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Information Source Finding in Networks:
Querying with Budgets

Jaeyoung Choi∗, Sangwoo Moon†, Jiin Woo††, Kyunghwan Son†, Jinwoo Shin† and Yung Yi†

Abstract—In this paper, we study a problem of detecting the
source of diffused information by querying individuals, given
a sample snapshot of the information diffusion graph, where
two queries are asked: (i) whether the respondent is the source
or not, and (ii) if not, which neighbor spreads the information
to the respondent. We consider the case when respondents
may not always be truthful and some cost is taken for each
query. Our goal is to quantify the necessary and sufficient
budgets to achieve the detection probability 1− δ for any given
0 < δ < 1. To this end, we study two types of algorithms:
adaptive and non-adaptive ones, each of which corresponds to
whether we adaptively select the next respondents based on the
answers of the previous respondents or not. We first provide the
information theoretic lower bounds for the necessary budgets
in both algorithm types. In terms of the sufficient budgets, we
propose two practical estimation algorithms, each of non-adaptive
and adaptive types, and for each algorithm, we quantitatively
analyze the budget which ensures 1− δ detection accuracy. This
theoretical analysis not only quantifies the budgets needed by
practical estimation algorithms achieving a given target detection
accuracy in finding the diffusion source, but also enables us to
quantitatively characterize the amount of extra budget required
in non-adaptive type of estimation, referred to as adaptivity gap.
We validate our theoretical findings over synthetic and real-world
social network topologies.

I. INTRODUCTION

Information spread in networks is universal to model many
real-world phenomena such as propagation of infectious dis-
eases, diffusion of a new technology, computer virus/spam
infection in the Internet, and tweeting and retweeting of
popular topics. The problem of finding the information source
is to identify the true source of information spread. This is
clearly of practical importance, because harmful diffusion can
be mitigated or even blocked, e.g., by vaccinating humans
or installing security updates [3]. Recently, extensive research
attentions for this problem have been paid for various network
topologies and diffusion models [3]–[10], whose major inter-
ests lie in constructing an efficient estimator and providing
theoretical analysis on its detection performance.
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Prior work has shown that the detection probability cannot
be beyond 31% even for regular trees if the number of
infected nodes is sufficiently large. This directly or indirectly
conclude that the information source finding turns out to
be a challenging task unless sufficient side information or
multiple diffusion snapshots are provided. There have been
several research efforts which use multiple snapshots [11]
or a side information about a restricted superset the true
source belongs [12], thereby the detection performance is
significantly improved. Another type of side information is the
one obtained from querying, i.e., asking questions to a subset
of infected nodes and gathering more hints about who would
be the true information source [1]. The focus of this paper is
also on querying-based approach (we will shortly present the
difference of this paper from [1] at the end of this section).

In this paper, we consider an identity with direction (id/dir
in short) question as follows. First, a querier asks an identity
question of whether the respondent 1 is the source or not, and
if “no”, the respondent is subsequently asked the direction
question of which neighbor spreads the information to the
respondent. Respondents may be untruthful with some proba-
bility so that the multiple questions to the same respondent
are allowed to filter the untruthful answers, and the total
number of questions can be asked within a given budget. We
consider two types of querying schemes: (a) Non-Adaptive
(NA) and (b) ADaptive (AD). In NA-querying, a candidate
respondent set is first chosen, and the id/dir queries are asked
in a batch manner. In AD-querying, we start with some
initial respondent, iteratively ask a series of id/dir questions
to the current respondent, and adaptively determine the next
respondent using the (possibly untruthful) answers from the
previous respondent, where this iterative querying process lasts
until the entire budget is used up. In general, it is known
that the adapitve manner of processing data from observation
or sampling is more efficient than that of the non-adaptive
one in other research domains such as seeding problem in
social network [13], [14], crowdsourcing problem [15] and
community detection [16]. In our work, we first quantify the
adaptiveness gain using the queried data on information source
detection problem.

We summarize our main contributions in what follows.

(a) First, we formulate an optimization problem that maxi-
mizes the detection probability over the number of ques-
tions to be asked, the candidate respondent set, and the
estimators for a given diffusion snapshot and the answer

1In this paper, we call ‘respondent’ by the node who is asked a question
from the querier.
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samples. We discuss analytical challenges of the problem
and then propose a tractable and appropriate model that
characterizes upper and lower bounds of the detection
probability. Under this model, we obtain the necessary
budgets for both querying schemes to achieve the (1− δ)
detection probability for any given 0 < δ < 1. To this
end, we establish information theoretical lower bounds
from the given diffusion snapshot and the answer samples
from querying. Our results show that it is necessary to use
the budget Ω

(
(1/δ)1/2

log(log(1/δ))

)
for the NA-querying, whereas

Ω
(

log1/2(1/δ)
log(log(1/δ))

)
for the AD-querying, respectively.

(b) Second, to obtain the sufficient amount of budget for
(1−δ) detection performance, we consider two estimation
algorithms, each for both querying schemes, based on a
simple Majority Voting (MV) to handle the untruthful an-
swer samples. We analyze simple, yet powerful estimation
algorithms whose time complexities are O(max{N,K2})
for NA-querying and O(max{N,K}) for AD-querying,
respectively, where budget is K and the number of in-
fected nodes is N. Our results show that the sufficient
query budgets are O

(
(1/δ)

log(log(1/δ))

)
for the NA-querying

and O
(

log2(1/δ)
log(log(1/δ))

)
for the AD-querying. The gap be-

tween necessary and sufficient budgets in both querying
schemes is due to our consideration of simple, yet practical
estimation algorithms based on majority voting, caused
by the fact that the classical ML (Maximum Likelihood)-
based estimation is computationally prohibitive and even
its analytical challenge is significant. Our quantification of
necessary and sufficient budgets enables us to obtain the
lower and upper bounds of the adaptive gap, i.e., the gain
of adaptive querying scheme compared to non-adaptive
one.

(c) Finally, our analytical results above provide useful guide-
lines on how much budget is necessary and sufficient
to guarantee a given detection performance for different
querying types when users are untruthful. We validate our
findings via extensive simulations over popular random
graphs (Erdös-Rényi and scale-free graphs) and a real-
world Facebook network. As an example, in Facebook
network, the AD-querying requires about 600 queries to
achieve above 90% detection probability when p = 0.6
and q = 0.3 (Here, p and q are the probabilities of
telling the truth for id question and direction question,
respectively.) whereas the NA-querying requires more than
4000 queries to achieve same detection probability. This
indicates that adaptive use of the querying budget is more
efficient for finding the source than that of non adaptive
one as we expected in the analytical results.

The remainder of this paper is organized as follows. Section
II discusses related literature. In section III, we introduce our
querying model under the information diffusion and describe
our goal of the paper. The theoretical results for NA-querying
and AD-querying with their adaptive gap will be presented in
section IV and V, respectively and the corresponding proof
will be provided in section VI. In section VII, we depict the
simulation results and conclude the paper in section VIII.

II. RELATED WORK

The research on rumor2 source detection has recently re-
ceived significant attentions. In this section, we divide them
into the following two categories: (1) estimation of a single
source and (2) estimation of multiple sources.
(1) Single source estimation. Shah and Zaman [4], [5], [17]
first considered the single source detection problem over a
connected network. They introduced the metric called rumor
centrality — a simple topology-dependent metric for a given
diffusion snapshot. They showed that the rumor centrality
describes the likelihood function when the underlying network
is a regular tree and the diffusion follows the Susceptible-
Infected (SI) model. Zhu and Ying [6] solved the source
detection problem under the Susceptible-Infected-Removed
(SIR) model and took a sample path approach to solve the
problem, where the Jordan center was used, being extended
to the case of sparse observations [18]. All the above detection
mechanisms correspond to point estimators, whose detection
performance tends to be low.

There were several attempts to boost up the detection
probability. Wang et al. [11] showed that observing multiple
different epidemic instances can significantly increase the
detection probability. Dong et al. [12] assumed that there exist
a restricted set of source candidates, where they showed the
increased detection probability based on the Maximum a Pos-
terior Estimator (MAPE). Choi et al. [19] showed that the anti-
rumor spreading under some distance distribution of rumor and
anti-rumor sources helps to find the rumor source by using
the MAPE. Recently, there have been some approaches for a
realistic graph topology or a partial observation setting. Luo
et al. [20] considered the problem of estimating an infection
source for the SI model, in which not all infected nodes can
be observed. When the network is a tree, they showed that an
estimator for the source node associated with the most likely
infection path that yields the limited observations is given by a
Jordan center, i.e., a node with the minimum distance to the set
of observed infected nodes. They also proposed approximate
source estimators for general networks. Kumar et al. [21]
considered the case where additional relative information
about the infection times of a fraction of node pairs is also
available to the estimator. The authors took a complementary
approach where the estimator for general networks ranks each
node based on counting the number of possible spreading
patterns with a given node as root that are compatible with
the observations. Zhu et al. [3] considered the Erdös-Rényi
(ER) random graph and proposed a new source localization
algorithm, called the Short-Fat Tree (SFT) algorithm. The
algorithm selects the node such that the Breadth-First Search
(BFS) tree from the node has the minimum depth but the
maximum number of leaf nodes. Performance guarantees of
SFT under the Independent Cascade (IC) model have been
established for both tree networks and the ER random graph.
Chang et al. [9] considered both infected and uninfected nodes
to estimate the likelihood for the detection on a general loopy
graph. They considered a MAPE to detect the source for the
general graph using the rumor centrality as a prior. Jiang et

2We use the terms “information” and “rumor” interchangeably.
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al. [22] considered time-varying networks where there is the
temporal variation in the topology of the underlying networks.
They introduced an effective approach used in criminology to
overcome the challenges.

(2) Multiple sources estimation. In the multiple sources
estimation problem, it is required to infer the set of source
nodes which results in the diffusion snaps hot. Despite the
difficulty of the problem, some prior studies tried to solve this
problem by appropriate set estimation methods. Prakash et al.
[23] proposed to employ the Minimum Description Length
(MDL) principle to identify the best set of seed nodes and
virus propagation ripple, which describes the infected graph
most succinctly. They proposed a highly efficient algorithm
to identify likely sets of seed nodes given a snapshot and
show that it can optimize the virus propagation ripple in a
principled way by maximizing the likelihood. Zhu et al. [24]
proposed a new source localization algorithm, named Optimal-
Jordan-Cover (OJC). The algorithm first extracts a subgraph
using a candidate selection algorithm that selects source candi-
dates Considering the heterogeneous SIR diffusion in the ER
random graph, they proved that OJC can locate all sources
with probability one asymptotically with partial observations.
Ji et al. [25] developed a theoretical framework to estimate
rumor sources, given an observation of the infection graph
and the number of rumor sources. They considered a scenario
that sources start to spread the rumor at a different time.
They first studied the two-source identification problem in
a tree network under the SI model and then generalized the
framework to multiple sources and for all graph types. Jaing et
al. [26] proposed a novel method to identify multiple diffusion
sources, which can address the question of how many sources
there are and where the diffusion emerges. They derived an
optimization formulation for the multi-source identification
problem and quantified the detection performance for the
proposed algorithm.

To the best of our knowledge, our paper is the first to
quantitatively consider the querying approach, which uses the
snapshot of the infection graph and additional side-information
from querying, appropriately. The results give the necessary
and sufficient amount of querying budgets to achieve the target
detection probability based on information theoretical tech-
niques and simple algorithms with low complexity (Majority
Voting based one), respectively.

III. MODEL AND GOAL

A. Diffusion Model and MLE

Diffusion Model. We consider an undirected graph G =
(V,E), where V is a countably infinite set of nodes and
E is the set of edges of the form (i, j) for i, j ∈ V . Each
node represents an individual in human social networks or a
computer host in the Internet, and each edge corresponds to
a social relationship between two individuals or a physical
connection between two Internet hosts. As an information
spreading model, we consider a SI model under exponential
distribution with rate of λij for the edge (i, j), and all nodes
are initialized to be susceptible except the information source.
Once a node i has an information, it is able to spread the

information to another node j if and only if there is an edge
between them. We denote by v1 ∈ V the information source,
which acts as a node that initiates diffusion and denote by
VN ⊂ V , N infected nodes under the observed snapshot
GN ⊂ G. In this paper, we consider the case when G is a
regular tree, the diffusion rate λij is homogeneous with unit
rate, i.e., λij = λ = 1, and N is large, as done in many prior
work [4], [5], [11], [12], [27]. We assume that there is no prior
distribution about the source, i.e., the uniform distribution.
Maximum Likelihood Estimator (MLE). As a preliminary,
we explain the notion of rumor centrality, which is a graph-
theoretic score metric and is originally used in detecting the
rumor source in absence of querying and users’ untruthfulness.
This notion is also importantly used in our framework as a sub-
component of the algorithms for both NA-querying and AD-
querying. In regular tree graphs, Shah and Zaman [4] showed
that the source chosen by the MLE becomes the node with
highest rumor centrality. Formally, the estimator chooses vRC
as the rumor source defined as

vRC = arg max
v∈VN

P(GN |v = v1)

= arg max
v∈VN

R(v,GN ), (1)

where vRC is called Rumor Center (RC) and R(v,GN ) is
the rumor centrality of a node v in VN . The rumor centrality
of a particular node is calculated only by understanding
the graphical structure of the rumor spreading snapshot, i.e.,
R(v,GN ) = N !

∏
u∈VN

(1/T vu ) where T vu denotes the number
of nodes in the subtree rooted at node u, assuming v is the
root of tree GN (see [4] for details).

B. Querying Model
Querying with untruthful answers. Using the diffusion snap-
shot of the information, a detector performs querying which
refers to a process of asking some questions. We assume that
a fixed budget K is given to the detector (or the querier) and
a unit budget has worth of asking one pair of id/dir question,
i.e., “Are you the source?” first and if the respondent answers
“yes” then it is done. Otherwise, the detector subsequently
asks a direction question as “Which neighbor spreads the
information to you?”. In answering a query, we consider that
each respondent v is only partially truthful in answering id
and dir questions, with probabilities of being truthful, pv and
qv , respectively. To handle untruthful answers, the querier may
ask to a respondent v the question multiple times, in which
v’s truthfulness is assumed to be independent. More precisely,
we define a Bernoulli random variable I that represents a
respondent’s answer for the id question, such that I is one with
probability (w.p.) pv and I is zero w.p. 1− pv . Similarly, we
define a respondent’s random answer D for the dir question,
such that D is one w.p. qv and D is i w.p. (1−qv)/(d−1), for
i = 2, . . . , d. We also assume that homogeneous truthfulness
across individuals, i.e., pv = p and qv = q for all v ∈ VN and
p > 1/2, q > 1/d meaning that all answers are more biased
to the truth. To abuse the notation, we use H(p) and H(q)
to refer to the entropies of I and D, respectively. Throughout
this paper, we also use the standard notation H(·) to denote
the entropy of a given random variable or vector.
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(b) Adaptive (AD)-querying.

Fig. 1. Examples of two querying types with untruthful answers (r = 1).
In (a), the querier selects a candidate set (a large square) and asks just one
id/direction question in a batch manner under the untruthful answers. In (b),
starting from the initial node, the querier first asks one id/direction question
and adaptively tracks the true source with the untruthful answers. (In (b),
“True” is the direction of true parent and “Wrong” is the wrong direction.)

In terms of querying schemes, we consider the following
two types of querying: non-adaptive (NA) and adaptive (AD)
querying.

NA-querying. In this querying, it is parameterized by r,
where a querier first chooses K/r (K is a multiple of r for
expositional convenience) candidate nodes in a batch which
is believed to contain the true source, then ask id/dir question
to each respondent inside the candidate set r times. We call
r the repetition count throughout this paper. Then, the querier
finally run an estimation algorithm based on the answers from
all the respondents.

AD-querying. In the adaptive querying, a querier first chooses
an initial node to ask the id/dir question, possibly multiple
times, and the querier adaptively determines the next respon-
dent using the answers from the previous respondent, which is
repeated until the entire budget is exhausted. The number of
selected nodes in this query is also K/r and some nodes can
be selected multiple times by the querier. Then, the querier
finally run an estimation algorithm based on the answers from
all the respondents.

In NA-querying, Fig. 1(a) illustrates a candidate set of nodes
inside a square, id/dir querying is performed in a batch with
r = 1. In AD-querying, Fig. 1(b) shows an example scenario
that starting from the initial node, a sequence of nodes answer
the queries truthfully or untruthfully for r = 1.

C. Goal

As a performance metric, we consider the required number
of budget K to achieve the detection probability at least 1− δ
for a given 0 < δ < 1. Then, our goal is to answer for the
following questions.

Q1. How many queries are necessary and sufficient for NA-
and AD-querying? We first consider an MLE of the
snapshot and querying data as a target estimator for both
querying scenarios, and discuss its technical complexi-
ties. This motivates us to consider a restricted, but still
wide class of algorithms, where we establish information
theoretical lower bound to obtain the necessary number
of budgets and study a sufficient number of budgets by
analyzing the performance of an MV-based estimation.

Q2. How large is the adaptivity gain? We finally quantify
how much adaptivity on the querying scheme enriches the
detection probability of the information source under the
individual’s untruthfulness. We define the quantification
by adaptivity gap and obtain its lower and upper bounds
by using the obtained number of necessary and sufficient
budgets for each querying.

IV. NA-QUERYING: NECESSARY AND SUFFICIENT
BUDGETS

A. Challenges and Algorithm Class

In NA-querying, we first describe the hardness of obtaining
an optimal algorithm in the entire algorithm set. To do this,
we first denote Cr ⊂ VN , by the candidate set of query with
size K/r for a given r. Then we next describe the data of
querying answer as follows. Let Ar(p, q) := (X(p), Y (q)) be
the answer vector where X(p) := [x1(p), x2(p), . . . , xK/r(p)]
with 0 ≤ xi(p) ≤ r representing the number of answers
“yes” and Y (q) := (Y1(q), . . . , YK/r(q)) with Yi(q) =
[y1(q), y2(q), . . . , yd(q)], the answer vector for the respondent
i, where 0 ≤ yj(q) ≤ r that represents the number of
“designations” to j-th neighbor (1 ≤ j ≤ d) of the respondent
i. Then, the MLE of querying as an optimal estimation
algorithm is to solve the following problem:

OPT-NA: max
1≤r≤K

max
Cr

max
v∈Cr

P
[
GN , Ar(p, q)|v = v1

]
, (2)

where the inner-most max corresponds to the MLE that
maximizes the likelihood of GN and the query answer sample
Ar(p, q) under the assumption of v = v1.

Challenges. We now explain the technical challenges in solv-
ing OPT-NA as similar in [1]. To that end, let us consider the
following sub-optimization in OPT-NA for a fixed 1 ≤ r ≤ K:

SUB-OPT-NA: max
Cr

max
v∈Cr

P
[
GN , Ar(p, q)|v = v1

]
. (3)

Then, the following proposition provides the solution of SUB-
OPT-NA whose proof is provided in the supplementary ma-
terial.

Proposition 1: Construct C∗r by including the K/r nodes
in the decreasing order of their rumor centralities. Then, C∗r
is the solution of SUB-OPT-NA.

Despite our knowledge of the solution of SUB-OPT-NA,
solving OPT-NA requires an analytical form of the objective
value of SUB-OPT-NA for C∗r to find the optimal repetition
count, say r∗. However, analytically computing the detection
probability for a given general snapshot is highly challenging
due to the following reasons. We first note that

max
v∈Cr

P
[
GN , Ar(p, q)|v = v1

]
= P[v1 ∈ C∗r ]︸ ︷︷ ︸

(a)

×max
v∈C∗

r

P
[
GN , Ar(p, q)|v = v1, v1 ∈ C∗r

]
︸ ︷︷ ︸

(b)

.(4)



5

First, the term (a) is difficult to analyze, because only the
MLE of snapshot allows graphical and thus analytical charac-
terization as discussed in [4] but other nodes with high rumor
centrality is difficult to handle due to the randomness of the
diffusion snapshot. Second, in (b), we observe that using the
independence between GN and Ar(p, q), by letting the event
A(v) = {v = v1, v1 ∈ C∗r },

v̂ = arg max
v∈C∗

r

P
[
GN , Ar(p, q) | A(v)

]
= arg max

v∈C∗
r

P
[
Ar(p, q) | A(v)

]
× P

[
GN | A(v)

]
= arg max

v∈C∗
r

P
[
X(p) | A(v)

]
× P

[
Y (q) | A(v)

]
× P

[
GN | A(v)

]
, (5)

where the last equality is due to the independence of X(p)
and Y (q). Then, the node v̂ maximizing (b) is the node v that
has the maximum weighted rumor centrality which is hard to
obtain a characterization due to the randomness of the answer
for querying, thus resulting in the challenge of computing r
that maximizes the detection probability in OPT-NA. Hence,
as our consideration to handle the probability (a), we restrict
our focus of the following class of NA-querying mechanisms,
denoted by NA(r,K), in this paper:

Definition 1: (Class NA(r,K)) In this class of NA-
querying schemes with the repetition count r and a given
budget K, the querier first chooses the candidate set of K/r
infected nodes according to the following selection rule: We
initially select the node RC and add other infected nodes in
the increasing sequence in terms of the hop-distance from the
RC. Then, the querier asks the id/dir question r times to each
node in the selected candidate set.

The hop-based candidate set selection has been introduced
in [27]. In this paper, the authors obtained the probability that
the information source is in a set, denoted by HL, which
consists of all infected nodes within the distance L > 0 to
the RC for d-regular tree. They showed that it is a good
approximation to the optimal candidate set which maximizes
the probability that the source is included. We use this result
in our analysis. From the defined algorithm class NA(r,K),
we obtain the necessary and sufficient budgets which achieve
the target detection probability as follows.

B. Necessary Budget

We present an information theoretic lower bound of the
budget for the target detection probability (1 − δ) inside the
class of NA(r,K). We let T (r) = [T1, T2, . . . , TK/r] be
the random vector where each Ti is the random variable of
infection time of the i-th node (1 ≤ i ≤ K/r) in the candidate
set. Then, by appropriately choosing r, we have the following
theorem.

Theorem 1: Under d-regular tree G, as N → ∞, for any
0 < δ < 1, there exists a constant C = C(d), such that if

K ≤ C ·H(T (r?))(2/δ)1/2

f1(d, p, q) log(log(2/δ))
, (6)

where

f1(d, p, q) = (1−H(p)) + p(1− p)(log2 d−H(q)),

r? =

⌊
1 +

4(1− p){7H(p) + 2H(q)} logK

3e log(d− 1)

⌋
, (7)

then no algorithm in the class NA(r,K) can achieve the
detection probability 1 − δ. Here, H(T (r)) is a function of
the diffusion rate λ, as in [28].

The implications of Theorem 1 are in order. First, if the
entropy H(T (r?)) of the infection time is large, the necessary
amount of budget increases due to large uncertainty in figur-
ing out a predecessor in the diffusion snapshot. Especially,
we have the upper bound of H(T (r?)) by H(T (r?)) ≤∑
i∈Cr?

ln
(

Γ(hi)
λ

)
+ hi by using the exponential distribution

of diffusion for tree network, where hi > 0 is the distance
(hops) to the source for the node i ∈ Cr? . This implies that if
diffusion snapshot is sparse to the source (i.e., many infected
nodes have large distance to the source), the upper bound of
the entropy becomes large and we need more budget. Second,
larger entropy for the answers of id/dir questions requires more
budget to achieve the target detection accuracy. Also, when p
goes to 1/2 and q goes to 1/d, i.e., no information from the
querying, results in diverging the required budget (because
f1(d, p, q) goes to zero). Finally, if respondents are truthful
in answering for the id question (i.e., p = 1), the direction
answers does not effect the amount of necessary budget.

C. Sufficient Budget

To compute a sufficient budget, a natural choice would be
to use the MLE (Maximum Likelihood Estimator), which,
however, turns out to be computationally intractable for large
N due to randomness of the diffusion snapshot and query
answers as described by part (b) in (5). Hence, to obtain the
sufficient budgets, we consider a simple estimation algorithm
named MVNA(r) that is based on majority voting for both
the id and dir questions. To briefly explain how the algorithm
behaves, we first select the candidate set Cr of size K/r that
has the least hop-distance from the RC, then we ask r times
of id/dir questions to each node in the candidate set (Line 2).
Then, we filter out the nodes that are more likely to be the
source and save them in SI (Line 4) and using the results of
the dir questions, compute E(v) that correspond to how many
nodes in Cr hints that v is likely to be the source node (Lines
6 and 7). Finally, we choose a node with maximal likelihood
in SI ∩ SD and if SI ∩ SD = ∅, we simply perform the same
task for SI ∪SD. It is easy to see that the time complexity is
O(max{N,K2}).

Rationale: The rationale of MVNA(r) from the perspective of
how we handle the analytical challenges by an approximate
manner is described as follows. First, for the identity ques-
tions, consider the answer sample of node v for r questions,
xv(p) (1 ≤ xv(p) ≤ r), where one can easily check that for
xv ≥ r/2 then the weight P[X(p)|v = v1] becomes larger than
that for xv(p) < r/2 due to p > 1/2. We use an approximated
version with the weight from the answer samples by setting
P[X(p)|v = v1] = 1 if xv(p) ≥ r/2, and P[X(p)|v = v1] = 0
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Algorithm 1: MVNA(r)

Input: Diffusion snapshot GN , budget K, degree d,
truthfulness probabilities p > 1/2, q > 1/d.

Output: Estimator v̂

1 Cr = SI = SD = ∅;
2 Choose the candidate set Cr as in Definition 1 and ask

the id/dir questions r times to each node in Cr;
3 for each v ∈ Cr do
4 Step1: Count the number of ‘yes’es for the identity

question, stored at µ(v), and if µ(v)/r ≥ 1/2 then
add v to SI ;

5 Step2: For each of v’s neighbors, count the number
of designations for the dir question, choose the v’s
neighbor, say w, with the largest count (under the
rule of random tie breaking) as v’s ‘predecessor’,
and save a directed edge, called predecessor edge,
w → v ;

6 Make a graph Gprewith all the predecessor edges and for
each v ∈ Cr, set E(v)← the number of all the
descendants of v

7 SD ← arg maxv∈Cr |E(v)|;
8 if SI ∩ SD = ∅ then
9 If p = 1, set v̂ ← arg maxv∈SI

P(GN |v = v1)
otherwise, set v̂ ← arg maxv∈SI∪SD

P(GN |v = v1);

10 else
11 v̂ ← arg maxv∈SI∩SD

P(GN |v = v1);

12 Return v̂;

if xv(p) < r/2. For the direction questions, we see that
P[Y (q)|v = v1] = 1 for the maximum consistent edge node
and P[Y (q)|v = v1] = 0, otherwise. Hence, this is two step
{0, 1}-weighted algorithm instead of using MLE of answer
data.

Now, Theorem 2 quantifies the amount of querying budget
that is sufficient to obtain arbitrary detection probability by
appropriately choosing the number of questions to be asked.

Theorem 2: For any 0 < δ < 1, the detection probability
under d-regular tree G is at least 1− δ, as N →∞, if

K ≥ 12d/(d− 2)(2/δ)

f2(d, p, q) log(log(2/δ))
, (8)

where f2(d, p, q) = 3(p−1/2)2+ (d−1)p(1−p)
3d (q−1/d)2 under

MVNA(r?), where

r? =

⌊
1 +

2(1− p){1 + (1− q)2} logK

e log(d− 1)

⌋
.

We briefly discuss the implications of the above theorem.
First, we see that (1/δ)1/2 times more budget is required that
the necessary one, which is because we consider a simple,
approximate estimation algorithm. Second, the dir question
does not effect the sufficient budget K if p = 1 i.e., no
untruthfulness for the id question as in Theorem 1. However, if
p < 1, the information from the answers for the dir questions

reduces the sufficient amount of budget, because f2(d, p, q)
increases in the denominator of (8). Third, we see that if
q = 1/d the result matches that of batch query in [1].3 Finally,
when p goes to 1/2 and q goes to 1/d, the required budget
diverges due to the lack of information from the querying.

V. AD-QUERYING: NECESSARY AND SUFFICIENT
BUDGETS

In the AD-querying, unlike NA-querying, we adaptively and
sequentially select the next node based on the respondent’s
answer in a given budget, where the policy of choosing the
next node becomes critical. In the following subsection, we
will describe complexity to handle all the policies for selecting
the next respondent and then introduce the algorithm class of
our interest.

A. Challenges and Algorithm Class

To see the technical challenges of obtaining an optimal
algorithm in the entire algorithm set of AD-querying more
precisely, we first denote by a vector Zr,i := Zr,i(p, q) :=
(xi(p), Yi(q)) where xi(p) and Yi(q) are the answers for the
id/dir query which are already defined in Section IV-A for
the respondent i. Let P(vI) be a set of all policies, each
of which provides a rule of choosing a next respondent at
each querying step, when the initial respondent is vI . We
denote W (P ) = {w1, . . . , wK/r} as set of selected queried
nodes under the next node selection policy P ∈ P(vI)
with the i-th respondent wi for 1 ≤ i ≤ K/r and denote
Ar(P ) := [Zr,1, . . . , Zr,K/r] as the answer vector for all
queried nodes under the policy P . Then, we see that it is
pretty challenging to find an optimal policy P , because P ’s
action at each i-th respondent can be considered as a mapping
Fi that uses the entire history of the respondents and their
answers:

Fi : {Y1(q), Y2(q), . . . , Yi−1(q);w1, . . . , wi−1} → VN , (9)

for each i. As an approximation, it is natural consider the
mapping Fi : (Yi−1(q), wi−1)→ VN , i.e., the next respondent
is determined only by the information at the moment. it is
natural to consider an algorithm based on MLE over all the
policies, to maximize the detection probability, that solves the
following optimization:

OPT-AD: max
1≤r≤K

max
vI∈VN

max
P∈P(vI),
v∈W (P )

P
[
GN , Ar(P )|v = v1, vI

]
.

Challenges. As in the non-adaptive querying, it is important
to obtain an analytical form of the solution of the following
problem, to choose the right r: for a fixed 1 ≤ r ≤ K:

SUB-OPT-AD: max
vI∈VN

 max
v∈W (P ),
P∈P(vI)

P
[
GN , Ar(P )|v = v1, vI

] .

(10)

3This is because the answer does not give any information of direction.
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To solve SUB-OPT-AD, consider the probability
P[Ar(P )|v = v1, vI ] in (10) for a given vI . First, it is
pretty challenging to find an optimal policy P , because P ’s
action at each i-th respondent can be considered as a mapping
Fi that uses the entire history of the respondents and their
answers as discussed in [1]. Hence, as an approximation, it is
natural consider that the next respondent is determined only
by the information at the moment. Then, we have the inner
part of (10) by

P
[
GN , Ar(P )|v = v1, vI

]
= P

[
GN |v = v1, vI

]
× P

[
Ar(P )|v = v1, vI

]
= P

[
GN |v = v1

]
× P

[
Zr,K/r, . . . , Zr,1|v = v1, vI

]
= P

[
GN |v = v1

]
× P

[
Zr,1|v = v1, vI

]
×

· · · × P
[
Zr,K/r|v = v1, Zr,K/r−1

]
, (11)

where the first equality comes from the fact that the snap-
shot GN and the answer data from policy P , Ar(P ) are
independent. The last equality is due to the fact that Zr,i
are independent for all 1 ≤ i ≤ K/r. Even under this
approximation, this is also not easy to analyze because for
a fixed node v, the probability that it is a true parent requires
to compute the probability that the true source is located
in v’s subtree which does not contain wi and there are
O(K(r − 1)!) different answers for the direction questions.
Thus, we propose a heuristic algorithm that is designed to
produce an approximate solution of OPT-AD. The key of our
approximate algorithm is to choose the policy that allows us
to analytically compute the detection probability for a given
r so as to compute r easily, yet its performance is close
to that of OPT-AD. Hence, we restrict our consideration of
the following class of AD-querying mechanisms, denoted by
AD(r,K), in this paper:

Definition 2: (Class AD(r,K)) In this class of AD-
querying schemes with the repetition count r and a given
budget K, the querier first chooses the RC as a starting node,
and performs the repeated procedure mentioned earlier, but
in choosing the next respondent, we only consider one of the
neighbors of the previous node, where each chosen respondent
is asked the id/dir question r times. If the respondent can not
obtain any information about the direction (due to all “yes”
answers for id questions), it chooses one of the neighbors as
the next respondent uniformly at random.

From the defined algorithm class AD(r,K), we obtain
the necessary and sufficient budgets which achieve the target
detection probability as follows.

B. Necessary Budget

The necessary budget, which is an information theoretic
lower bound for the target detection probability 1− δ for the
algorithms in the class AD(r,K), is presented in the following
Theorem 3 by choosing r, appropriately.

Algorithm 2: MVAD(r)

Input: Diffusion snapshot GN , querying budget K,
degree d, truthful probabilities p > 1/2, q > 1/d

Output: Estimated rumor source v̂

1 SI = SD = ∅ and η(v) = 0 for all v ∈ VN ;
2 Set the initial node s by RC;
3 while K ≥ r do
4 if p = 1 then
5 If s = v1, return v̂ = s otherwise, go to step 2;

6 else
7 Step1: Set η(s)← η(s) + 1 which describes that

the node s is taken as a respondent and count
the number of “yes”es for the identity question,
stored at µ(s), and if µ(v)/r ≥ 1/2 then add v
to SI ;

8 Step2: Count the number of “designations” for the
direction question among s’s neighbors, and choose
the largest counted node as the predecessor with a
random tie breaking;

9 Set such chosen node by s and K ← K − r;

10 SD ← arg maxv∈VN
η(v);

11 if SI ∩ SD = ∅ then
12 v̂ ← arg maxv∈SI∪SD

P(GN |v = v1);

13 else
14 v̂ ← arg maxv∈SI∩SD

P(GN |v = v1);

15 Return v̂ = s;

Theorem 3: Under d-regular tree G, as N → ∞, for any
0 < δ < 1, there exists a constant C = C(d), such that if

K ≤ C ·H(T (r?))(log(7/δ))α/2

f3(d, p, q) log(log(7/δ))
, (12)

for α = 2 if p < 1 and α = 1 if p = 1 where

f3(d, p, q) = (1−H(p)) + p(log2 d−H(q)),

r? =

⌊
1 +

7dp{3H(p) + 2dH(q)} log logK

2(d− 1)

⌋
, (13)

then no algorithm in the class AD(r,K) can achieve the
detection probability 1− δ.

We describe the implications of Theorem 3 as follows. First,
when p goes to 1/2 and q goes to 1/d, i.e., no information
from the querying causes diverging the required budget (be-
cause f3(d, p, q) becomes zero). Second, the positive untruth-
fulness for the id question (p < 1) requires log1/2(1/δ) times
more budget than that under the perfect truthfulness (p = 1).
This is because more sampling is necessary to learn the source
from the answers of the id questions when p < 1, whereas no
such learning is required for finding the source when p = 1.
Third, large truthfulness (i.e., large p) gives more chances
to get the direction answers which decreases the amount of
budget. Finally, we see that the order is reduced from 1/δ to
log(1/δ), compared to that in Theorem 1.
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C. Sufficient Budget
In AD-querying, we also consider a simple estimation

algorithm to obtain a sufficient budget named by MVAD(r),
which is again based on majority voting for both the id and
dir questions. In this algorithm, we choose the RC as the
initial node and perform different querying procedures for the
following two cases: (i) p = 1 and (ii) p < 1. First, when
p = 1, since there is no untruthfulness of the answers of the
id questions, we check whether the current respondent s is
the source or not. If yes, then the algorithm is terminated
and it outputs the node s as a result (Line 5). If not, it asks
of s the dir question r times and chooses one predecessor
by majority voting with random tie breaking (Line 8). Then,
for the chosen respondent, we perform the same procedure
until we meet the source or the budget is exhausted. Second,
when p < 1, we first add one in η(s), which is the count
that the node s is taken as the respondent. Next, due to
untruthfulness, we count the number of “yes” answers for
the id question and apply majority voting to filter out the
nodes that are highly likely to be the source and save them
in SI (Line 7). For the negative answers for id questions, we
count the designations of neighbors and apply majority voting
to choose the next respondent. Then, we perform the same
procedure to the chosen node and repeat this until the budget
is exhausted. To filter out more probable source node from
the direction answers, we compare the number that is taken
as the respondent by designation from the neighbors in η(v),
and we choose the node which has the maximal count of it
and save them into SD (Line 10). Finally, we select a node
with maximal likelihood in SI ∩ SD or SI ∪ SD (Lines 11-
14). We easily see that the time complexity of this algorithm
is O(max{N,K}).
Rationale: We now provide the rationale of MVAD(r) from
the perspective of how we handle the analytical challenges
in (11) so as to solve MVAD(r) in an approximate manner.
First, for the identity questions, the intuition is similar to the
MVNA(r) because it uses simple MV-based rule for filtration.
However, for the direction questions with the next respondent
selection, we see that a node that has been many designated
has large value P[Ar(P )|v = v1, vI ] because

P[Zr,i(p, q)|v = v1, Zr,i−1]

= P[xi(p)|v = v1, Zr,i−1]× P[Yi(q)|v = v1, Zr,i−1],(14)

for the node i in (11). Hence, the probability P[Yi(q)|v =
v1, Zr,i−1] increases.

In selecting a parent node of the target respondent, instead of
the exact calculation of MLE, a simple majority voting is used
by selecting the node with the highest number of designations,
motivated by the fact that when q > 1/d, such designation
sample can provide a good clue of who is the true parent.

Now, Theorem 4 quantifies the sufficient amount of bud-
get to obtain arbitrary detection probability by appropriately
choosing the number of questions to be asked.

Theorem 4: For any 0 < δ < 1, the detection probability
under d-regular tree G is at least 1− δ, as N →∞, if

K ≥ 2(2d− 3)/d(log(7/δ))α

f4(d, p, q) log(log(7/δ))
, (15)

where f4(d, p, q) = 2d
d−1 (p−1/2)2+ d−1

d−2 (q−1/d)3 and α = 2
if p < 1 and α = 1 if p = 1 under MVAD(r?), where

r? =

⌊
1 +

7d2{2(1− p)3 + (1− q)2} log logK

3(d− 1)

⌋
.

We see that the gap between necessary and sufficient bud-
gets is log(1/δ) when p < 1, and log1/2(1/δ), when p = 1.4

Note that we have log(1/δ) factor reduction from what is
sufficient under MVNA(r?) in the non-adaptive case. Further,
as expected, we see that the sufficient budget arbitrarily grows
as p goes to 1/2 and q goes to 1/d, respectively.

D. Adaptivity Gap: Lower and Upper Bounds

Using our analytical results stated in Theorems 1-4, we now
establish the quantified adaptivity gap defined as follows:

Definition 3: (Adaptivity Gap) Let Kna(δ) and Kad(δ) be
the amount of budget needed to obtain (1 − δ) detection
probability for 0 < δ < 1 by the optimal algorithms in
the classes NA(r,K) and AD(r,K), respectively. Then, the
adaptivity gap, AG(δ) is defined as Kna(δ)/Kad(δ).

Theorem 5: For a given 0 < δ < 1, there exist a constant r
and two other constants U1 = U1(r, p, q) and U2 = U2(r, p, q),
where the constant r corresponds to the number of repeated
id/dir questions for each respondent in both classes NA(r,K)
and AD(r,K), such that

U1 · (1/δ)1/2

logα(1/δ)
≤ AG(δ) ≤ U2 · (1/δ)

logα/2(1/δ)
, (16)

where α = 2 if p < 1, and α = 1 if p = 1.

In Theorem 5, we see that for a given target detection
probability 1− δ, the amount of querying budget by adaptive
querying asymptotically decreases at least from (1/δ)1/2 to
log2(1/δ). This implies that there is a significant gain of
querying in the adaptive manner. Further, the difference of
upper and lower bounds of AG(δ) is expressed by square
root in our algorithm classes, when we use MVNA(r?) and
MVAD(r?) for sufficient budgets, respectively.

VI. PROOFS

In this section, we will provide the proof sketches for the
Theorems due to the page limit. The whole proof will be
provided in our supplementary material [29].

A. Proof of Theorem 1

For a given r, we introduce the notation Vl, which is

equivalent to Cr, where the hop distance l =
log(K(d−2)

rd +2)
log(d−1) .

Also for notational simplicity, we simply use P[v̂ = v1] to
refer to limN→∞ P[v̂(GN , r) = v1] for any estimator given
the snapshot GN and redundancy parameter r in the proof
section. Then, the detection probability is expressed as the
product of the two terms:

P[v̂ = v1] = P[v1 ∈ Vl]× P[v̂ = v1|v1 ∈ Vl], (17)

4The result for p = 1 matches to the theorem 2 in [1].
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where the first one is the probability that the source is in
the l-hop based candidate set Vl and the second term is the
probability that the estimated node is exactly the source in the
candidate set for any learning algorithm under the algorithm
class C(l, r). We first obtain the upper bound of probability of
first term in (17) in the following lemma.

Lemma 1: For d-regular trees,

P[v1 ∈ Vl] ≤ 1− c · e−l log l, (18)

where c = 4d/3(d− 2).

We will closely look at the case of each l, to derive the
probability that the rumor center vRC is exactly l-hop distant
from the rumor source v1. Let δ1 be the error for the P[v1 /∈ Vl]
then it is lower bounded by δ1 ≥ c · e−l log l.

To obtain the second term in (17), we use the information
theoretical techniques for the direct graph inference as done in
[28] with partial observation because, if the rumor spread from
the source we can obtain a direct tree where all direction of
edges are outgoing from the source. From the assumption of
independent answers of queries, we see that the snapshot from
one querying process with untruthful for direction question is
equivalent to the snapshot of diffusion flow from the source
under the IC-diffusion model with noisy observation. By using
these fact and the result of graph learning techniques from the
epidemic cascades in [28], we obtain the following lemma.

Lemma 2: For any graph estimator to have a probability of
error of δ2 > 0, it needs r queries to the candidate set Vl with
|Vl| = n that satisfies

r ≥
(1− δ2)H(T )(n− 1) log n

2

n((1−H(p)) + p(1− p)(log2 d−H(q)))
, (19)

where H(T ) is the entropy of infection time vector and
H(p) = p log p + (1 − p) log(1 − p) and H(q) = q log q +
(1− q) log 1−q

d−1 , respectively.

This result indicates that if there is no information from
query, i.e., p = 1/2 and q = 1/d, the required number of
queries diverges. Further, if the uncertainty of infection time
H(T ) for the nodes in Vl increases, the required queries also
increases. Then, from the disjoint of two error event and by
setting δ1 = δ2 = δ/2 with l = log

(
K(d−2)
rd + 2

)
/ log(d−1),

we have

P[v̂ 6= v1] ≥ c · e−
log(K

r )
log(d−1)

log
log(K

r )
log(d−1)

+ 1− K((1−H(p)) + p(1− p)(log2 d−H(q)))

H(T )(Kr − 1) log K
2r

≥ δ.

From the fact that λ = 1 in our setting and Lemma 2
in [28], we obtain H(T ) ≤ K/r and by differentiation
of above lower bound with respect to r, we obtain r? =⌊
1 + 4(1−p){7H(p)+H(q)} logK

3e log(d−1)

⌋
where the derivation is given

in the supplementary material. Since if we use the r?, it gives
the upper bound of detection probability hence, we put it to
the obtained upper-bound which is expressed as a function of
K, as follows:

P[v̂ 6= v1]

≥ 1

2
e−h1(T,p,q) logK log(logK) +

c

4
e−2h1(T,p,q) logK log(logK)

≥ Cde−h1(T,p,q) logK log(logK), (20)

where Cd = (c + 3)/4 and h1(T, p, q) = H(T )−1(1 −
H(p)) + p(1 − p)(log2 d − H(q)). If we set δ ≤
Cde

−h1(T,p,q) logK log(logK), we find the value K such that its
assignment to (20) produces the error probability δ, and we
finally obtain the desired lower-bound of K as in Theorem 1.

B. Proof of Theorem 2

We first provide the lower bound on detection probability
of MVNA(r) for a given K and r in the following lemma.

Lemma 3: For d-regular trees (d ≥ 3), a given budget K,
our estimator v̂ from MVNA(r) has the following lower-bound
of the detection probability:

P[v̂ = v1] ≥ 1−c
(
r + p+ q

r + 2

)3

·exp

(
−hd(K, r)wd(p, q)

2

)
,

(21)

where c = 7(d+1)/d and wd(p, q) = 1
2 (4(p−1/2)2+(d/(d−

1))3(q − 1/d)3). The term hd(K, r) is given by

hd(K, r) :=
log
(
K
r

)
log(d− 1)

log

(
log
(
K
r

)
log(d− 1)

)
.

Proof: Under the MVNA(r), the detection probability is
expressed as the product of the three terms:

P[v̂ = v1] = P[v1 ∈ Vl]× P[v̂ = v1|v1 ∈ Vl]
= P[v1 ∈ Vl]× P[v1 ∈ V̂ |v1 ∈ Vl]
× P[v1 = vLRC |v1 ∈ V̂ ], (22)

where V̂ := SI ∩ SD if it is not empty or V̂ := SI ∪ SD,
otherwise. This is the filtered candidate set in MVNA(r) and
vLRC is the node in V̂ that has the highest rumor centrality
i.e., likelihood, where LRC means the local rumor center. We
will drive the lower bounds of the first, second, and the third
terms of RHS of (22). The first term of RHS of (22) is bounded
by

P[v1 ∈ Vl] ≥ 1− c · e−(l/2) log l, (23)

where the constant c = 7(d+ 1)/d from Corollary 2 of [27].
Let SN be the set of revealed nodes itself as the rumor source
and let SI be the set of nodes which minimizing the errors.
If the true source is in Vl, then the probability that it is most
indicated node for a given budget K with the repetition count
r and truth probability p > 1/2 and q > 1/d is given by

P[v1 = vLRC |v1 ∈ V̂ ]

= P[v1 = arg max
v∈SI∩SD

R(v,GN )|K, p, q]. (24)

To obtain this, we consider that if p > 1/2, the probability
v1 ∈ SI by the majority voting, because the selected node can
be designation again in the algorithm. We let total number of
queries by r ≥ 1, we let W =

∑r
i=1Xi(v1) for the source

node v1, then the probability that true source is in the filtration
set SI is given by P[W ≥ r/2] =

∑br/2c
j=0

(
r
j

)
(1 − p)jpr−j .



10

Then, from this relation, we have the following lemmas whose
proofs are will be provided in [1]:

Lemma 4: ( [1]) When p > 1/2,

P[v1 ∈ SI |v1 ∈ Vl] ≥ p+ (1− p)(1− e−p
2 log r).

This result implies the lower bound of probability that the
source is in SI for a given r. Next, we will obtain the
probability that the source is in SD after filtration of the
direction answers. To do this, we first consider that the total
number of direction queries Nd is a random variable which is
given by:

P (Nd = k) =

{(
r
k

)
pr−k(1− p)k if v = v1(

r
k

)
(1− p)r−kpk if v 6= v1,

where k is less than parameter r. Using this fact, we obtain
the following result.

Lemma 5: When p > 1/2 and q > 1/d,

P[v1 ∈ SD|v1 ∈ Vl] ≥ 1− e−
rp(d−1)(q−1/d)2

3d .

This result shows the lower bound of probability that the
source is in SI for a given r. By considering the two results
in the above, we have the following lemma.

Lemma 6: For given repetition count r, we have

P (v1 ∈ SI ∩ SD|v1 ∈ Vl) ≥ 1− 2e−f(p,q)2r log r (25)

where f(p, q) = 3(p− 1/2)2 + d−1
3d p(1− p)(q − 1/d)2.

Then, we obtain the following lemma, which is the lower
bound of detection probability among the final candidate set.

Lemma 7: When d ≥ 3, p > 1/2 and q > 1/d,

P[v1 = vLRC |v1 ∈ SI ∩ SD] ≥ 1− e−f(p,q)r log r.

Merging these lower-bound with the lower-bound in (23)

where we plug in l =
log(K(d−2)

rd +2)
log(d−1) , we finally get the

lower bound of detection probability of MVNA(r) for a given
repetition count r and this completes the proof of Lemma 3.

To finish the proof of theorem, note that the second term
of RHS of (21) is the probability that the source is in the
candidate set for given K and r. Hence, one can see that for a
fixed K, large r leads to the decreasing detection probability
due to the smaller candidate set. However, increasing r posi-
tively affects the first term of RHS of (21), so that there is a
trade off in selecting a proper r. By derivation of the result
with respect to r, we first obtain r? which maximizes the
detection probability by r? =

⌊
1 + 2(1−p){1+(1−q)2} logK

e log(d−1)

⌋
in

MVNA(r?) (The detailed derivation will be provided in [29])
and put this into the error probability P[v̂ 6= v1] such as

P[v̂ 6= v1] ≤ e−f(p,q)r log r + 2e−f(p,q)2r log r + c · e− l
2 log l,

(26)

where the constant c is the same as that in (23). Now, we

first put l =
log(K(d−2)

rd +2)
log(d−1) into (26) and obtained the upper-

bound of (26), expressed as a function of r, for a given p
and q and the constant c. Then, we take r∗ and put it to the
obtained upper-bound which is expressed as a function of K,
as follows:

P[v̂ 6= v1] ≤ 3 e−f(p,q) logK log(logK) + ce−
log K

2 log(logK)

≤ c1e−f(p,q) logK log(logK),
(27)

where c1 = c+ 3. If we set δ ≥ c1e−f(p,q) logK log(logK), we
find the value of K such that its assignment to (27) produces
the error probability δ, and we get the desired lower-bound of
K as in the theorem statement. This completes the proof of
Theorem 2.

C. Proof of Theorem 3

We will show the lower bound for given K and r of the
case p < 1. 5 For a given r, we let VL be the set of all infected
nodes from the rumor center within a distance L := K/r then
we see that the querying dynamic still becomes a directed
tree construction rooted by the source v1. Then, the detection
probability is expressed as the product of the two terms:

P[v̂ = v1] = P[v1 ∈ VL]× P[v̂ = v1|v1 ∈ VL], (28)

where the first one is the probability that the distance between
source and rumor center is less than K/r and the second
term is the probability that the estimated node is exactly the
source in the candidate set for any learning algorithm under
the algorithm class AD(r,K). First, from Lemma 1, we have
that the probability of first term in (28) is upper bounded by
1 − ce−(K/r) log(K/r) where c = 4d/3(d − 2) for a given
budget K and repetition count r. We see that the querying
dynamic still becomes a directed tree construction rooted
by the source v1. However, different to the NA-querying,
the querying process gives direction data of a subgraph of
the original direct tree because the querier chooses a node,
interactively. For a given r, let Zr,i be the answer data of
querying for a selected queried node i where 1 ≤ i ≤ K/r.
Then, from the assumption of the algorithm class AD(r,K),
the joint entropy for the random answers with the infection
time random vector T , H(T,Zr,1, . . . , Zr,K/r) is given by

H(T,Zr,1, . . . , Zr,K/r) =

K/r∑
i=1

H(T,Zr,i|Zr,i−1, . . . , Zr,1)

=

K/r∑
i=1

H(T,Zr,i|Zr,i−1)
(a)
=

K/r∑
i=1

H(T,Zr,i),

(29)

where (a) is from the fact that all data Zr,i are independent.
Let G∗ be the true directed graph and let Ĝ be be an estimated
directed tree from the sequential answers of adaptive querying

5The result for p = 1 is similar to this except the termination of querying
process when it meets the source.
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(Zr,1, . . . , Zr,K/r). Then, we see that this defines a Markov
chain

G∗ → (T,Zr,1, . . . , Zr,K/r)→ Ĝ,

from the defined algorithm class AD(r,K). By property of
the mutual information, we have

I(G∗;T,Zr,1, . . . , Zr,K/r)

≤ H(T,Zr,1, . . . , Zr,K/r) =

K/r∑
i=1

H(T,Zr,i)

(a)
= (K/r)H(T,Zr,1)

(b)

≤ (KH(T )/r)[r(1−H(p)) + rp(log2 d−H(q))]

= KH(T )[(1−H(p)) + p(log2 d−H(q))]

:= Kh(p, q), (30)

where (a) follows from the fact that the answers Zr,i are
mutually exclusive and (b) is from the fact that H(T,Zr,1) =
(1 − H(p) + rp(log2 d − H(q)))/H(T ) since the number
of direction answers follows binomial distribution. Let GK/r
be the set of possible directed tree in Vs then we have
|GK/r| ≤ (K/r) log(K/2r). Using the Fano’s inequality on
the Markov chain G∗ → (Zr,1, . . . , Zr,K/r)→ Ĝ, we obtain

P[G 6= G∗] = P[v̂ = v1|v1 ∈ Vs]

≥ 1−
I(G∗;Zr,1, . . . , Zr,K/r) + h(p, q)

H(T ) log |GK/r|

≥ 1− Kh(p, q) + h(p, q)
KH(T )

r log(K2r − 1)
. (31)

By solving r, we have if r ≤ (1 − δ)H(T )(logK −
1)/h(p, q) log2 d then, P[v̂ = v1|v1 ∈ Vs] ≥ δ. From the
disjoint of two error event and by setting δ1 = δ2 = δ/2 for
each error, we have

P[v̂ 6= v1] ≥ c · e−(K/r) log(K/r)

+ 1− Kh(p, q) + h(p, q)
KH(T )

r log(K2r − 1)
≥ δ. (32)

From the fact that λ = 1 in our setting and Lemma
2 in [28], we obtain H(T ) ≤ K/r and by differentia-
tion of above lower bound with respect to r, we obtain
r? =

⌊
1 + 7dp{3H(p)+2dH(q)} log logK

2(d−1)

⌋
where the derivation

is given in the supplementary material. Since if we use the
r?, it gives the upper bound of detection probability hence,
we put it to the obtained upper-bound which is expressed as
a function of K, as follows:

P[v̂ 6= v1] ≥ 1

3
e−h2(T,p,q) log(logK) +

c

4
e−7h2(T,p,q) log(logK)

≥ Cde−h2(T,p,q) log(logK),

(33)

where Cd = 2(c + 3)/7 and h2(T, p, q) = H(T )−1(1 −
H(p)) + (1 − p)(log2 d − H(q)). If we set δ ≤
Cde

−h2(T,p,q) log(logK), we find the value of K such that its
assignment to (33) produces the error probability δ, and we
get the desired lower-bound of K as in the theorem statement.

Then, we finally obtain the result and this completes the proof
of Theorem 3.

D. Proof of Theorem 4

We will show the lower bound on the detection probability
for given K and r of the case p < 1 6 in Lemma 8.

Lemma 8: For d-regular trees (d ≥ 3), a given budget K,
our estimator v̂ from MVAD(r) has the detection probability
lower-bounded by:

P[v̂ = v1] ≥1− c(gd(r, q))3

· exp

[
−
(
p− 1

2

)2(
K

r

)
log

(
K

r

)]
, (34)

where gd(r, q) := 1− e−
r(d−1)(q−1/d)2

3d(1−q) and c = (5d+ 1)/d.
The detailed proof of Lemma 8 will be given in [29]. The

term gd(r, q) in (34) is the probability that the respondent
reveals the true parent for given r and q. Hence, one can
see that for a fixed K, large r leads to the increasing this
probability due to the improvement for the quality of the
direction answer. However, increasing r negatively affects
the term K/(r + 1) in (34), so that there is a trade off in
selecting a proper r. The detailed proof will be provided
in the supplementary material [29]. By considering the error
probabilities, we obtain

P[v̂ 6= v1] ≤ c · e−(K/r) log(K/r) + e−3g(p,q)2(K/r) log r

+ e−g(p,q)r log r

(a)

≤ (c+ 1)e−2g(p,q)2(K/r)(logK/r),

(35)

where c1 = c+1 and g(p, q) = 2d
d−1 (p−1/2)2+ d−1

d−2 (q−1/d)3.
The inequality (a) is from the fact that g(p, q) < 1. By
derivation of the result with respect to r, we first obtain
r? which maximizes the detection probability by r? =⌊
1 + 7d2{2(1−p)3+(1−q)2} log logK

3(d−1)

⌋
in MVAD(r?) and put this

into the error probability P[v̂ 6= v1], we have

P[v̂ 6= v1] ≤ (c+ 1)e−2g(p,q)2(K/(r∗)) log(K/(r∗))

(a)

≤ (c+ 1)e−g(p,q)K
2 log(K/(r∗))

(b)

≤ (c+ 1)e−g(p,q)K log(logK), (36)

where the inequality (a) is from the fact that K log(K/(r?)) >
logK and (b) comes from the obtained result of r?. Let δ ≥
(c + 1)e−g(p,q)K log(logK), then, we obtain the value of K
which produces the error probability δ in later and we obtain
the desired lower-bound of K as in the theorem statement.
This completes the proof of Theorem 4.

VII. SIMULATION RESULTS

In this section, we will provide simulation results of our two
proposed algorithms over three types of graph topologies: (i)
regular trees, (ii) random graphs, and (iii) real world graphs,
respectively. We propagate an information from a randomly

6The result for p = 1 is given in [1] and we omit it here.
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Fig. 2. Results of regular trees (NA: Non-adaptive and AD: Adaptive): (a) Best r? with varying budget K (N:Numerical, S:Simulation), (b) Detection
probabilities with varying p under fixed q, (c) Detection probabilities with varying q under fixed p, and (d) Detection probabilities versus budget K.
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(a) Irregular Tree.
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(c) Scale Free.

Fig. 3. Result of random graphs: Detection probabilities of (a) Irregular tree, (b) ER random graph, and (c) SF graph with varying budget K.

(a) Facebook graph.
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Fig. 4. Result of real world graphs: (a) Facebook graph, (b) Detection probabilities of Facebook graph with varying budget K, and (c) Wiki-vote graph with
varying budget K.

chosen source up to 400 infected nodes, and plot the detection
probability from 200 iterations.
(i) Regular trees. For the regular tree, we first obtain the best
r? in each theorems of both querying schemes as in Fig.2 (a).
In this result, we plot the obtained r? without a flooring and
run the simulation 100 iterations to obtain the mean under
the d = 3 for both querying schemes7. We see that if we
use the parameters p = q = 2/3 then the best r? is in
[4, 6] but if the parameters are decreased by p = q = 4/9
then the algorithms use higher value of r?. Especially, we
check that r? = 10 for the adaptive querying scheme due to
increasing of the untruthfulness for direction answers. Next,
we obtain the detection probability for both querying schemes
with d = 3 that is the ratio of the number of correct detections
and iterations as varying two important parameters p and q,

7 In order to verify the query effect, we consider the simplest setting in the
regular tree.

respectively. We first obtain the detection probabilities when
one parameter is fixed (q for the NA-querying and p for
the AD-querying) under the given budget K = 200 for
the NA-querying and K = 100 for the AD-querying as in
Fig.2 (b) and Fig.2 (c), respectively. We check that if one
parameter goes to one, then the detection probability also goes
to one regardless for the other parameter. This is because the
truthfulness for the identity question is enough to find the
source in the NA-querying if it is sufficiently large and the
truthful direction query can enlarge the detection for the AD-
querying, respectively. Finally, we see that NA-querying needs
more number of budget to achieve the same target detection
probability under the same parameter (p, q) in Fig.2 (d).

(ii) Random graphs. As random graphs, we consider irregular
tree (random tree), Erdös-Rényi (ER) and Scale-Free (SF)
graphs. For the irregular tree, we consider that the degree is
upper bounded by dmax = 10. To generate the irregular tree,
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we use a Galton-Watson branch process with dmax. After the
diffusion of information over the tree, we compute the RC for
each infected node and select the maximal one to perform both
query processes. In the ER graph, we choose its parameter so
that the average degree by 4 for 2000 nodes. In the SF graph,
we choose the parameter so that the average ratio of edges
to nodes by 1.5 for 2000 nodes. It is known that obtaining
MLE is hard for the graphs with cycles, which is ]P-complete.
Due to this reason, we first construct a diffusion tree from
the Breadth-First Search (BFS) as used in [4]: Let σv be the
infection sequence of the BFS ordering of the nodes in the
given graph, then we estimate the source vbfs that solves the
following:

vbfs = arg max
v∈GN

P(σv|v)R(v, Tb(v)), (37)

where Tb(v) is a BFS tree rooted at v and the rumor spreads
along it and P(σv|v) is the probability that generates the
infection sequence σv . Then, by using those selected nodes, we
perform our algorithms by changing the two parameters (p, q).
For the NA-querying, due to the loop in the general graph, the
wrong answer for the direction question can be a consistent
edge. To avoid this issue, we use BFS tree to count the number
of these edges for all the nodes in the candidate set. Fig. 3
(a), Fig. 3 (b) and Fig. 3 (c) show the detection probabilities
with varying K for NA-querying and AD-querying, where
we observe similar trends to those in regular trees. We check
that how much direction information can enlarge the detection
performance compared to the case in [1] where does not use
the direction information in NA-querying scheme. We also
check that the adaptivity gives the chance to find the source
more efficiently in the sense of using the queries. Further, we
see that the detection performance for ER random graph is
higher than that of SF graph. This indicates that the symmetric
network topology (nodes have similar connectivity) with small
diameter is good for finding the source by our hop-distance
based model because the probability that the true source is in
the candidate set will be large.

(iii) Real world graphs. Finally, we consider two real world
graphs such as Facebook graph and WiKi-vote network in
the simulation result. We use the Facebook ego network as
depicted in Fig. 4 (a) in [30], which is an undirected graph
consisting of 4039 nodes and 88234 edges, where each edge
corresponds to a social relationship (called FriendList) and the
diameter is 8 hops. For the WiKi-vote network, we use the
data in [31], which generates 7115 nodes and 103689 edges,
and the diameter is 7 hops. We perform the same algorithm
used for random graphs based on the BFS heuristic and show
the results in Fig. 4 (b) and Fig. 4 (c). We see that the AD-
querying is quite powerful in the inferring the source for both
graphs. This is because the network as in Fig. 4 (a) consists of
small number of clusters containing many users. This leads to
the result that the (shortest) distance of nodes in the graph is
not large and interactive using the direction querying answer
gives high chance to track the source in the network even
though there are huge number of nodes. Further, we see that
the AD-querying is still powerful for the wiki-vote network as
in Fig. 4 (c).

VIII. CONCLUSION

In this paper, we considered querying for the information
source inference problem in both non-adaptive and adaptive
setting. We have provided some theoretical performance guar-
antees when the underlying network has regular tree structure.
We obtained the answer for the fundamental question of how
much benefit adaptiveness in querying provides in finding the
source with analytical characterization in presence of indi-
viduals’ untruthfulness by two proposed querying algorithms
and information theoretical techniques to achieve the target
probability when the truth probabilities are homogeneous in
the respondents. We also performed various simulation based
on these algorithms.

REFERENCES

[1] J. Choi, S. Moon, J. Woo, K. Son, J. Shin, and Y. Yi, “Rumor Source
Detection under Querying with Untruthful Answers,” in Proc. IEEE
INFOCOM, 2017.

[2] J. Choi and Y. Yi, “Necessary and Sufficient Budgets in Information
Source Finding with Querying: Adaptivity Gap,” in Proc. IEEE ISIT,
2018.

[3] K. Zhu and L. Ying, “Information Source Detection in Network:
Possiblity and Impossibility Results,” in Proc. IEEE INFOCOM, 2016.

[4] D. Shah and T. Zaman, “Detecting Sources of Computer Viruses in
Networks: Theory and Experiment,” in Proc. ACM SIGMETRICS, 2010.

[5] ——, “Rumor Centrality: A Universal Source Estimator,” in Proc. ACM
SIGMETRICS, 2012.

[6] K. Zhu and L. Ying, “Information Source Detection in the SIR Model:
A Sample Path Based Approach,” in Proc. IEEE Information Theory
and Applications Workshop (ITA), 2013.

[7] W. Luo and W.-P. Tay, “Finding an infection source under the SIS
model,” in Proc. IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2013.

[8] S. Bubeck, L. Devroye, and G. Lugosi, “Finding Adam in random
growing trees,” in arXiv:1411.3317, 2014.

[9] B. Chang, F. Zhu, E. Chen, and Q. Liu, “Information Source Detection
via Maximum A Posteriori Estimation,” in Proc. IEEE ICDM, 2015.

[10] M. Farajtabar, M. Gomez-Rodriguez, N. Du, M. Zamani, H. Zha, and
L. Song, “Back to the Past: Source Identification in Diffusion Networks
from Partially Observed Cascades,” in Proc. AISTATS, 2015.

[11] Z. Wang, W. Dong, W. Zhang, and C. W. Tan, “Rumor source detection
with multiple observations: fundamental limits and algorithms,” in Proc.
ACM SIGMETRICS, 2014.

[12] W. Dong, W. Zhang, and C. W. Tan, “Rooting Out the Rumor Culprit
from Suspects,” in Proc. IEEE ISIT, 2013.

[13] K. Fujii and S. Sakaue, “Beyond Adaptive Submodularity: Approxima-
tion Guarantees of Greedy Policy with Adaptive Submodularity Ratio,”
in ICML, 2019.

[14] Y. Singer, “Influence maximization through adaptive seeding,” ACM
SIGecom Exchanges, vol. 15, no. 1, pp. 32–59, 2016.

[15] A. Khetan and S. Oh, “Achieving Budget-optimality with Adaptive
Schemes in Crowdsourcing,” in NIPS, 2016.

[16] S. Yun and A. Proutiere, “Community Detection via Random and
Adaptive Sampling,” JMLR, vol. 35, pp. 1–38, 2014.

[17] D. Shah and T. Zaman, “Rumors in a Network: Who’s the Culprit?”
IEEE Transactions on Information Theory, vol. 57, no. 8, pp. 5163–
5181, August 2011.

[18] K. Zhu and L. Ying, “A robust information source estimator with sparse
observations,” in Proc. IEEE INFOCOM, 2014.

[19] J. Choi, S. Moon, J. Shin, and Y. Yi, “Estimating the Rumor Source
with Anti-Rumor in Social Networks,” in Proc. IEEE ICNP Workshop
on Machine Learning, 2016.

[20] W. Luo, W. P. Tay, and M. Leng, “How to Identify an Infection Source
With Limited Observations,” IEEE Journal of Selected Topics in Signal
Processing, vol. 8, no. 4, pp. 586–597, August 2014.

[21] A. Kumar, V. S. Borkar, and N. Karamchandani, “Temporally Agnostic
Rumor-Source Detection,” IEEE Transactions on Signal and Information
Processing over Networks, vol. 3, no. 2, pp. 316–329, February 2017.

[22] J. Jiang, S. Wen, S. Yu, B. Liu, Y. Xiang, and W. Zhou, “Identifying
Propagation Source in Time-Varying Networks,” Malicious Attack Prop-
agation and Source Identification, Springer, pp. 2850–2865, November
2018.



14

[23] B. A. Prakash, J. Vreeken, and C. Faloutsos, “Efficiently Spotting the
Starting Points of an Epidemic in a Large Graph,” in Proc. ICDM, 2017.

[24] Z. C. K. Zhu and L. Ying, “Catch’Em All: Locating Multiple Diffusion
Sources in Networks with Partial Observations,” in Proc. Association
for the Advancement of Artificial Intelligence (AAAI), 2017.

[25] F. Ji and W. P. Tay, “An Algorithmic Framework for Estimating Rumor
Sources With Different Start Times,” IEEE Transaction on Signal
Processing, vol. 65, pp. 2517–2530, 2017.

[26] S. Y. Y. X. J. Jaing, S. Wen and W. Zhou, “An Approach on the Multi-
Source Identification of Information Diffusion,” IEEE Transactions on
Information Forensics and Security, vol. 10, pp. 2616–2626, 2015.

[27] J. Khim and P.-L. Loh, “Confidence Sets for Source of a Diffusion in
Regular Trees,” in arXiv:1510.05461, 2015.

[28] P. Netrapalli and S. Sangavi, “Learning the Graph of Epidemic Cas-
cades,” in Proc. ACM SIGMETRICS, 2012.

[29] [Tech] J. Choi, S. Moon, J. Woo, K. Son, J. Shin and Y. Yi,
“Information Source Finding in Networks: Querying with Budgets”.
[Online]. Available: https://www.dropbox.com/s/0xlc476io299lhq/JY
Information Source Finding Supply.pdf?dl=0

[30] J. McAuley and J. Leskovec, “Learning to discover social circles in ego
networks,” in Proc. NIPS, 2012.

[31] D. H. J. Leskovec and J. Kleinberg, “Predicting Positive and Negative
Links in Online Social Networks.” in Proc. WWW, 2010.

Jaeyoung Choi received his B.S. and the M.S.
degrees in the Department of Mathematics from
Korea University, South Korea in 2008 and 2013,
respectively, and his Ph.D. in the Department of
Electrical Engineering at KAIST in 2018. From 2018
to 2020, he was an assistant professor with the
Department of Automotive Engineering at Honam
University, South Korea. He is currently an assistant
professor with the Department of AI Software at Ga-
chon University, South Korea. His research interest
lies at the intersection of applied mathematics and

data mining in social network, wireless network, and statistical inference.

Sangwoo Moon received the B.S. and M.S. degrees
in the Department of Electrical Engineering from
Korea Advanced Institute of Science and Tech-
nology (KAIST), Daejeon, South Korea, in 2011
and 2013, respectively. He is currently a Ph.D.
student in the Department of Electrical Engineering
at KAIST. His current research interests include re-
source management in wireless networks and multi-
agent reinforcement learning.

Jiin Woo received the B.S. and M.S. degrees in
the Department of Electrical Engineering from Ko-
rea Advanced Institute of Science and Technology
(KAIST), Daejeon, South Korea, in 2016 and 2018,
respectively. She is currently with the Naver coop-
eration, South Korea. Her research interest includes
graph connectivity inference and machine learning.

Kyounghwan Son received the B.S. and M.S. de-
grees in electrical engineering from the Korea Ad-
vanced Institute of Science and Technology, Dae-
jeon, South Korea, in 2017, and 2019, respectively,
He is currently pursuing a Ph.D degree at KAIST.
His current research interests include multi-agent re-
inforcement learning, network systems and machine
learning.

Jinwoo Shin received the B.S. degree in mathemat-
ics and computer science from Seoul National Uni-
versity in 2001 and the Ph.D. degree in mathematics
from the Massachusetts Institute of Technology in
2010 with the George M. Sprowls Award (for best
MIT Computer Science Ph.D. thesis). He is currently
an Associate Professor (jointly affiliated) with the
Graduate School of AI and also with the School
of Electrical Engineering, Korea Advanced Institute
of Science and Technology (KAIST). He is also an
Advisory Professor on machine learning with Sam-

sung Electronics. He was a Post-Doctoral Researcher with the Algorithms and
Randomness Center, Georgia Institute of Technology, from 2010 to 2012, and
the Business Analytics with the Mathematical Sciences Department, IBM T. J.
Watson Research, from 2012 to 2013. His early works are mostly on applied
probability and theoretical computer science. After he joined KAIST in Fall
2013, he started to work on machine learning, and topics including graphical
models, distributed optimization, uncertainty estimation, transfer learning,
large-scale spectral functions, adversarial examples, generative adversarial
networks, meta learning, model compression, and reinforcement learning.
He received the Rising Star Award from the Association for Computing
Machinery (ACM), Special Interest Group for the Computer Systems Per-
formance Evaluation Community (SIGMETRICS), in 2015. He also received
the Kenneth C. Sevcik Award at ACM SIGMETRICS/Performance 2009, the
Best Publication Award from INFORMS Applied Probability Society 2013,
the Best Paper Award at ACM MOBIHOC 2013, the Bloomberg Scientific
Research Award 2015, and the ACM SIGMETRICS Test of Time Award 2019.

Yung Yi received the B.S. and M.S. degrees from
the School of Computer Science and Engineering,
Seoul National University, South Korea, in 1997 and
1999, respectively, and the Ph.D. degree from the
Department of Electrical and Computer Engineering,
The University of Texas at Austin, in 2006. From
2006 to 2008, he was a Post-Doctoral Research
Associate with the Department of Electrical Engi-
neering, Princeton University. He is currently an
Associate Professor with the Department of Elec-
trical Engineering, KAIST, South Korea. His current

research interests include the design and analysis of computer networking and
wireless communication systems, especially congestion control, scheduling,
and interference management, with applications in wireless ad hoc networks,
broadband access networks, economic aspects of communication networks,
and green networking systems. He received the best paper awards at the
IEEE SECON 2013 and the ACM MOBIHOC 2013, and the IEEE William
R. Bennett Award in 2016.

https://www.dropbox.com/s/0xlc476io299lhq/JY__Information_Source_Finding_Supply.pdf?dl=0
https://www.dropbox.com/s/0xlc476io299lhq/JY__Information_Source_Finding_Supply.pdf?dl=0

	Introduction
	Related Work
	Model and Goal
	Diffusion Model and MLE
	Querying Model
	Goal

	NA-Querying: Necessary and Sufficient Budgets
	Challenges and Algorithm Class
	Necessary Budget
	Sufficient Budget

	AD-Querying: Necessary and Sufficient Budgets
	Challenges and Algorithm Class
	Necessary Budget
	Sufficient Budget
	Adaptivity Gap: Lower and Upper Bounds

	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Simulation Results
	Conclusion
	References
	Biographies
	Jaeyoung Choi
	Sangwoo Moon
	Jiin Woo
	Kyounghwan Son
	Jinwoo Shin
	Yung Yi


