
Wireless Scheduling Algorithms with O(1)
Overhead for M-hop Interference Model

Yung Yi and Mung Chiang

Abstract—We develop a family of distributed wireless schedul-
ing algorithms that requires only O(1) complexity for M-hop
interference model, for any finite M. The recent technology
advances and heterogeneity in wireless networks lead to various
interference patterns. Thus, a scheduling algorithm geared into
a specific interference model (typically one-hop or two-hop in
literature) may be limited in its applicability. In this paper, we
tackle this problem, and develop a family of scheduling algo-
rithms (which guarantees throughput and delay performance) for
M-hop interference models. To achieve such a goal, we use the
concept of vertex augmentation, and for a given M, the family of
parameterized algorithms are proposed and the tradeoffs among
throughput, complexity, and delay are studied.

I. Introduction

A. Motivation and Related Work

There have been extensively growing interests in dis-
tributed MAC scheduling algorithm with provable throughput-
guarantees since the seminal work by Tassiulas and
Ephremides [1]. Since then, various approaches to distributed
algorithms, possibly with low complexity, have been taken
based on the following ideas: (i) maximal/greedy algorithms
(e.g., [2], [3]), (ii) pick-and-compare algorithms (e.g., [4], [5])
inspired by [6], and (iii) random-access approach (e.g., [7]).
In recent studies in [8]–[10], the authors have developed the
parameterized scheduling algorithms, which tradeoffs between
throughput and complexity. The key idea is to parameterize the
algorithms with some integer k, where the achieved throughput
and the complexity become a function of k. In [8], the
authors used the concept of link-augmentation under one-hop
interference model. The authors in [9], [10] used the notion
of graph-partitioning.

Most of afore-mentioned research focuses only on one-
hop or two-hop interference model. The research under more
general interference models has been made in [11], where the
authors considered M-hop interference models and have exper-
imentally shown that the optimal value of M can be affected
by the physical layer characteristics, allowing larger than 2.
Finding a distributed algorithms with constant overhead that
works for M-hop interference model is an under-explored area,
which we study in this paper.

B. Model

We assume that time is slotted, denoted by t. A time-slot
duration is suitably chosen to accommodate the transmission
of one fixed-size packet. We model the wireless multi-hop

The authors are with the Department of Electrical Engineering, Princeton
University. E-mails: {yyi,chiangm}@princeton.edu.

network by a graph G(L,N), where L and N denote a set
of (bi-directional) links, and a set of nodes, respectively. We
abuse the notations L and N to refer to the number of links and
nodes, respectively. We denote a bi-directional link from node
i to node j by i j. We let d(l, l′) be the hop distance between
two links l, l′ ∈ L. The wireless system has a single channel
(e.g., frequency or code) and each node is time-synchronized
and has a half-duplex radio.

We consider M-hop interference models: for some positive
integer M, if d(l, l′) ≤ M then the transmissions over both
links l, l′ are interfering with each other. The increasing values
of M represent more stringent interference constraints in a
wireless system. This interference model generalizes popular
one-hop (appropriate for Bluetooth and FH-CDMA network)
or two-hop (appropriate for IEEE 802.11) interference models
in literature.

A link schedule, or simply a schedule, S = (S l ∈ {0, 1} : l =
1, . . . , L), is a vector representing the set of scheduled links,
where S l = 1 if the link l is scheduled, and 0 otherwise. A link
schedule S is said to be valid under M-hop interference model,
if all transmissions scheduled by S are successful without any
collision. We denote by S the set of the entire valid schedules.

We denote by Dl[t] the number of arrivals over the link l.
The arrival process is assumed to be i.i.d. Bernoulli process,
and also independent across links, with mean E[Dl[t]] = λl.
Denote by λ = (λl : l ∈ L) the mean arrival vector. Let Ql[t]
be the queue length of link l at time t. Then, the queue length
dynamics of link l is represented by:

Ql[t + 1] = Ql[t] + Dl[t + 1] − 1{Ql[t]>0}S l[t], (1)

where 1E is the indicator function for the event E.
Definition 1.1 (Stability):

lim sup
t→∞

1
t

t∑
s=0

E
[∑

l∈L
Ql[s]

]
< ∞.

Definition 1.2 (Throughput-region): The throughput-region
Λ ∈ RL

+ of the system is defined as the set of λ for which there
exists a scheduling stabilizing the system.

Definition 1.3 (α-Throughput-optimality): A scheduling is
said to be α-throughput-optimal1, 0 < α ≤ 1, if it can stabilize
the system for any λ ∈ αΛ.

Finally, we introduce the famous conflict graph to under-
stand interference relations among links: For a given graph
G(L,N) under M-hop interference model, its conflict graph
Gc(E,V) is such that L = V and two vertices i, j ∈ V are

1For simplicity, we use just ‘throughput-optimal’ when α = 1.

connected if d(i, j) ≤ M in G. To avoid confusion, we call
the elements of L and N of the original graph G links and
nodes, and those of E and V of its conflict graph Gc edges
and vertices.

C. Contributions

The main contributions of this paper are the followings:
1) We develop a family of constant-overhead scheduling al-

gorithms that are parameterized by the given interference
number M and other performance parameter k. The pa-
rameters k as well as M characterize the tradeoffs among
throughput, delay, and complexity, e.g., as k increases, the
achieved throughput also increases at the cost of larger
complexity and delay.

2) Our work is an extension of [8] in that we also use
the idea of augmentation in graph theory. However, we
consider augmentation in the conflict graph, thus called
vertex augmentation, instead of link augmentation [8] in
the original graph. Applying the idea of augmentation
to the conflict graph (in conjunction with non-trivial
extension of the work in [8]) enables us to study schedul-
ing algorithms irrespective of M. Furthermore, our work
differs from [8] in terms of the proof technique, in that
we prove the throughput and delay performance using the
framework of “approximate” algorithms.

Due to space limitation, we present the proofs of all lemmas
and theorems in our technical report [12].

II. Preliminaries and Vertex Augmentation

A. Approximate Algorithms

In this subsection, we describe general criteria which, if
satisfied, render a scheduling algorithm α-throughput-optimal.
We first define the weight of a schedule that intuitively
represents a measure of quality of a chosen schedule S[t] (at
slot t):

W[t] , W(S[t]) ,
∑
l∈L

(Ql[t] × S l[t]).

We denote by S ?[t] the schedule that maximizes the weight,
i.e.,

S?[t] = arg max
S∈S

(
∑
l∈L

Ql[t] × S l), W?[t] , W(S?[t]).

Definition 2.1 ((α, ξ)-approximate algorithms): A schedul-
ing algorithm is said to be (α, ξ)-approximate, 0 < α, ξ < ∞,
if, at any slot t, for two random variables G[t] and C[t],

W[t] ≥ G[t]W?[t] −C[t], G[t] ≥ α, E
[
C[t]|Q[t]

]
≤ ξ.

Our notion of approximate algorithm generalizes the famous
“Max-Weight” scheduling [1], which is throughput-optimal,
where α = 1 and C[t] = 0, a.s. The following algorithm
also belongs to (α, ξ)-approximate algorithms, which we use
extensively throughout this paper.

Definition 2.2 (Pick-and-Compare [6], [8]): The
algorithm first generates a random schedule S′[t] satisfying
C1, and then schedule S[t] defined in C2.

1 2 3 4 5

1

2

3 4

5
J = {1, 4}

A = {1, 2, 4}

B = {4, 5}

(a) original graph (b) conflict graph

Fig. 1. An example of two disjoint augmentations A and B of J under 2-hop
interference.

C1. ∃0 < δ ≤ 1, s.t. P
[
S′[t] = S | Q[t]

]
≥ δ, for some

schedule S, where W(S) ≥ αW?[t].
C2. S[t] = arg maxS={S[t−1],S′[t]}W(S).

The Pick-and-Compare algorithm provides only a probabilistic
guarantee of finding a “α-optimal” schedule with a suitable
comparison operation defined in C2. As shown in the next
proposition, this is enough to achieve α-throughput-optimality.

Proposition 2.1 ([13]): The (α, ξ)-approximate algorithms
are α-throughput-optimal. Further, a Pick-and-Compare al-
gorithm is (α, L(1 + α)/δ)-approximate, thus α-throughput-
optimal.

B. Vertex Augmentation

In this subsection, we introduce the notion of “augmenta-
tion,” which is a key concept in the distributed algorithms we
develop. Consider an independent set J in the conflict graph
Gc(E,V), where recall that J is a valid schedule in G. A path
or cycle, which is a sequence of vertices, with respect to an
independent set J is said to be alternating, if the vertices are
chosen alternatingly from J and V \ J. An alternating path or
cycle A (of J) is said to be an augmentation, A⊕ J is also an
independent set, where A ⊕ J , (A ∪ J) \ (A ∩ J). This means
that a vertex-set generated by adding A \ J to J and removing
A ∩ J from J is still an independent set. In such a case, J is
said to be augmented by A.

We define the size of an augmentation A, θ(A), to be |A \ J|,
which is the number of vertices that are newly added to J.
Two augmentations A and B are said to be disjoint, if any two
nodes v ∈ A \ J and v′ ∈ B \ J are not connected in Gc. This
implies that 1) (A ∪ B) ⊕ J is also an independent set, and
2) (A ∪ B) ⊕ J can be obtained by sequentially augmenting J
with A and B, irrespective of their orders. We define a sub-
augmentation of an augmentation A to be a subset of A. Note
that disjointness and augmenting operation are well-defined
for sub-augmentations.

Suppose that a vertex v ∈ Gc is assigned some weight Qv,
which is the queue length of link v in G. Then, efficiency of
an (sub)augmentation A of J is defined as the added weight
by augmenting, i.e.,

G(A) ,
∑

v∈A\J
Qv −

∑
v∈A∩J

Qv.

Example 2.1: Figure 1 illustrates a set of two disjoint
augmentations A = {A, B} for G and Gc. Note that the set of
augmentations A is ambiguous in the sense that it is derived
from the conflict graph. In Figure 1, the hop distances over
links ‘1’ and ‘2’ and over links ‘1’ and ‘3’ are different in
the original graph, but both are connected by one-hop in the

time-slot t-1 time-slot t time-slot t+1

Finding
augmentation

Handling
non-disjoint
augmentation

Compare

control slot data slot

Fig. 2. Slot-structure and algorithm overview

conflict graph. Under M-hop interference model, the real hop
distance of connected vertices in the conflict graph can be a
value from 1 to M.

We conclude this section by presenting a useful lemma
to be used in the algorithm analysis (see Section IV). This
lemma intuitively states that for a given augmentation size k,
we can find a reasonably “good” schedule, by first finding
an appropriate set of disjoint augmentations A and then by
augmenting S[t − 1] with A.

Lemma 2.1: For a given parameter k, consider a schedule
S[t−1] at time t−1, which is an independent set in Gc. Then,
there exists a set of disjoint augmentations, A, of S[t − 1],
such that

W(S[t − 1] ⊕A) ≥ k
k + 2

W?[t], ∀A ∈ A, θ(A) ≤ k (2)

The similar result was shown in [8] for link augmentation
in G under one-hop interference model. Lemma 2.1 says that a
similar property holds for vertex augmentation in Gc (implying
that it works for any M-hop interference model).

III. Algorithm Description

The slot structure and the corresponding control operations
are depicted in Figure 2. One time-slot is composed of control
and data slot, where there are multiple mini-slots in a control
slot. The number of mini-slots are parameterized by both k
and M. The operations in a control slot are divided into the
following three phases of sub-operations:

O1. Finding random augmentations. We randomly find a set
of augmentations A, which satisfies (2) in Lemma 2.1
with some positive probability. This will ensure C1 in
the Pick-and-Compare algorithm, where α = k/(k + 2).

O2. Handling non-disjointness. The augmentations found in
O1 does not guarantee their disjointness, in which case
S[t − 1] ⊕ A may not be an independent set in Gc. We
slightly modify A to one of its sub-augmentation Ã, such
that Ã ⊕ S[t − 1] is an independent set.

O3. Comparison. We determine the final schedule S[t] in a
distributed manner, such that W(S[t]) is the maximum of
W(S[t − 1]) and W(S[t − 1] ⊕ A), such that C2 in the
Pick-and-Compare algorithm is satisfied.

A. Finding random augmentations

The procedure to find random augmentations is summarized
as the following: (i) Each node decides to be a seed with some

1 2 3 4

≤ M ≤ M ≤ M

> M

> M

1 2 3 4

(a) a vertex augmentation in the conflict graph

(b) corresponding links in the original graph

other links

Fig. 3. Hop-requirement for a vertex augmentation under M-hop interference
model.

given probability p, where a seed corresponds to a node of the
starting vertex (i.e., link) of an augmentation, and (ii) the seed
randomly chooses its augmentation size out of {1, . . . , k}, and
adds the links one by one to constitute its augmentation until
the intended augmentation size is reached or some collision
occurs. This happens for multiple seeds in a parallelized way.

1) Hop-requirement: Consider an vertex augmentation A =
(l1, . . . , ln), which is either a path or a cycle. By definition
of augmentation on alternation, the links in A should be
chosen from S[t − 1] and L \ S[t − 1] alternatingly. Then,
it is not hard to see under M-hop interference model, the
following hop-requirement should be satisfied (see Figure 3
for an illustration):

Requirement 3.1 (Hop requirement):
(i) d(li, li+1) ≤ M, i = 1, . . . , n − 1,

(ii) d(li, li+2) > M, i = 1, . . . , n − 2.
The (i) comes from the connectivity of two adjacent nodes in
Gc, and the (ii) is due to the fact that after augmenting, the
resulting set of vertex should be an independent set in Gc (i.e.,
valid schedule in G).

2) Algorithm for finding augmentation: We now describe
the algorithm of finding random augmentations, mainly as-
suming a single augmentation for simplicity. This may be
not complete to explain the full algorithm, but sufficient to
include the key features of the algorithm. In Figure 4, let
S[t − 1] = {1, 4, 8} (thick solid lines). The augmentation A is
initialized to A = ∅ to which links will be added. By definition
of augmentation, the links out of S[t − 1] and L \ S[t − 1]
should be inserted to A alternatingly, which we call old and
new, respectively.

Suppose only a decides to be a seed, and a randomly
chooses its augmentation size out of {1, . . . , k}. Recall that the
augmentation size is defined as |A \ J|. The procedure to add
alternate links are performed by exchanging REQ and ACK,
where we call the REQ-sender active. The active nodes keep
changing to a randomly chosen path as time advances.

The REQ message has three attributes, denoted by
REQ(hp, h, what). what = O means that an old link is
requested to be added, and what = N, otherwise. We intro-
duce the notation ‘toggle’ with toggle(O)=N and toggle(N)=O.
When a node, say v, receives REQ(hp, h, what) message, the
following operations are performed:

a) If h , 0, then v just decrements h by one, and relay the
received REQ to a random outgoing link.

b) If h = 0,

1 2 3 4 5 6 7 8 9

a (seed) b c d e f g h i j

1

2 3

X 4 4

5 6 6

8 8

9 9

X

X X X X

X X

X

no REQ

no REQ

1 2

1 2

2

2

1

1

1

1

1

2

2

2

2

old

old

old

new

new

previously scheduled link

random hop number selection (1 or 2)1,2

2

2

Fig. 4. Example for a single vertex augmentation: two-hop interference
model.

b-1) Find an old (resp. new) outgoing link if what = O
(resp. what = N).

b-2) If found, then send ACK to the REQ-sender.
b-2) Let h′ = RAND(M−1−hp,M−1) 2. Then, finally

send REQ(h′, h′, toggle(what)) across the chosen
outgoing link.

The REQ(hp, h, O/N) from nodes v to v′ means that node
v tries to add an old/new link which is h hop away from v,
where the maximum value of h can be M − 1 (see (i) in the
hop-requirement) Also, we observe that the hp value in the
new REQ is set to the new h (see (ii) in the hop-requirement).

To illustrate, consider an example in Figure 4. The seed
node a adds the old link 1 to its augmentation by sending
REQ(M−1, 0, O) (the seed node just uses h = 0 for immediate
addition of the outgoing link and hp = M − 1) and receiving
ACK from the node b. Node b newly generates and sends
REQ(h, h, N) to node c, where h = RAND(M−1−(M−1), 1) =
RAND(0, 1), where we can consider two cases.

(i) h = 0: In this case, link 2 is requested as a new link
and added to A. The node c receives REQ/ACK from/to
node b, and will generate a new REQ message for the
next old link. Since link 1 is just one-hop away from
link 2, h = 0 should be excluded in the REQ message
from node c due to the hop requirement (ii). In order
to avoid such an unnecessary situation, node c needs to
know the value of h that b originally chooses at the time
of REQ generation. To that end, when a node generate
REQ with random value of h, it copies hp = h. Note that h
is decremented by 1 at each hop, but hp is invariant until
REQ message reaches its final intended destination node.
Then, a new node that needs to generate REQ message
just generates the value of h = RAND(M−1−hp,M−1).
In our example, since node b selected h = 0, node c, in its
new REQ generation, selects h = RAND(2−1−0, 1) = 1.

(ii) h = 1: In this case, node b just decrements h and relays
REQ to the node c, which will add link 3, and then node
d generate a new REQ(h, h, N), where h = RAND(2−1−

2The function RAND(n,m) returns a random number out of {n, n+1, . . . ,m}.

b c

e

f

a d

Aug A

Aug B

active node
in aug A

active node
in aug B

links to be added
to the Augs A and B

Fig. 5. Example of non-disjoint augmentations under 3-hop interference
model.

1, 2−1)3

3) Stopping rule: The procedure for finding augmentation
ends until the following events occurs:
• Augmentation size: The intended augmentation size (ran-

domly chosen by the seeds initially out of {1, . . . , k}) is
satisfied.

• No desired link: A node receives REQ(·, h, what) with
h = 0, but the outgoing link corresponds to what (i.e.,
old or new) is not found.

• REQ/ACK collision: The REQ sender cannot receive
ACK possibly due to REQ/ACK collision.

B. Handling non-disjointness

We note that the sets of augmentations found according to
the procedure in the previous sub-section are not necessarily
disjoint. Guarantee of disjointness is crucial since it enables
the algorithm (i) to run in a parallelized manner (recall that
a set of disjoint augmentations allows us to augment S[t − 1]
in any order), and (ii) to satisfy C2 in the Pick-and-Compare
algorithm (this will be elaborated after Comparison operation
in Subsection III-C).

To prevent this non-disjointness, the following operations
are performed:

Handling non-disjointness
1. A source node of a link that has been added to an

augmentation, but was not in S[t − 1], sends REQ and
waits for ACK.

2. If ACK not received, then the source node deletes the
corresponding links from its augmentation.

To illustrate, consider Figure 5, where two augmentations A
and B are currently being made. Nodes c and e are the active
nodes of the augmentations A and B, respectively. Suppose
that both ab and f e are not in S[t − 1], but ab are already
in the A. Assume that c is sufficiently far from e, such that
cd and f e are not interfering with each other (d(cd, f e) > 3).
In this case, f e (resp. cd) will be added to B (resp. A), since
their REQs will not collide. Note, however, d(ab, f e) ≤ 3,
thus, A and B are not disjoint. By handling non-disjointness
described in the above, over the links in A and B, but not

3As a special case, if there is a direct outgoing link which was in S[t − 1]
to the node d, then the node d can directly add it in its augmentation as an
old link (i.e., just letting h=0), since otherwise we cannot find another old
link within M-hop of d. However, it does not hurt the proof of throughput
property of the algorithm.

in S[t − 1], such as ab and f e, REQs/ACKs are exchanged,
leading to collision. Thus, ab and f e are deleted from A and B.
By this operation, the final augmentations may become sub-
augmentation. We also note that this procedure does not occur
for the links in the both augmentation and S[t− 1], since they
are interference-free by our schedule construction.

C. Comparison
We initially let S[t] = S[t−1]. Using the set of disjoint sub-

augmentations Ã, for each A ∈ Ã, we compute its gain G(Ã) by
backtracking from the terminus in A. If G(Ã) > 0, we decide
to augment, i.e., subtract Ã∩S[t−1] from S[t] and add Ã\S[t].
If G(Ã) ≤ 0, we take no action, i.e., we decide to schedule the
links in S[t − 1] ∩ A from the initialization of S[t] = S[t − 1].
Note that from disjointness of sub-augmentations in Ã, we
are safe to perform the above operations simultaneously in
∀A ∈ Ã. Then, for the resulting schedule S[t], it is easy to
prove that our algorithm satisfies C2 in the Pick-and-Compare
algorithm.

IV. Analysis: Throughput, Complexity, and Delay
First, we describe Lemma 4.1, which is the key to the proof

of throughput-guarantee.
Lemma 4.1: For a given M and k, there is a positive

probability lower-bounded by δ(k,M) that our algorithm finds
a set of disjoint augmentations satisfying (2) in Lemma 2.1,
where

δ(k,M) = min
1, (p

1 − p

)N (1 − p
k∆M

)N

, (3)

where ∆ is the maximum degree of the graph G.
Theorem 4.1: Our algorithm is k/(k+2)-throughput-optimal

for any finite M > 0.
The proof is as follows: Lemma 4.1 guarantees C1 in

Definition 2.2, and it is easy to prove that the operations
of handling non-disjointness and comparison guarantees C2.
Thus, the result follows. In terms of the proof technique,
different from those in [6], [8], which use a combination
of two Lyapunov functions, we use the framework of (α, ξ)-
approximate algorithms (see Proposition 2.1), which we be-
lieve is separately interesting.

We analyze the algorithm complexity, measured by the
number of control mini-slots. First, for the operation of finding
augmentations, at maximum, for an augmentation of θ(k), there
are (k + 1) links in S[t − 1]. Then, there are 2k “intervals”
alternating between any old and new links. At each interval,
there are (M−1) links at maximum. Thus, the number of mini-
time-slots are 2k+1+2k(M−1) = 2kM+1. Second, we need 2
slots for handling non-disjoint augmentations. Finally, we need
2kM+1 complexity to traverse from the seed to the terminus in
order to recompute the gain. Then, we need another 2kM + 1
complexity to notify the links about their schedulability by
backtracking from the terminus to the seed. Thus, the total
complexity is 2kM + 1 + 2 + 2(2kM + 1) = 6kM + 5.

Remark 4.1: For one-hop interference model (i.e., M = 1),
the algorithm does not require the operation of handling non-
disjoint augmentations, as well as the operation of recomputing

the gain. Thus, the total complexity becomes 4k + 2, which is
same as that in [8].

It is well-known that the exact delay analysis of this
constrained queueing system is still open problem. However,
it is possible to compute the following bound on the total
average delay:

Theorem 4.2:

lim
T→∞

1
T

T∑
t=1

∑
l∈L

E
[
Ql[t]

]
≤

L2
(

(1+α)
δ(k,M) + 1

)
αdk(λ)

, α =
k

k + 2
, (4)

where

dk(λ) , sup
{
ε|λ ∈ (1 − ε)

(
k

k + 2

)
Λ

}
,

and δ(k,M) is defined in (3).
We conclude this section by providing interpretations on

the analytic results described above. For a fixed interference
model (i.e., a fixed M), as k increases, the achieved throughput
region also increases, but at the cost of increasing complexity
(which is still O(1)). The major cause of sustaining O(1)
complexity is due to the sacrifice of exponentially increasing
delay (see (3) and (4)), with respect to the network size.
Similarly, for a given k, increasing values of M do not affect
throughput property (i.e., determined only by k) with increase
of O(1) complexity. However, again we should pay the cost
of exponentially increasing delay.

V. Concluding Remarks
We have proposed a family of distributed MAC scheduling

algorithms, parameterized by the performance parameter k
under a general M-hop interference model. Our analysis on
throughput, delay, complexity provides inherent achievable
tradeoffs.

References
[1] L. Tassiulas and A. Ephremides, “Stability properties of constrained

queueing systems and scheduling for maximum throughput in multihop
radio networks,” IEEE Transactions on Automatic Control, vol. 37,
no. 12, pp. 1936–1949, December 1992.

[2] P. Chaporkar, K. Kar, and S. Sarkar, “Throughput guarantees through
maximal scheduling in wireless networks,” in Proceedings of the Aller-
ton Conference, 2005.

[3] X. Wu and R. Srikant, “Bounds on the capacity region of multi-hop
wireless networks under distributed greedy scheduling,” in Proceedings
of INFOCOM, 2006.

[4] E. Modiano, D. Shah, and G. Zussman, “Maximizing throughput in
wireless networks via gossiping,” in Proceedings of ACM SIGMETRICS,
New York, NY, USA, 2006.

[5] A. Eryilmaz, A. Ozdaglar, and E. Modiano, “Polynomial-time complex-
ity algorithms for full utilization of multi-hop wireless networks,” in
Proceedings of IEEE INFOCOM, 2007.

[6] L. Tassiulas, “Linear complexity algorithms for maximum throughput
in radionetworks and input queued switches,” in Proceedings of IEEE
INFOCOM, 1998.

[7] C. Joo and N. B. Shroff, “Performance of random access scheduling
schemes in multi-hop wireless networks,” in Proceedings of IEEE
INFOCOM, 2007.

[8] S. Sanghavi, L. Bui, and R. Srikant, “Distributed link scheduling with
constant overhead,” in Proceedings of ACM SIGMETRICS, 2007.

[9] S. Ray and S. Sarkar, “Arbitrary throughput versus complexity trade-
offs in wireless networks using graph partitioning,” in Proceedings of
Information Theory and Applications Second Workshop, 2007.

[10] K. Jung and D. Shah, “Low delay scheduling in wireless network,” in
Proceedings of ISIT, 2007.

[11] G. Sharma, R. R. Mazumdar, and N. B. Shroff, “On the complexity of
scheduling in wireless networks,” in Proceedings of MOBICOM, 2006.

[12] Y. Yi and M. Chiang, “Wireless scheduling algorithms with O(1)
complexity for M-hop interference model,” Princeton University, Tech.
Rep., 2007.

[13] Y. Yi, A. Proutiere, and M. Chiang, “Complexity in wireless scheduling:
Impact and tradeoffs,” in Proceedings of ACM MOBIHOC, 2008, to
appear.

