . The ρi can be interpreted as the

fraction of time needed in BS i to serve the entire incoming
traffic. The load ρi should be less than 1 in order to make the
system stable, which is assumed in this paper. Fig. 1 visually
explains our system model.
BS Energy Model. We model BSs’ energy consumption by a
combination of the static power consumed whenever a BS is
turned on and the load-dependent power, where each portion
is tunable by a parameter, as stated next:

Energy consumption of BS i = (1− qi)ρiPi + qiPi, (1)

where Pi is the amount of energy of BS i when fully utilized
and 0 ≤ qi ≤ 1 is the parameter quantifying the portion of the
static power at BS i. For example, the case qi = 0 corresponds
to the BS that is entirely energy-proportional. This BS energy
model is chosen to render our analysis generically applicable.
Note that in the current practice, a typical UMTS BS consumes
800-1500W for static power and 20-40W for RF output power
[10], and qi is not close to 0; the range of qi is roughly 0.5–0.8
in 3G cellular networks [35].

IV. ASSOCIATION GAME AND EQUILIBRIUM ANALYSIS

We now define a population game, called association game,
by completing the model of (marginal) payoff function for
each class. Prior to the game description, we first present a
social optimization problem that may be intended to be solved
by a regulator, e.g., an MNO (Mobile Network Operator). We
later compare the equilibrium of the defined game and the
optimal solution of the social optimization problem.

A. Social Objective

Consider the following optimization problem:

maximize Φ(y) = ΦF,α(y) + ηΦG(y) (2)

subject to ρi =
∑
q∈Q

yqi %
q
i < 1 for all i ∈ S

and
∑
i∈Sq

yqi = dq for all q ∈ Q,

where the term ΦF,α(y) corresponds to flow-level perfor-
mance, the term ΦG(y) represents the amount of energy
consumption, and η ≥ 0 is the parameter that trades off those
two metrics.

In the above, the flow level performance characterizes the
average performance that a typical flow experiences, where a
flow may correspond to a single TCP session or a single file
transfer. To be more precise about the flow-level performance,
the performance term ΦF,α(y) in (2), we take the approach
in [9] that parameterizes the flow-level efficiency with α:

ΦF,α(y) =


−
∑
i∈S

(1− ρi(y))1−α − 1

α− 1
, α 6= 1

−
∑
i∈S

log

(
1

1− ρi(y)

)
, α = 1.

(3)

The parameter α is called degree of load balancing. For
α = 0, the function becomes

∑
i∈S ρi, hence the users have

rate-optimal behavior. For α = 2, corresponding to delay-
optimal, the function becomes

∑
i∈S

ρi
1−ρi , which is propor-

tional to the average delay of M/GI/1 multi-class processor
sharing queue [36]. The second term in (2) represents the total
energy consumption of BSs (simply corresponding to a cost
term), given by the summation of consumed energy over all
BSs:

ΦG(y) = −
∑
i∈S

[(1− qi)ρi(y)Pi + qiPi] . (4)

Note that we put negative signs to both terms in (2) simply to
formulate the target optimization a maximization problem.

B. User Association Game Formulation

We now design the association game for which we define
the marginal payoff function for each class q and the strategies
available to the class q. Note that the marginal payoff function
is interpreted as the payoff obtained by the newcomers in the
corresponding class when all other users’ strategies are given
in population game theory. We consider the following form of
the marginal payoff function:

F qi (y) = −
[

%qi
(1− ρi(y))α

+ ηPi%
q
i (1− qi)

]
= −%qi

[
(1− ρi(y))−α + ηPi(1− qi)

]
. (5)

The above payoff function consists of two major terms: (i)
selfish flow-level utility and (ii) power pricing.

(i) Selfish flow-level utility. The first term of (5) denotes the
selfish utility motivated by the selfish flow-level perfor-
mance. For α = 0, the first term becomes %qi (= γq/cqi ),
directing users to selfishly prefer the BSs providing high
rate without considering the offered load in the associat-
ing BS. For α = 1, this term becomes proportional to the
conditional delay experienced by the users in the class q,
where the conditional delay means the delay experienced
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by an user conditioned on associating with a particular
BS, i in this case (see [9], [23] that use a similar
notion of conditional delay under different models for
different purposes). As α grows, users increasingly take
into consideration the BS loads in association, as the
payoff function decades more sharply with increasing ρi.

(ii) Power pricing. The second term corresponds to the
consumed energy of BS i to serve the users in class q.
Note that this term does not depend on the social state,
implying that the cost of associating with a particular BS
is independent of other class’ offered load. Recall that
1−qi is the portion of load-dependent, consumed energy.
Thus, Pi%

q
i (1− qi) corresponds to the consumed energy

only by class q, that can be interpreted as the price
that an user in class q should pay to use BS i’s power
resource. An interesting feature is that when qi = 1
(energy unproportional), there is no incurred power cost
in this marginal payoff function.

C. Equilibrium Analysis and Price-of-Anarchy

In this subsection, we provide the equilibrium analysis of
our game. Three main features of our interests are: existence,
uniqueness, and Price-of-Anarchy (PoA) [37] of the equilib-
rium (i.e., NE). Let y? and yNE be the socially optimal solution
of (2) and an NE (if it exists), respectively. Following [37], the
PoA is defined as the ratio between the worst Nash equilibrium
point and the social optima. Since Φ(y) is strictly concave
respect to ρ, all NEs in our model give the same value of Φ(y).
Thus we henceforth denote the PoA simply as Φ(y?)/Φ(yNE).
In many cases, it is quite challenging and mathematically
complex to analyze those three features, especially when the
game has a large degree of couplings. However, our game
is provably a potential game, opening an easy path to the
analysis, as we will henceforth discuss in this subsection.

We first prove that our association game is a potential game.
Lemma 1 states that the social objective function in (2) is the
potential function.

Lemma 1: The objective function Φ(y) in (2) is a potential
function of the population game with the marginal payoff
function (5).

Proof: From Definition 2, it suffices to check ∂Φ
∂yqi

(y) =

F qi (y). For the case of α = 1,

∂Φ

∂yqi
(y)

= − ∂

∂yqi

[∑
i∈S

log

(
1

1− ρi

)
+ ηΦG(y)

]

= −
[
(1− ρi) ·

1

(1− ρi)2
· ∂ρi
∂yqi

+ η(1− qi)Pi
∂ρi
∂yqi

]
= −%qi

[
(1− ρi)−1 + ηPi(1− qi)

]
= F qi (y).

Similarly, for the case of α 6= 1,

∂Φ

∂yqi
(y)

= − ∂

∂yqi

[∑
i∈S

(1− ρi)1−α − 1

α− 1
+ ηΦG(y)

]

= −
[

1− α
α− 1

· (1− ρi)−α ·
(
− ∂ρi
∂yqi

)
+ η(1− qi)Pi

∂ρi
∂yqi

]
= −%qi

[
(1− ρi)−α + ηPi(1− qi)

]
= F qi (y).

Lemma 2: The potential function Φ(y) is concave in y.
Proof: It has been proved by [10] that Φ is concave in

ρ. Since Φ is non-increasing in ρ, and ρ is concave over
y (since ρ is linear combination of the components of y).
From concavity-preserving operations, the composition of two
functions Φ(ρ) and ρ(y) becomes Φ(y) which is concave in
y.

From Theorem 1, the NE of our game can be easily
characterized by KKT condition of the potential function
Φ. Therefore, all NE points satisfy the KKT condition of
the potential function Φ. Lemma 2 guarantees that the local
maxima (i.e., NEs) are also the global maxima of the potential
function Φ. Note that the uniqueness of NE is not guaranteed,
which means there can be multiple association scenarios at
NEs.

Theorem 2: Our association game defined by the marginal
payoff function (5) has PoA value one, i.e., no price-of-
anarchy.

Proof: Lemma 2 implies that the optimization problem
(2) is indeed convex optimization problem, and has zero
duality gap. Thus, the points satisfying KKT condition of
the problem globally maximize the social objective function
(2). Also, from Lemma 1, the social objective function is a
potential function. Therefore, from Theorem 1, the NE of
our game coincides with the point satisfying KKT condition
of the potential function. Hence, it is guaranteed that NE
actually exists (derived from KKT condition), and all NE
points globally maximizes the social objective function.

V. EVOLUTIONARY DYNAMICS

In this section, we consider evolutionary dynamics to study
how users’ association evolves over time and converges (if
it does). We consider three popular dynamics in the area
of population games, discuss their convergence to a NE. An
evolutionary dynamic is expressed by a differential equation
ẏ = V (y), where V : Y → R is a state-dependent vector field
which defines the drift of the social state. Here we introduce
three kinds of well-known evolutionary dynamics [13], the
replicator dynamic, Brown-von Neumann-Nash (BNN) dy-
namic, and the best response (BR) dynamic. We will discuss
the convergence behavior of three dynamics as well. Then we
numerically compute differential equations of three dynamics
in a simple two-cell scenario. Although two dynamics are not
ready to be implemented as practical association algorithms,
it is worthwhile to investigate the convergence and conver-
gence speed of each dynamic, because they motivate practical
association algorithm, as presented in Section VI.

A. Three Evolutionary Dynamics

Replicator dynamic. The first dynamic widely used in evo-
lutionary dynamics is replicator dynamic. Its basic idea is
to form a drift vector based on the average payoff of the
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corresponding class, where the drift is made, so that each user
prefers a strategy with larger excess payoff (i.e., the difference
between the current strategy’s payoff and the average payoff).
The replicator dynamic is described as:

ẏqi = V (y) = yqi

(
F qi (y)− 1

dq

∑
i∈Sq

yqi F
q
i (y)

)
, (6)

where the term F qi (y) − 1
dq

∑
i∈Sq y

q
i F

q
i (y) corresponds to

the excess payoff of the strategy i in class q. The replicator
dynamic is an instance of imitative protocols. In other words,
at each update epoch, each user in the class randomly en-
counters another user, called opponent. If the payoff of the
opponent exceeds the user’s own payoff, then the user selects
the opponent’s strategy with probability proportional to the
payoff difference among two encounters. Replicator dynamic
captures the strategy popularity as well as the excess payoff of
each strategy in the sense that the strategy drift is proportional
to both the excess payoff of the strategy and the number of
users playing the strategy.

Brown-von Neumann-Nash (BNN) dynamic. The second
dynamic is Brown-von Neumann-Nash (BNN) dynamic.
For ease of exposition, we first define a variable kqi to
be the maximum of the excess payoff and zero: kqi ,
max

{
F qi (y)− 1

dq

∑
i∈Sq y

q
i F

q
i (y), 0

}
. Then, BNN dynamic

is expressed as:

ẏqi = V (y) = dqkqi − y
q
i

∑
i∈Sq

kqi . (7)

The intuition behind BNN dynamic is that at each update
epoch, each user randomly picks a strategy and compares its
payoff with the average payoff. If the payoff of the chosen
strategy exceeds the average payoff, the user changes its own
strategy with probability proportional to the excess payoff.

Best response dynamic. Finally, we investigate the best re-
sponse (BR) dynamic. In the BR dynamic, at a given social
state each user attempts to select its strategy that gives a
maximum payoff. i.e.,

iq ∈ bq(y) = arg max
j∈Sq

F qj (y) (8)

where iq stands for strategy selection which gives best re-
sponse for a user in class q, and bq(y) is the pure best
response correspondence set given social state y. When every
infinitesimal user in class q behaves like (8), the overall
strategy vector yq tends to drift to the mixed best response
correspondence Bq(y) of the social state y (see Section II).
Mathematically, BR dynamic is expressed by the map from
each state to the differential inclusion:

ẏq ∈ V q(y) = Bq(y)− yq. (9)

B. Convergence and Comparison

This section is devoted to summarizing the convergence of
three dynamics and discussing their differences in convergence
speed in the context of the association game. Convergence of
three dynamics has been well studied in literature. We refer
the readers to [13], [38], [39] for more details. We first define

a notion of positive correlation (PC) related to a sufficient
condition under which an evolutionary dynamic converges to
NE.

Definition 3: ẏ = V (y) is positively correlated if

V (y) · F (y)

=
∑
q∈Q

∑
i∈Sq

F qi (y)V qi (y) > 0 whenever V (y) 6= 0.

Positive correlation states that the drift rate and the payoff
values are positively correlated. In potential games, if the
dynamic satisfies PC then the potential function becomes
Lyapunov function; the potential function Φ acts as a (global)
Lyapunov function of the dynamic, since for all solution
trajectories yt, (i) d

dtΦ(yt) = ∇Φ(y) · ẏt = F (yt) ·V (yt) ≥ 0
and (ii) V (yt) = 0 whenever d

dtΦ(yt) = 0 from PC. This
means that all solution trajectories of the dynamic satisfying
PC are non-decreasing until a stationary point, i.e., a point y
with ẏ = V (y) = 0. Thus, all solution trajectories eventually
converge to a stationary point. All three dynamics are known
to be provably positive correlated.

However, all stationary points are not necessarily NEs,
where a dynamic converges to either (i) a local maximum
of the Lyapunov function or (ii) a boundary point of the set
Y . Another condition that enables a stationary point to be a
NE is so-called non-complacency (NC) or Nash stationarity.
The PC condition implies that all NE points are the stationary
points and the NC condition guarantees that the NE points
are equivalent to stationary points. Note that when the NC
condition is not met, there exist stationary points that are not
NE. The BNN and BR dynamics satisfy NC, allowing those
two dynamics to converge to a NE. However, the replicator
dynamic does not satisfy NC, which opens possibility of
convergence to a stationary point that is not a NE, elaborated
more in what follows: Note that in the replicator dynamic
agents observe the strategies of other agents, and switch to the
optimal strategy selected by other agents. Thus, a particular
agent can only choose a strategy that is being played by other
agent even when there exists a strategy which gives her a
larger payoff. For example, when all agents start with the
same strategy, the strategy profile will never change under
the replicator dynamics. We refer the readers to [38] for the
convergence of various evolutionary dynamics. Nonetheless, as
shown in Section VII-A, the replicator dynamic converges to
NE at least in the scenarios of our simulations, because when
there exists a positive portion of players associating with each
BS in the initial condition, which usually holds when each
mobile selects its initial BS (uniformly) at random.

We now discuss the convergence speed of three dynamics.
The BR dynamic does not perform any probabilistic opera-
tions and just switches to the strategy providing the largest
payoff, whereas the replicator and BNN dynamics switch to
better strategies probabilistically. This makes the convergence
speed of BR incomparably faster than that of the other two.
However, there is a chance of instability in the case of BR
dynamic, which can be successfully resolved at the practical
implementation stage. Also, we know that the convergence
speed of replicator and BNN dynamics depends on initial
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conditions, as will be numerically verified in Section VII-A.
If the initial distribution of the population is biased to one
strategy and the stationary distribution of the population is
relatively uniform, BNN dynamic converges faster than repli-
cator dynamic. This is because replicator dynamic tends to
drift to more popular strategies, and it is hard to exit from the
initial biased point because the initially dominant strategy is
relatively more preferred. However, in the opposite case when
the initial distribution is relatively uniform and the stationary
distribution is biased, replicator dynamic converges faster than
BNN dynamic, because BNN dynamic continuously selects
suboptimal strategy uniformly.

VI. USER ASSOCIATION ALGORITHM

A. Theory-motivated Algorithm Development

As discussed in earlier sections, in the energy-efficient user
association from the population game’s perspective described
as a set of differential equations, the system-wide optimum—
which coincides with Nash equilibrium point—is expressed
by the optimal population splitting across classes, found by
the evolutionary dynamics. However, such dynamics do not
directly connect to practical association algorithms, because
such dynamics are described just by the portion of populations
(i.e., yqi ) over a continuous time framework, and it is still
unclear how users should behave and how we should imple-
ment the dynamics in practice, e.g., which information should
be exchanged, etc. In this section, we develop a practical
association algorithm motivated by one of such evolutionary
dynamics. To that end, we assess which dynamic is the
best candidate by investigating the required information to
exchange and the speed of convergence, and then finally decide
to use the BR dynamic for developing a practical algorithm
because of the following reasons.

First, in the replicator dynamic (see (6)), we need to emulate
random encountering by letting the BSs distribute the entire
users’ population mass of association pattern {yqi , i ∈ Sq}
and BS load {ρi, i ∈ Sq} to each user in class q. Then,
each user needs to choose its virtual opponent based on the
distributed {yqi }, and locally calculate the excess payoff based
on {F qi (y)} and {ρi}. Second, in the BNN dynamic (see (7)),
BS needs to broadcast the average payoff of the users, i.e.,
1
dq

∑
i∈Sq y

q
i F

q
i (y), and the utilization {ρi, i ∈ Sq}, based on

which each user calculates its excess payoff for each strategy.
By contrast, BR dynamic is simper; it can be implemented by
users’ being given only BSs’ utilization {ρi, i ∈ Sq} because
each user needs just its own marginal payoff value for each
BS selection {F qi (y), i ∈ Sq} which solely depends on {ρi}.

Thus, the BR dynamic seems more autonomous than the
other two in the sense that users do not have to know other
users’ strategies, and thus much fewer amount of information
exchange is needed. Moreover, as presented in Section VII-A,
the BR dynamic converges (numerically) much faster than the
other two dynamics. This motivates us to henceforth focus on
developing our practical association algorithm on the basis of
the BR dynamic.

B. Algorithm Description and Rationale

We first describe our algorithm in Algorithm 1, called
BRUTE (Best Responding User association with Traffic Es-
timation) 3, and then explain its design rationale. BRUTE is
composed of the algorithms of users and BSs, which we now
elaborate as follows:

Algorithm 1: BRUTE (Best Responding User association
with Traffic Estimation)

Require: (i) set of BSs S, (ii) set of user classes Q, (iii) set
of BSs Sq that can associate a user in class q, and (iv)
set of classes Qi that can be potentially associated with
BS i.

Each user u in some class q
1: for each “association update clock” ticks do
2: Calculates its marginal payoffs (F̃ qi : i ∈ Sq) using

(ρ̃i : i ∈ Sq) (broadcast by each BS) by:

F̃ qi =
cqi

(1− ρ̃i)−α + ηPi(1− qi)
(10)

3: User u chooses and is associated with the BS i? that
provides the maximum marginal payoff, i.e.,

i? = arg max
j∈Sq

F̃ qj .

4: end for

Each BS i
1: Measures γ̃q by calculating the average traffic rate of the

class q, where q ∈ Qi.
2: for each association update (from users) do
3: Computes the load by:

ρ̃i =
∑
q∈Qi

yqi
γ̃q

cqi
.

4: Broadcasts ρ̃i to the users in each class of Qi.
5: end for

• User: Each user u updates its association whenever
“association udpate clock” ticks (Line 1). Association
update clock can be implemented by various ways, which
include the use of a Poisson clock with some rate or flow
arrivals/departures. When the clock ticks, the user u com-
putes the potential marginal payoffs from each of BSs that
can associate u (Line 2), and chooses the BS generating
the maximum marginal payoff (Line 3). This marginal
payoff based BS selection is motivated by the Best
Response dynamic, as explained in (8). Note that (10) is
obtained by a simple re-expression of (5), where (10) can
be written as γq/(%qi [(1− ρ̃i)−α + ηPi(1− qi)]), and
since γq is invariant to the selection of i, minimizing the
numerator becomes equivalent to maximization of (5).

• BS: The main role of each BS i lies in broadcasting
its load periodically to the users that can be potentially

3We use the tilde notation in γ̃q , ρ̃i, and F̃ q
i to highlight that such values

are empirically measured.
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associated with i, so that users update their associations,
and thus the system converges to an optimal association
configuration. To that end, each BS i maintains the traffic
statistics, i.e., γ̃q for each class q whose users have i as
an association candidate (Line 1). These traffic statistics
may be obtained by traffic rate measurement. Then, for
each association update (made by users), it computes the
load based on the measured traffic statistics (Line 3), and
broadcasts the load (Line 4).

Note that each BS i and users in class q know cqi a priori
similarly to knowing the achievable rate in user scheduling
(e.g., Proportional fair), which is possible by measuring chan-
nel gains through pilot channels and exchanging feedback
messages.

We briefly present the rationale of BRUTE; two main
issues are (i) when users’ associations should be updated
and (ii) how BSs’ loads should be measured. In particular,
note that the asynchronous association and the load estimation
are occasionally updated based on an asynchronous clock.
Alternatively, [9], [10] assumed that the load can be simply
determined by measuring their busy times and launch users’
association updates controlled by a global clock, say every T
time units. However, we will see that it may lead to severe
performance degradation as will be shown in Figs. 5, 6, and
7.

(a) Asynchronous association update. This is necessary be-
cause the synchronous association updates of multiple
users (in the same class) generate so-called “ping-pong”
effect, resulting in the oscillation and thus leading to
divergence from the optimal splitting ratio. The ping-pong
effect is also undesirable, since too frequent association
changes incur the overheads to the backhaul networks and
thus provide bad user QoE (Quality-of-Experience).

(b) Load measurement based on traffic estimation. BS loads
may be obtained by directly measuring the long-term ratio
of busy time. Such a busy-time based method requires the
load measurement to be re-initiated and investigated for a
certain duration (without changing the association states)
to see the average behavior whenever there is a user asso-
ciation change, which results in very slow convergence. By
contrast, load measurement based on estimation of traffic
statistics prevents the system’s convergence from being
governed by busy-time measurement speed. This enables
us to speed up the time-scale of association updates for
fast convergence, which is highly beneficial in being more
robust to the network changes.

VII. SIMULATION RESULTS

This section consists of two parts. The first part presents the
behavior of evolutionary dynamics to show the convergence
behavior and its speed discussed in Section V. The second part
shows the simulation result of BRUTE, where we implement
an event-driven simulator using SimPy [40], publicly available
in [41]. The simulation results are made based on a two-cell
scenario and a real cell deployment scenario.

A. Numerical Results: Three Evolutionary Dynamics

We consider a simple cellular network topology, as shown
in Fig. 2(a) consisting of two urban macro BSs within 10 ×
10 km2. The transmission power of BS 1 is 43dBm and BS
2 is 40dBm. The maximum operating power of BSs is 865W.
SINR value for determining link capacity was calculated from
the modified COST 231 Hata path loss model from IEEE
802.16m (mobile WiMAX) document [42]. Using the calcu-
lated SINR values, AMC (Adaptive Modulation and Coding)
was also simulated from the mobile WiMAX standard [43],
[44]. The red solid and blue dashed contours represent the
AMC level separations of BS 1 and BS 2, respectively. In
this two-cell scenario, we ignore the inter-cell interference.
This is not entirely unrealistic, because the current cellular
standard uses fractional frequency reuse (FFR) and adjacent
cells use different frequency band in order to reduce inter-
cell interference. Note that the shaded region depicts the
potential cell boundary between BS 1 and BS 2; all users
in these region receive the same data rate from two BSs,
and the decision metric becomes identical (i.e., a tie occurs)
when the loads of two BSs are equal. The load-balancing
factor α is set to 2, i.e., delay-optimal, and the energy-delay
tradeoff factor η is set to 10−1. Both BSs are assumed to be
energy-proportional. We assume the spatially homogeneous
traffic distribution, so we henceforth denote γq as just γ.
Homogeneous traffic distribution is just adopted for simplicity,
but similar interpretations in this section can be made for other
heterogeneous cases.

Figs. 2(b) and 2(c) show the traces of social objective
function values of three dynamics over iterations. In terms
of the convergence, three dynamics show convergence to the
same point, which is a NE and also the socially optimal
solution, as seen in Fig. 2(b). However, the convergence speed
of each dynamic is quite diverse, depending on the initial
points except the BR dynamic. BR converges fastest, but
that replicator and BNN dynamics show situation-dependent
convergence speeds, as discussed next. Fig. 2(b) starts with
heavily (1% vs. 99%) biased association in the shaded region
in Fig. 2(a). The socially optimal association ratio from our
calculations is about 18%–82% split in the boundary region,
and deterministic association to the closest BS in other regions.
Fig. 2(b) shows that replicator dynamic deviates from the ini-
tial point much more slowly than other dynamics. This occurs
because replicator dynamic tends to select more “popular”
BSs, i.e., the BSs with bigger portion of users have selected.
Fig. 2(c) shows the opposite scenario, where the initial point
in shaded region is set 20%–80%, which is near-optimal, and
one of non-shaded region is set as 50%–50% distribution. In
non-shaded region, the optimal strategy is that all users simply
select the BS that gives the higher data rate. Starting from
50%–50% distribution, replicator dynamic converges fast to
the optimal distribution, whereas BNN dynamic does not. The
intuition is as follows; while in replicator dynamic users tend
to pick more popular strategies, in BNN dynamic users choose
one strategy at random and compare its payoff with average
payoff at each selection instant. In BNN dynamic, users are
more likely to make choose suboptimal decisions, compared to
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(a) Two cell scenario. The red solid and
blue dashed lines represent the coverages of
BSs 1 and 2, respectively. The shaded region
represents the tie region between BSs 1 and
2.
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(b) Case I: The initial association ratio in the
shaded tie region in Fig. 2(a) is 1%-99%.
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(c) Case II: The initial association ratio in each of
the non-shaded regions in Fig. 2(a) is 50%-50%,
and the initial association ratio in the shaded tie
region is 20%-80%.

Fig. 2. Numerical results for a two-cell scenario
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Fig. 3. The payoff difference of two strategies in shaded region in Fig. 2(a)
when running scenario in Fig. 2(b).

replicator dynamic, resulting in drastically slow convergence.
Note again that BR dynamic is observed that be relatively
independent from the initial point and dominates other two
dynamics in terms of the convergence speed.

Fig. 3 demonstrates that the convergence point is Nash equi-
librium. From the definition of Nash equilibrium, all strategies
that are contained in best response correspondence has to give
equal payoff. In the scenario of Fig. 2(b), the association ratio
of shaded region is initially 50%–50%, thus the payoff of two
strategies have difference. The payoff difference converges to
zero with the progression of the dynamics, which implies that
the system state converges to Nash equilibrium.

B. Performance Evaluation of BRUTE
In this section, we evaluate the performance of BRUTE,

where we first test a simple two-cell scenario to discuss
the basic features such as convergence to an optimal point
and robustness to traffic profile changes. In our simulation
results, we implemented BRUTE and configured the tested
networks using a discrete event simulation, SimPy [40] that
implements discrete, asynchronous flow arrivals/departures
and their queueing behaviors as well in each BS. The source
code of our simulation is available in [41].
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Fig. 4. The ratio of users on cell boundary which selects each BS. The ratio
close to 1 indicates the more portion of boundary users are associated to BS
1. The solid black line indicates the analytically optimal association ratio. The
flow arrival rate of the users close to BS 2 is changed to 1.5 × 10−2 and
1.2× 10−2 flows/sec in 40 minute and 80 minute epoch, respectively.

A Two-cell Scenario

We start by a two-cell scenario which is simple, yet showing
the key features of our algorithm, i.e., how the users in the
cell boundary select their associating BSs and converge. The
simulation environment used here is identical to that in Sec-
tion VII-A, where we have two BSs with transmitting powers
43 dBm and 40 dBm each, on 10 × 10 km2 region, as shown
in Fig. 2(a) (however, note again that the association algorithm
is implemented by using our real algorithm BRUTE and flow
dynamics are generated as discrete random processes so as
to observe their real queueing behaviors in our simulator).
We scatter 10,000 mobile users in the region, each of which
generates flows according to a Poisson process with rate 10−2

flows/sec, with exponentially distributed file size with average
100 kbits. In addition, we setup traffic environment to change
dynamically over time to see whether our proposed BRUTE
is adapting well into dynamic situation.

Fig. 4 plots the association portion changes of the users in
the cell boundary (i.e., the shaded region of Fig. 2(a)) over
time, compared to the numerically computed optimal ratio
(the solid black line). As mentioned in Section V, the optimal
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(a) A 3 km × 3 km real macro BS map (15 BSs) in
Manchester, United Kingdom for our simulation.
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(b) The delay-energy performance in a homogeneous
traffic scenario when the flow arrival rate is fixed and
the average flow size varies from 100 to 580 kbits
with 40 kbits step.

Fig. 5. A real BS map in UK and the simulation results in homogeneous user setup. 143 user classes were formulated in homogeneous user distribution.
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(a) An extremely heterogeneous user setup,
where the users are placed only next to the
BSs indexed with even numbers.
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(b) The delay-energy performance in the heteroge-
neous setup in Fig. 6(a), when the flow arrival is fixed
and the average flow size varies from 100 to 300 kbits
with 20 kbits step.
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(c) The delay-energy performance with the same
setup as Fig. 6(b) except for η = 10.

Fig. 6. Simulation results in extremely heterogeneous distributed scenario. In this case, only 87 user classes are created because of extremely heterogeneous
user distribution.
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(a) Another heterogeneous user setup, where
5,000 users are distributed within 1.5 × 1.5 km
and rest 5,000 users are distributed elsewhere.
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(b) The delay-energy performance in the heteroge-
neous setup in Fig. 7(a), when the flow arrival is fixed
and the average flow size varies from 100 to 300 kbits
with 20 kbits step.
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(c) The delay-energy performance with the same
setup as Fig. 7(b) except for η = 10.

Fig. 7. Simulation results in another heterogeneous distributed scenario. The number of classes is as same as that in homogeneous scenario.

association ratio shows splitting only in a shaded tie boundary
region, and thus we focus only on the association ratio of that
region. We observe that BRUTE shows fast and stable con-

vergence behaviors and well-adapting to dynamically changing
traffic environments. When the traffic intensity around BS 2
increases, the boundary users tend to associate more with BS 1,
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and BRUTE adapts such situation. The association ratio in the
boundary region nearly converges to the optimal ratio in about
ten minutes, thus our algorithm can be said that it effectively
realizes the behavior of evolutionary dynamics. Moreover, our
simulation runs multiple times with initial strategies randomly
selected, in order to verify the global convergence of BRUTE.
The figure shows that the solution trajectory converges to the
same point regardless of the initial point.

A Real BS Map

We also perform simulations in a realistic multi-cell sce-
nario, for which we take a 3 km × 3 km BS map investigated
as of 2012 in Manchester, United Kingdom, as shown in
Fig. 5(a). The location of BSs and the operation parameters of
each BS are brought from Sitefinder [45]. In this environment,
there are 15 macro BSs in the downtown Manchester. We
scatter 10,000 active mobile users in this region randomly,
the flow generation process of each user is assumed to be
Poisson with 10−2 flows/sec arrival rate. The average flow size
differs by simulations in order to generate various scenarios
with different traffic intensities, i.e., different value of γ’s. We
assumed there are inter-cell interference between each BSs in
this simulation environment and take the interference into ac-
count to calculate the data rate based on SINR. The simulation
duration is 3 hours in all scenarios. The transmit power and
maximum operating power of each BS are set ranged from
40 to 59 dBm and from 62 to 65 dBm, respectively. All these
parameters are brought from [45]. The BSs were assumed to be
energy-proportional, i.e., qi = 0 for all i. We compare BRUTE
to other two conventional algorithms as described in what
follows: (i) Baseline and (ii) SYNC. First, Baseline is a rate-
based scheme where a user is associated to the BS providing
the largest data rate, and uniformly select BSs whenever there
is a tie. Second, SYNC is the algorithm proposed in [10],
where it behaves similarly to BRUTE except that it does not
implement asynchronous association clock.

Fig. 5(b) shows the simulation results when the users are
uniformly placed at random with a homogeneous traffic setup
and the delay-power tradeoff constant η was set to 0.1. We
gradually vary the traffic intensity ranging from 1.0 to 5.8 kbps
per user, and plot the average flow delay and the corresponding
total power consumption in the y-axis and x-axis, respectively.
As expected, as the traffic intensity increases, both power
consumption and delay increases. In the light loads, smartness
of association have marginal effect, but as the load becomes
higher, the impact of load-aware association becomes more
important. Fig. 5(b) shows that when the traffic intensity
exceeds 4.6 kbps, the delay of Baseline significantly grows,
whereas BRUTE still maintains reasonably low delays. SYNC
also considers the BS loads in association of mobiles, but
SYNC does not support splitting within classes. Note that
Baseline does random tie breaking. This is the main reason
why Baseline outperforms SYNC in some scenarios. In the
heavy traffic scenario, the delay performance of Baseline is
worst since it does not consider BS load at all. Although
SYNC does not support splitting, the time portion of associ-
ating with each BS can be split, therefore showing improved
performance compared to Baseline.

Moreover, we generate two (spatially) heterogeneous sce-
narios, where users are distributed as in Fig. 6(a) and 7(a). In
this setup, the BS utilization would be extremely unbalanced
without a proper load-aware association. Fig. 6(b) and 7(b)
shows the delay and energy performance with growing traffic
intensities in this scenario with η = 0.1. The average delay
of Baseline increases more rapidly than in the homogeneous
traffic scenario, i.e., from the intensity 2.2 kbps, whereas
BRUTE balances the load properly in the heterogeneous case.

Fig. 6(c) and 7(c) shows the delay and energy performance
in the heterogeneous traffic scenario, with a different tradeoff
parameter, i.e., η = 10. The results in Figs. 5 and 6 show that
the BSs consume more power in BRUTE than in Baseline
for the same traffic intensities. We overcome these results by
increasing the value of η. According to Fig. 6(c) and 7(c), the
power consumption of BRUTE (the horizontal position of the
curve) decreases where the average delay has been increased
compared to Fig. 6(b) and 7(b). This implies that there exists
a tradeoff between average delay and energy consumption
and this tradeoff can be adjusted by determining the constant
η. Therefore we can say that our proposed BRUTE not
only dramatically increases performance in the heavy-traffic
scenario, but also provides the additional degree of freedom
in terms of parameter setting, when we take account of energy
saving as well as improving delay performance.

VIII. CONCLUSION AND DISCUSSIONS

In this paper, we have studied an energy-efficient BS as-
sociation problem from a population game perspective. Our
study has revealed that various evolutionary dynamics based
on a population game converge to the socially optimal point
through appropriate association pricing. We have also investi-
gated on the design rationales and a practical implementation
of the BR-inspired association algorithm, named BRUTE, and
have evaluated the performance of our proposed algorithm in
various simulation environments.

We conclude our paper by providing discussions related to
this work. In [9], [10], the authors proposed a distributed asso-
ciation algorithm that solves the social optimization problem
in (2) from an optimization-theoretic perspective. Thus, our
work is of independent interest, since a different tool such
as population games is utilized toward energy-efficient user
association. However, as will be described in what follows,
there exists critical differences from [9], [10] in other technical
aspects.

(a) Formation of user classes. The authors of [9], [10] assumed
an information theoretic capacity (i.e., that by Shannon) for
the achievable, potential data rate. Consequently, the data rate
is a continuous function of the distance between BS and
user, and the vector of data rates have continuous real values.
This makes an infinite number of user classes since the user
classes are characterized with the vector of data rates from
each BS. Under this somewhat impractical assumption, the
authors of [9], [10] prove that the optimal user association is
characterized in a deterministic manner. However, this is not
practical since AMC (Adaptive Modulation and Coding) on
data rate is applied, and thus the data rates are discrete in
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practice. Then, the number of classes is not infinite, implying
that that the deterministic association of each user class may
lead to load imbalance among BSs. The optimal association
should be split within the same class in some cases such as
the shaded tie region in Fig. 2(a). Using a population game-
theoretic approach we show that the algorithm goes to the
optimal point when there are only a finite number of user
classes. This kind of behavior cannot be achieved in the
deterministic algorithm in [9], [10].
(b) Time-scale separation assumption. It was assumed in
[9], [10] that the time scale separation between flow ar-
rival/departure process and load broadcasting implying that the
flow arrival/departure dynamics should be much faster than the
load broadcasting interval. This assumption implicitly requires
an algorithm to use a long interval of load broadcasting. The
algorithm designed under this assumption was optimal in [9],
[10]. However in our setting where the optimal association
should be splitted, the matter of asynchronicity is the key
design of the algorithm since the users in a same class have
to be able to respond differently. In the design of BRUTE,
we eliminated the assumption of time scale separation with
traffic estimation scheme, where load broadcasting interval
does not have to be long anymore, and the users can response
immediately to instantly broadcasted load information of the
BSs.
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