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Abstract—An essential condition precedent to the success of
mobile applications based on Wi-Fi (e.g., iCloud) is an energy-
efficient Wi-Fi sensing. From a user’s perspective, a good Wi-
Fi sensing policy should depend on both inter-AP arrival and
contact duration time distributions. Prior work focuses on limited
cases of those two distributions (e.g., exponential) or introduces
heuristic approaches such as AI (Additive Increase). In this paper,
we formulate a functional optimization problem on Wi-Fi sensing
under general inter-AP and contact duration distributions, and
propose how each user should sense Wi-Fi APs to strike a
balance between energy efficiency and performance, depending
on the users’ mobility pattern. To that end, we derive an optimal
condition which sheds insights into the aging property, the key
feature required by efficient Wi-Fi sensing polices. Guided by the
analytical studies and the implications, we develop a new sensing
algorithm, called WiSAG (Wi-Fi Sensing with AGing), which is
demonstrated to outperform the existing sensing algorithms up
to 34% through extensive trace-driven simulations using the real
mobility traces gathered from smartphones.

I. INTRODUCTION

A. Motivation

The number of mobile users with smart phones/pads is
rapidly increasing. Cisco reported that mobile data traffic grew
2.6 fold in 2010, and forecasts that it will increase 26-fold
between 2010 and 2015 [1]. Smarter applications generating
heavier traffic are expediting the scarcity of 3G capacity. 4G,
which has started to be deployed, seems to be only a temporary
solution due to huge difference between traffic demands and
available physical resources in the cellular system.

Leveraging Wi-Fi is an intriguing solution that has high
potential in alleviating mobile data explosion. The very feature
of shorter range communication of Wi-Fi than that of 3G or
4G on the unlicensed bands brings considerable efficiency in
spatial frequency reuse. Wi-Fi APs1 also cost much less than
cellular Base Stations [2], so that they can be deployed quickly
as well as without heavy financial burden to operators and even
users. In fact, Wi-Fi APs have already been installed around
hotspots in many countries now. Very lately, researchers have
started to examine the effect of Wi-Fi offloading from the
theoretical and experimental perspectives [2]–[4]. For example,
Lee et al. [2] showed that about 70% cellular data can be
offloaded to Wi-Fi if users would tolerate two hour delayed
data delivery. Wi-Fi is particularly useful for applications that
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1We simply use ‘AP’ throughout this paper.

periodically exploit the network, e.g., iCloud [5], Microsoft
Pocket Outlook [6] and Urban Tomography System [7]. Wi-Fi
connectivity can also provide the location information, whose
economic value is huge [8].

Yet, not every user seems to welcome Wi-Fi. The survey by
Devicescape [9] tells us that 64% of US consumers hit hot spots
at least once a day, but some of them sometimes spend a day
without Wi-Fi connections. From mobile users’ perspective,
one of the biggest concerns lies in quick battery discharge
by Wi-Fi sensing [10]–[16]. It is reported [17] that 41% of
iPhone 3G users and 15% of iPhone 4 users mention such a
battery concern. Therefore, in order to maximally exploit Wi-
Fi’s benefits, it is essential to relax users’ attention to battery
drainage by developing energy-efficient sensing schemes that
sense scattered APs while sparingly using mobiles’ batteries.

B. Summary and Main Contributions

In order to design the “best” Wi-Fi sensing scheme, we
can gather that there exists a fundamental tradeoff between
energy efficiency and performance: Sensing with less frequency
results in bigger energy saving, but entails lower chances of
data transmission through Wi-Fi. To strike a good balance, two
key factors from a user’s mobility pattern need to be carefully
addressed: (i) how often users meet APs (referred to as inter-
AP arrival time), and (ii) how long a user is in contact with
an AP (called AP contact duration time).

Prior work [13], [18] studied optimal sensing intervals for
only limited cases, e.g., exponential inter-AP arrivals and
contact durations, in which periodic sensing interval is optimal.
They also introduced heuristic algorithms such as AI [18] and
WiFisense [13], both of which propose to increase the sensing
intervals whenever they fail to detect an AP. However, the
following questions still remain: (i) What is an optimal sensing
policy for the users who do not have memoryless exponential
inter-AP arrivals and contact duration distributions? (ii) When
do the heuristic algorithms that increase sensing intervals
for AP meeting failures work well? These questions are of
significant importance, because, as discussed in Section IV,
users have diverse mobility patterns, thus diverse distributions
on inter-AP arrival and contact duration times.

To answer the questions above, we take a holistic approach
by formulating a mathematical problem that captures a user’s
mobility pattern under general distributions of inter-AP arrival
and contact duration time, and the tradeoff between energy
consumption and contact loss. More formally, we adopt a
functional optimization approach, where our objective is to



TABLE I
KEY FINDINGS FOR SENSING INTERVAL. OUR NEW FINDINGS: bold-face.

Contact duration Inter-AP arrival (aging)
Negative Constant Positive

Weibull increase periodic [18] decreaseGeneralized Pareto
Exponential increase periodic [13], [18] decrease

minimize a function of sensing process over time. By comput-
ing a necessary condition for optimality, which is also sufficient
under mild cases, we first find that the key factor to how
we should sense APs optimally is simply the aging property
of an inter-AP arrival time, for a given AP contact duration
distribution. The notion of aging property is from reliability
theory [19], intuitively explained as follows: Consider an
event that a mobile node has not been in contact with an
AP until time x. We say that aging of the inter-AP arrival
time, is positive (resp. negative), if when x increases, the
remaining time to meet an AP from x, stochastically decreases
(resp. increases). Analysis through the aging concept extremely
simplifies the understanding of the “best” sensing process,
providing diverse practical implications. Our theoretical study
reveals how sensing intervals should be chosen depending on
a user’s diverse mobility patterns measured by inter-AP arrival
and contact duration distributions, as summarized in Table I.
From the theory-driven implications, we develop a new sensing
algorithm, called WiSAG (Wi-fi Sensing with AGing), which
adaptively varies sensing intervals depending on the features
of inter-AP arrival and contact duration times.

In order to study the distributions of inter-AP arrivals and
contact durations of real users and evaluate the performance
of WiSAG, we analyze Wi-Fi connectivity logs from the two
different traces: (i) 84 3G/3GS iPhone users for 18 days where
users are recruited from an iPhone user community in South
Korea [2] and (ii) 60 students in KAIST campus students using
Android smartphones for 14 days. Both traces reveal that a
large fraction of participants have a negative aging property,
which claim that their mobiles should sleep longer as the
elapsed time from the last AP contact increases. This shows
the case when the heuristic algorithms such as AI may work
well. However, from our simulations, WiSAG outperforms even
AI by up to about 25% on average, because better parameter
selection, e.g., amount of increasing intervals, can be made
in WiSAG than AI. We also observe the relatively regular
AP contact patterns from several users who have a positive
aging in their distributions. In this case, optimal sensing interval
should decrease over time from our theoretical findings. Thus,
the existing sensing algorithms [13], [18], which increases
sensing intervals fail to achieve high performance, showing
about 47% performance gap on average. The key performance
improvement over existing algorithms lies in the ability that
our theory-inspired algorithm, WiSAG provides a macroscopic
guideline on sensing intervals, i.e., increase or decrease, and
further proposes more exact amount of intervals.

C. Related Work

There have been many studies on energy-efficient Wi-Fi
sensing [13]–[16], [18] based on the Wi-Fi sleep mode. Wi-

Fi sensing policies using surrounding information includes
cellular fingerprint [14], Zigbee [15], accelerometer [13] and
bluetooth logs [16], where the fact that the information is
closely correlated to Wi-Fi AP contacts is exploited. However,
utilizing those information incurs additional overheads, e.g.,
battery consumption for collecting the informations [10] and
additional resource usage for maintaining and processing the
information [14]. Despite the research results that those algo-
rithms are efficient in sensing in several practical scenarios,
there may exist some cases where (i) the available surrounding
information is sparsely encountered, (ii) the additional over-
heads become a crucial part, (iii) the uncertainty of estimating
an AP contact time is still high even with those surrounding
information. Thus, considering the randomness of AP contact
patterns without explicit support from surrounding information
can also be an essential part of WiFi sensing. In fact, most of
current smartphones do not use the surrounding informations in
AP sensing but sense only on-demand [13] for saving energy.
This paper provides key guidelines to choose sensing intervals
and proposes an energy-efficient sensing algorithm under a
random AP contact patterns, where such a “blind sensing” 2 is
expected to still be important in smartphones.

II. MODEL AND OBJECTIVE

A. System Model

Phases. Mobile nodes (or simply mobiles) move over time and
intermittently meet Wi-Fi APs. We divide the entire time into
a sequence of phases, where a phase corresponds to a time
interval ranging from (i) the instant when a mobile node loses
a Wi-Fi contact and to (ii) the end of the next Wi-Fi contact,
as depicted in Fig. 1.
Inter-AP arrival and contact duration. Each phase is split into
two intervals of when a mobile is not under Wi-Fi coverage,
i.e., inter-AP arrival time, and when a mobile is under Wi-Fi
coverage, i.e., AP contact duration time. We say that a mobile
encounters an AP when it starts to be under the coverage of an
AP. We also say that the mobile is associated with an AP, when
a mobile is aware of being under the AP’s coverage, and ready
for data transmission at the average rate of rw. Denote by X
and Y the random variables of inter-AP arrival and contact
duration times, respectively. Let FX(x) = P[X < x] and
FY (y) = P[Y < y] and we use F̄X(x) = 1 − FX(x) and
F̄Y (y) = 1− FY (y). We assume that phases are independent,
i.e., X and Y are i.i.d. across phases, which enables us to
focus on a single phase. Due to the recent papers [2], [20],
[21], it has been shown that humans’ movement patterns are
highly regular. Thus, we assume that each mobile knows its
distributions of inter-AP arrival and contact duration times.
Sensing. As depicted in Fig. 1, let T0 be the starting time
of a phase, and a mobile senses APs at times T1, T2, · · · .
A sequence (Tk)∞k=1 is randomly generated by a sensing
process N(t) which is a non-homogeneous Poisson process
with rate n(t). Since n(t) may take the form of a pulse

2In this paper, we define “blind sensing” as a sensing scheme which does
not use any of surrounding information.
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Fig. 1. An illustration of the model. (a) When AP contact duration Y is larger
than S, a mobile successfully detects an AP. (b) When AP contact duration
Y is smaller than S, a mobile node fails to detect it. Shaded areas denote the
contact loss time l(S).

train of Dirac delta measures, called Dirac comb, N(t) can
model deterministic sensing as well as stochastic one. Let cs
be the sensing cost, i.e., power consumption per one sensing
operation. We assume that mobiles stop sensing after being
associated. We also assume that the mobile is able to detect the
end of each contact immediately after being outside of Wi-Fi
coverage. This assumption is reasonable, since the connection
loss can be quickly detected if some data transmission is in
progress. For the case where a mobile misses a contact due to
its large sensing interval, we will discuss later in Section III-E.
Loss time. Note that a mobile can be associated with an AP
some time after encountering the AP (time T4 in Fig. 1(a)). Let
a random variable S be the elapsed time until the next sensing
since encountering. We are interested in the loss time that
quantifies the duration that a mobile node misses the chance
to use an AP. In Fig. 1(a), a mobile senses while being in the
AP’s coverage, where the loss time is S. However, in Fig. 1(b),
the mobile moves fast, resulting in missing the AP contact, in
which case the loss time is Y . Thus, the average loss time l(S)
(with respect to the contact duration Y ) is:

l(S) = EY [min{Y, S}]. (1)

B. Problem Formulation
Sensing with less frequency saves larger energy, which

in turn increases the chance to miss Wi-Fi contacts, hence
lower performance. We set a functional optimization problem
with a single objective that combines energy efficiency with
performance in a linear fashion, where one metric is treated as
a penalty term. To be more specific, the optimization problem
is to minimize the average sensing cost, linearly penalized
by missed Wi-Fi contacts, over all feasible sensing policy
N(t). By doing so, two conflicting objectives of energy-
efficiency and performance, can be appropriately considered
in the formulation.

Minimize sensing cost penalized by lost Wi-Fi contacts
min

(n(t))∞t=0

{csE [N(X)] + γrwE [l(S)]} , (OPT)

where γ is a penalty weight for the contact loss.

Recall that E [N(X)] is the average number of sensings be-
fore the mobile encounters an AP, and rwE [l(S)] corresponds
to the average volume of data that cannot be transmitted due
to the “lazy” association to the AP.

Then, our main interest is now centered on minimizing
(OPT) by generating the random sequence (Tk)∞k=0 (or choos-
ing n(t) for every t ∈ (0,∞)), and thereby determining
the non-homogeneous Poisson process N(t), where FX(·)
and FY (·) are given. We first epitomize the notion of aging
which will be frequently used in many parts of the discussion
throughout this paper.

C. Preliminary: Aging

We define a failure rate [19] that quantifies the probability
that a r.v. X (e.g., inter-AP arrival time in our case) is some
value, say t, on the condition that X ≥ t (e.g., a mobile does
not meet an AP until time t).
Definition 1 Consider a r.v. X with the PDF and CDF of
fX(t) and FX(t), respectively. The failure rate rX(t) of X
is: rX(t) , fX(t)

F̄X(t)
, for the age t such that F̄X(t) > 0.

We assume that rX(t) is a real-valued, differentiable func-
tion. rX(t) is said to be Increasing Failure Rate (IFR) when
rX(t) is strictly increasing, i.e., r′X(t) > 0,∀t. Likewise, rX(t)
is called Decreasing Failure Rate (DFR) if r′X(t) < 0,∀t.
Suppose that a r.v. X follows a Weibull distribution, FX(t) =
1− exp(−(t/β)α). Then the corresponding failure rate rX(t)
is DFR (resp. IFR) for 0 < α < 1 (resp. α > 1).

Consider a r.v. X with failure rate rX(t). We say that X
has positive aging if rX(t) is IFR. Similarly, X is said to have
negative aging if rX(t) is DFR. When r′X(t) = 0, X is said
to have constant aging. The aging property can be understood
by a residual time Xt whose CCDF (Complementary CDF) is
given by P[Xt > x] = P[X − t > x | X > t]. It is easy to
see that when rX(t) is DFR, Xt stochastically increases with
time t. To interpret it in our context, on the condition that a
mobile has no contact with an AP until t, the remaining time
until encountering an AP from t stochastically increases with t.
For the case of IFR, a similar interpretation can be stated. This
aging concept has recently been used in [22] which proves that
this memory structure arises from general mobility patterns and
can be used for a better design of mobile wireless networks.

III. SOLUTIONS AND ALGORITHM

In this section, we first present the technical challenges
of (OPT), by introducing the examples for two types of
sensing policies. Then, we provide reasonable approximations
of (OPT), and develop a modified objective function which
allows mathematical tractability. Then, we derive the conditions
for optimality, followed by the practical implications into a
good Wi-Fi sensing algorithm.

A. Challenges

1) Homogeneous Poisson sensing: Let us first consider a
simple case when sensing is performed following a homo-
geneous Poisson process in order to clearly see the tradeoff
between energy efficiency and performance as well as to have



a taste of challenges residing in our optimization problem. Con-
sider a homogeneous Poisson process with rate µ and an AP
contact duration time Y . Suppose Y can be expressed in terms
of another positive r.v. A such that P[Y > y] = EA[e−Ay].3

Putting cs = γ = rw = 1, (OPT) can be rearranged as:

(OPT) = min
µ
{µE [X] + E[min (Y, S)]} (2)

where S is an exponential r.v. (because of homogenous Poisson
sensing), and

E [min(Y, S)] =

∫ ∞
0

P[Y > x]P[S > x]dx

=

∫ ∞
0

e−µxEA[e−Ax]dx = EA
[ 1

µ+A

]
. (3)

Then it follows from (3) that (2) becomes:

min
µ

{
EA
[
µE [X] +

1

µ+A

]}
, (4)

which clearly shows the tradeoff: as µ increases (i.e., sensing
with higher frequency), the energy consumption term µE [X]
increases, whereas the contact loss term 1/(µ+A) decreases.

Note that (4) is invariant with respect to the distribution of X
except for E [X], which is due to the restriction of our focus to
homogeneous Poisson sensing processes. To put it another way,
in order to find a more optimal sensing, it is inevitable that the
sensing policy is modeled by a more general stochastic process,
i.e., non-homogeneous Poisson processes, which lends itself to
adaptation to distributional properties of X and A, along with
E [X].

2) Deterministic sensing: We now consider another class of
sensing processes: deterministic sensing. Recall that this case
can be regarded as non-homogeneous Poisson processes, where
the rate n(t) is a Dirac comb (See Section II-A). Then, it is
not hard to see that computing the optimal solution of (OPT)
is equivalent to solving the following problem, expressed in
terms of distribution FX(·) of the inter-AP arrival time X:

(OPT) = min
(Tk)∞k=0

∞∑
k=1

∫ Tk

Tk−1

{csk+γrwl(Tk−t)}dFX(t) (5)

Yet, solving (5) is significantly challenging due to the facts:

(i) Analytical solutions are hard to obtain, because each
objective is a function of an infinite sequence (Tk)∞k=0. On
top of that, even for well-known distributions of X , there
exists a complex coupling between a nonlinear function
l(·) and the PDF dFX(·) inside the integral.

(ii) Computing the solutions numerically is also challenging,
due to a large search space generated by an infinite
number of possible combinations [23].

A similar problem for deterministic sensing processes has
been studied in reliability theory, referred to as inspection
problem [24], only when the contact duration time Y is infinite
(w.p. 1). Barlow et al. [24] developed a recurrence formula,

3In this case, Y is called a completely monotone (CM) distribution. We use
a CM distribution only to better illustrate the simplistic form of the tradeoff.
Many types of distribution including Weibull are known to belong to CM class.

instead of a fully analytical solution, only in the limited case.4

It still remains open as to how to solve the problem for general
distributions.

B. Approximations

Obtaining the analytical form of E [l(S)] = E [E [l(S)|X]] ,
entails two key obstacles: (i) the analytical form of S’s distri-
bution (conditioned on X), given by:

P[S > s|X = t] = exp

(
−
∫ t+s

t

n(u)du

)
, (6)

is difficult to compute, and (ii) non-linear loss time function l(·)
is involved there. Thus, to get a tractable form of the objective
function, we make two approximations, summarized in what
follows.

First, we use an upper bound of E [E [l(S)|X]]. Note that it
is easy to show that l(s) is concave in s, verified by:

l(s) =

∫ ∞
0

P[min{Y, s} > y]dy =

∫ s

0

P[Y > y]dy, (7)

whereupon we have l′′(s) = −fY (s) < 0. It follows from
Jensen’s inequality that E [E [l(S)|X]] ≤ E [l(E [S|X])]. Ma-
nipulating E [S|X] becomes much more tractable due to the
absence of l(·).

Now, for the computation of the new target E [l(E [S|X])], it
is required to get the analytical form of E [S|X = t] for t > 0.
However, it is still challenging to compute, because an integral
with n(t) is an exponent of the function exp(·) in (6). To tackle
this problem which is of vital importance to the optimization
(OPT), we only assume that the following two quantities vary
smoothly with k:

E [Tk − Tk−1] , σ2
Tk−Tk−1

for k ≥ 1, where the second term is the variance of Tk − Tk−1.
This assumption implies that when a mobile conducts sensing,
the average and variance of the next sensing time should be
slowly-varying with each sensing. It should be remarked that
the assumption specifies nothing else but the tendency of the
first two moments, so that n(t) is still allowed to vary with
time t. Recall that our target is to compute E [S|X = t] , where
S = T (t)− t and T (t) is the next sensing time at t, i.e., T (t) ,
mink{Tk|Tk > t}. To simplify exposition, we first adopt

I(t) , Tk − Tk−1, such that Tk > t ≥ Tk−1.

The practical value of this slowly-varying moment assumption
lies in that it enables us to get a manipulative form of
E [S|X = t] which is the mean residual time of a point process
at arbitrary time t. Note the arbitrary time t is more likely to
fall in larger sensing intervals around t. Thus it follows from
the Palm inversion formula [26, Th. 7.3.1]:

Λ(t) , E [S|X = t] =
1

2

(
E [I(t)] +

σ2
I(t)

E [I(t)]

)
, (8)

4when fX(t) is PF2 (Pólya frequency function of order 2). As discussed
in [25, Remark 2.2], if the failure rate function rX(t) is DFR, fX(t) does
not belong to the class of PF2. Note that DFR X has been largely seen in
the real mobility traces (see Section IV for details).



also known as Feller’s paradox. To summarize, E [l(E [S|X])]
can be further approximated when the first two moments of
inter-sensing times do not vary much with each sensing event.

Approximating the original contact loss time E [l(S)] with
E [l(E [S|X])], and plugging (8) into (OPT), and the original
optimization objective can be rearranged as

min
(n(t))∞t=0

csE

[∫ X

0

n(τ)dτ

]
+ γrwE [l (Λ(X))]

= min
(n(t))∞t=0

∫ ∞
0

{
cs

∫ t

0

n(τ)dτfX(t)+γrwl(Λ(t))fX(t)

}
dt

= min
(n(t))∞t=0

∫ ∞
0

csn(t)F̄X(t)+γrwl(Λ(t))fX(t)dt, (9)

where fX(·) is the density function of the inter-AP arrivals.
Here we can see that the first term inside the integral of

(9) is still a function of n(t), which can be further simplified
from the fact that replacing the instantaneous rate n(t) with
its short-term average rate 1/E [I(t)] does not make significant
difference to (9) if F̄X(t) inside its integral is a well-defined
smooth function. Finally, we present the modified objective
approximating the original optimization objective, expressed
by X, 1/E [I(t)] , and σ2

I(t):

min
(I(t))∞t=0

∫ ∞
0

cs
E [I(t)]

F̄X(t)+γrwl(Λ(t))fX(t)dt, (xOPT)

C. Optimality Conditions

The optimal sensing sequence from (xOPT) is computed by
controlling the following two: (i) the expectation E [I(t)] and
(ii) the variance σ2

I(t). Since the mean E [I(t)] and the variance
σ2
I(t) are independent, we can freely adjust the variance while

keeping the same mean of inter-sensing time. Note that for a
fixed E [I(t)], (xOPT) increases with σ2

I(t), because the loss
function l(Λ(t)) increases with Λ(t). Thus, given E [I(t)], we
first search the space of the sensing process n(t) that minimizes
the variance. It is not hard to see that a deterministic sensing
process achieves the smallest variance, which is zero. This
observation further simplifies the optimization (xOPT), where
it suffices to solve (xOPT) over the space of deterministic
sequences of sensing intervals with rate n(t). Putting σ2

I(t) = 0,
Λ(t) in (8) becomes E [I(t)] /2. The objective function is then
expressed as a functional A[I]:

A[I] ,
∫ ∞

0

{
cs
I(t)

F̄X(t) + γrwl
(I(t)

2

)
fX(t)

}
dt. (10)

Note here that we need to determine only E [I(t)] = I(t)
(I(t): the length of sensing interval containing t) where the
the equality holds because I(t) is no longer random. To put
it another way, we have now demonstrated that optimal Wi-
Fi sensing algorithms should be deterministic. As compared
with (5), the deterministic formulation (10) has been prop-
erly justified and, thanks to its simplistic integral form, it is
amenable to functional analysis which is applied to yield the
following theorem. We apply the calculus of variations [27] to

A[I] with the objective of finding an optimal I(t), which leads
to Theorem 1 presenting necessary and sufficient conditions for
optimality. Denote by (I?(t))∞t=0 an optimal sensing interval
function that minimizes A[I].
Theorem 1 (Optimality condition)

(i) Necessity: (Recall that rX(t) is the failure rate of X)

(I?(t))2FY

(
I?(t)

2

)
=

2cs
γrwrX(t)

, (11)

(ii) Sufficiency: (11) is also sufficient under the following
condition:

FY

(
I?(t)

2

)
>
I?(t)

4
fY

(
I?(t)

2

)
(12)

Proof: To simplify the exposition, we first denote the
reciprocal of I(t) by: λ(t) , 1/I(t).

(i) Necessity. Let F (λ(t)) be the functional in (xOPT), i.e.,

F (λ(t)) =

∫ ∞
0

{
csλ(t)FX(t) + γrwl

(
1

2λ(t)

)
fX(t)

}
dt.

From the functional derivative techniques in [27], [28], by
differentiating the functional F w.r.t. λ(t) and setting it to zero,
we obtain

∂F

∂λ(t)
=

∂

∂λ

{
csλ(t)FX(t) + γrwl

(
1

2λ(t)

)
fX(t)

}
= csFX(t)− γrw

fX(t)

2λ(t)2
l′
(

1

2λ(t)

)
= 0. (13)

By noting that rX(t) = fX(t)/FX(t), l′(x) = FY (t) from
(7), and λ(t) = 1/I(t), (11) follows from (13).

(ii) Sufficiency. The necessary condition in (11) is also suffi-
cient if the functional F is convex [29], i.e.,

αF (λ(t)) + (1− α)F (θ(t)) ≥ F (αλ(t) + (1− α)θ(t))

for any two functions λ(t), θ(t) and α ∈ (0, 1). This is
equivalent to∫ ∞

0

{
αl

(
1

2λ(t)

)
+ (1− α)l

(
1

2θ(t)

)}
fX(t)dt

≥
∫ ∞

0

{
l

(
1

2(αλ(t) + (1− α)θ(t)

)}
fX(t)dt, (14)

which holds if and only if h(x) := l(1/2x) is convex in x > 0.
Now, the condition h′′(x) > 0 reads as

d2

dx2
h(x) =

1

x3

[
FY

(
1

2x

)
− 1

4x
fY

(
1

2x

)]
> 0.

By replacing x with λ(t) and setting 1/λ(t) = I(t), we get
(12). This completes the proof.

As expected, Theorem 1 states that the optimal sensing
sequence I?(t) highly depends on the distributions of both
inter-AP arrival and contact duration times, X and Y . In the
next subsection, we will explain that the sufficient condition in
(12) is highly likely to be satisfied in practice, implying that the
condition (11) is nearly necessary and sufficient for optimality.
This motivates us to propose a novel sensing algorithm driven
by (11) in Section III-C.



D. Mildness of Sufficient Condition (12)

Now, we investigate the sufficiency region of the sensing
interval I(t). Since the sufficient condition (12) depends only
on the distribution of contact duration time Y, we divide into
four representative cases in terms of the distribution of Y.
Throughout this section, we denote by rY (t) the failure rate of
the contact duration time Y, hence the sufficient condition (12)
can be re-written as 4

I(t) − rY ( I(t)2 ) > 0, where rY (t) =

fY (t)/F̄Y (t). For notational simplicity, we drop the superscript
? in I?(t) in the rest of this section, unless confusion arises.
(a) Heavy-tailed Y in Generalized Pareto: When Y follows
a Generalized Pareto distribution with heavy-tail, we have
P[Y > y] ∼ (1 + ξy

σ )−
1
ξ with a shape parameter ξ > 1

2

and a scale parameter σ > 0. The term 4
I(t) − rY ( I(t)2 ) is

always positive since rY ( I(t)2 ) = 2/ξ
2σ/ξ+I(t) is always less than

4
I(t) , meaning that the interval sequence always be within the
sufficiency region over time t. Note that the actual lengths
of the increasing intervals can be numerically computed by
solving the optimality condition (11) for the given distribution
of inter-AP arrival time X and contact duration time Y.
(b) Not Heavy-tailed Y in Generalized Pareto: When Y is
Generalized Pareto r.v and not heavy-tailed, we have P[Y >

y] ∼ (1 + ξy
σ )−

1
ξ with ξ < 1

2 , σ > 0. Then, (12) becomes :

4

I(t)
− 1

σ + ξI(t)
2

> 0⇔ I(t) <
4σ

1− 2ξ
=

4E [Y ] (1− ξ)
1− 2ξ

Shape parameter ξs measured from our trace in Section IV-B
are greater than -0.5, meaning that the intervals satisfy the
sufficient condition when I(t) < ζE [Y ], ζ ∈ (3,∞).
(c) Weibull Y : When Y follows a Weibull distribution, we have
P[Y > y] = exp{−(y/µ)β}. For a Weibull distribution with
the shape parameter β and the scale parameter µ, the condition
for increasing interval is given by:

4

I(t)
− βI(t)β−1

µβ2β−1
> 0⇔

I(t) <
21+1/βµ

β1/β
=

21+1/βE [Y ]

β1/βΓ(1 + 1/β)
(15)

The βs of Y from our trace range over the interval [0.3, 2]. By
rewriting (15) for such a range of β, the sufficiency interval
region is I(t) < ζE [Y ], ζ ∈ [2.25, 120].
(d) Exponential Y : Note that a Weibull r.v. with β = 1 is
exponential. Thus, the condition for increasing intervals follows
from (15), given by: I(t) < 4E [Y ] . This again means that the
optimality holds unless the sensing interval exceeds 4E [Y ] .

The sufficiency condition (12) states that the optimal sens-
ing intervals are not significantly large, compared to the AP
contact duration time Y, whose mildness can be checked by
measuring the distribution of Y from real traces. According to
the measurement, the optimal sensing interval is highly likely
within the sufficiency region because 1) the penalty term from
the contact loss in our optimization problem makes the interval
scale smaller compared to E [Y ] and 2) measured E [Y ] is more
than 2 times of measured E [X] [2].

E. WiSAG : Theory-Inspired Sensing Algorithm
We now develop a Wi-Fi sensing algorithm, called WiSAG

(Wi-fi Sensing with AGing), motivated and inspired by analyt-
ical findings in Theorem 1.

WiSAG (Wi-fi Sensing with AGing)
Preprocessing: A mobile computes a sensing interval function
I(t) according to (11), using the inputs of the distributions of
inter-AP arrival and contact duration, FX(·) and FY (·).

At each phase p:
1. Initialization.

Set T0 = 0, and T1 = I(T0).
Set the clock t = 0 and the counter k = 1, and run the
clock.

2. If t == Tk,
Sense Wi-Fi
If no AP is sensed and associated,

Set Tk+1 = Tk + I(Tk) and k = k + 1
Else communicate with the associated AP until the

AP connection is lost and then end the phase p
End If

End If

A few remarks are in order. First, we assume that the
distributions of X and Y are given to a user. This requires
a mobile user to have a reasonable amount of training time.
Although the detailed algorithm for training is beyond the
scope of this paper, we can employ the training methods
for other similar statistics, e.g., visiting patterns to a specific
location such as office or home, used in other researches [20],
[21]. Second, a practical algorithm like WiSAG, is unable to
know whether the user misses an AP due to fast mobility or
not, which differs from the model used in the analysis. In
such a case, in the model, a new phase is assumed to start,
yet in practice, the user is still in the old phase, and keeps
increasing (or decreasing) the sensing intervals. We later show
that Section IV demonstrates that such a difference is minor.

We now present the increase/decrease of optimal sensing
intervals (as in WiSAG) in relation to the notion of aging of the
inter-AP arrival time X. To that end, consider three cases when
X is negative, constant, and positive aging (i.e., r′(t) < 0,=
0, > 0, respectively). The trends are summarized as: Optimal
sensing intervals I(t) should increase, periodic, and decrease,
if the distribution of X has negative, constant, and positive
aging, respectively, as stated in Table I in Section I.

To understand why, by rearranging the optimality condition
(11) with rX(t) and rY (t), we get:

I(t)2 exp

(
−
∫ I(t)/2

0

rY (x)dx

)
=

2cs
γrwrX(t)

. (16)

Taking log on both sides of (16) and differentiating w.r.t. t, we
have the following:

I ′(t)

2

{
4

I(t)
− rY

(
I(t)

2

)}
= −r

′
X(t)

rX(t)
. (17)

Once the failure rates of X and Y are given, (17) enlightens
us upon the sign of I ′(t). This further generates the conditions
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Fig. 2. Distribution of shape parameter α and ξ in IAT and CDT of each individual in the traces.; (a)(b) CDFs of parameter α and ξ of inter-AP arrival time
(IAT) distributions of users identified as experiencing Weibull and Generalized Pareto IATs.; (c)(d) CDFs of parameter α and ξ of contact duration time (CDT)
distributions of users identified as having Weibull and Generalized Pareto CDTs.

for the signs of I ′(t) and 4
I(t) − rY ( I(t)2 ), which provide the

information on when the sensing intervals should increase
or decrease, as elaborated shortly. We can easily check that
rX(t) > 0 and the sufficient condition in (12) is exactly equal
to 4

I(t) − rY ( I(t)2 ) > 0 in (17). Therefore, whether optimal
sensing intervals should increase or decrease upon the failure
of detecting an AP (i.e., the sign of I ′(t)) depends only on
the sign of r′X(t) which directly represents the aging property
of inter-AP arrival time X. When X has constant aging (i.e.,
rX(t) = c for some constant c, and hence memoryless), I(t)
becomes constant over time as well which in turn implies that
the optimal sensing process should be periodic.

IV. PERFORMANCE EVALUATION

A. Dataset

We use Wi-Fi AP contact logs of 84 iPhone 3G/3GS users
and 60 Android users in KAIST campus. In case of iPhone
measurement, users downloaded a measurement application
and tested it for about 18 days in February 2010, recruited
from an Korean iphone user community. The measurement
application runs in the background to record Wi-Fi AP encoun-
ters every 3 minutes. We further measure the Wi-Fi contact
logs of KAIST campus students for 14 days. We recruit 60
students with android smartphones and let them download a
measurement application which logs Wi-Fi contacts with the
granularity of 1 minute. In both measurements, the captured
Wi-Fi APs include both private APs and commercial APs. The
log files were periodically uploaded to a log-server over ftp
connections. In addition, we also consider Active Hour (AH)
scenarios of both traces, i.e., the traces from 9:00 to 23:00,
because, in practice, many users may carry the mobile devices
during active hours and charge them at night.

B. Individual aging patterns

We started with searching for distributions which fit best
Inter-AP Arrival Time (IAT) and Contact Duration Time (CDT)
of each individual. We selected three candidates of Weibull,
Exponential and Generalized Pareto, because (i) Weibull and
Exponential distributions [2], [13] are reported to follow IAT
and/or CDT in literature, and (ii) Generalized Pareto sig-
nificantly differ from Weibull and Exponential, possessing a
power tail. We use a Cramer-Smirnov-Von-Mises (CSVM)
statistical hypothesis test [30], [31] which is popularly used

TABLE II
CSVM tests FOR THE DATASETS WITH SIGNIFICANCE LEVEL= 0.1. EACH

ELEMENT=% OF ACCEPTED USERS (% OF USERS WITH THE BEST MATCH)
Weibull Gen. Pareto Exp.

IAT: iPhone 42 (20) 64 (80) 7 (0)
IAT: KAIST 55 (45) 70 (54) 10 (1)
IAT: iPhone(AH) 54 (18) 68 (79) 22 (3)
IAT: KAIST(AH) 65 (28) 73 (69) 40 (3)
CDT: iPhone 48 (28) 52 (68) 13 (4)
CDT: KAIST 64 (42) 56 (53) 30 (5)
CDT: iPhone(AH) 40 (30) 40 (66) 23 (4)
CDT: KAIST(AH) 68 (32) 67 (60) 43 (8)

to find a best-fit. A CSVM test rejects a tested distribution
when its CSVM statistic value is less than the Critical Values
determined by a significance level. We test it with a popular
significance level 0.1 and summarize the result of CSVM test in
Table II. Each element in Table II consists of (i) % of accepted
users along with (ii) % of users that have the best match
with the corresponding distribution, which is in parentheses.
We refer the readers to [30], [31] for the details of CSVM.
Table II tells us that most users’ IAT and CDT distributions
follow Weibull or Generalized Pareto (Gen. Pareto), where
Generalized Pareto’s portion is larger.

It now remains to figure out the parameters of each distri-
bution, i.e., α in Weibull and ξ in Generalized Pareto, which
shows the aging property of IAT and CDT. The actual value of
α and ξ for each individual will also be used in determining
the actual sensing intervals of WiSAG. In Fig. 2(a) (resp. (b)),
we plot the CDF of α for the users that experience a Weibull
(resp. ξ for Pareto) IAT distribution, demonstrating that about
94% of overall users go through negative aging in their IAT
distributions, i.e., α < 1 or ξ > 0. We also plot the CDF of
IATs during the Active Hours (AH), which also shows that
85% users have negative aging IAT distributions. Remarkably,
all students in KAIST traces are perceived to undergo negative
aging and most of them show heavy-tail distributions. However,
when we focus on their IAT distributions during AH, 5%
of students in KAIST appear to have positive aging. For the
case of CDT distribution, the CDFs of α and ξ are shown in
Figs. 2(c) and (d). The shape parameter α of Weibull-fitted
users ranges from 0.3 and 1.5 and ξ of Pareto-fitted users
are greater than −0.5. These results support the fact that the
sufficient condition (12) for the optimality can be highly likely
to be satisfied (see Section III-D).
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Fig. 3. Trace-driven comparison of the algorithms for γ = 0.15, cs = 5J and rw = 8Mbps. The CDF of performance gains experienced by users are plotted
in each scenario. The average gain and maximum gain among all users are marked. (a) 84 iPhone users; (b) 84 iPhone users during active hours (AH); (c) 60
KAIST students (using Android smartphones); (d) 60 KAIST students during active hours (using Android smartphones).

The key message of our measurement-based analysis here
is that a large portion of users experience negative aging,
thereby implying that the sensing algorithms which increase
the sensing intervals, such as AI [18], ExBackoff [32], and
also WiSAG, take the right direction. However, just increasing
intervals are not sufficient to guarantee high performance: the
simple patterns of increasing intervals, such as linear in AI, or
exponential in ExBackoff, do not always perform very well, and
we need to adaptively control the sensing intervals like WiSAG
that actively exploits the diverse failure rates of IAT over
time. Further, the appearance of positive aging users during
active hours indicate that, in some cases , algorithms with
increasing interval, such as AI and ExBackoff, can perform
poorly, whereas WiSAG can easily adapt to the user pattern
with the decreasing sensing interval. We now verify such a
reasoning through the trace-driven simulations.

C. Tested algorithms

We test three sensing algorithms in literature: PERD (Peri-
odic) [13], [18] which senses APs over fixed periodic intervals,
AI (Additive Increase) [18] which increases the sensing interval
by a fixed increment after each sensing, and finally ExBackoff
(exponential backoff) [32] which exponentially increases the
sensing interval. Each algorithm has a parameter such as the
period in PERD, the increment in AI, and the base in ExBack-
off. In our comparison of the performance, we use the “best”
version of each algorithm in the sense that the best parameter
(which shows the minimum penalized cost) is searched by
running the corresponding algorithm offline multiple times over
a large number of parameter choices. In addition, we add one
more algorithm IDEAL. Recall that a practical algorithm like
WiSAG is unable to know whether the user misses an AP due
to fast mobility or not. An omnipotent algorithm ‘IDEAL’ with
the optimal sensing intervals can detect such AP missing events
and initiate its sensing interval at the start of every phase (see
the end of Section III-E for the discussion).

D. Results

We conduct trace-driven simulations based on the iPhone,
KAIST campus traces. In our simulation, each individual mo-
bile runs WiSAG with its own IAT and CDT distributions. By
referring previous experimental measurements on the energy
consumption and throughput of Wi-Fi [12], [16], we assume

that a mobile consumes 5J per a Wi-Fi sensing and an average
throughput is 8Mbps. In Fig. 3, we plot the CDF of perfor-
mance gains experienced by all users in each scenario against
four algorithms. The performance gain over an algorithm ‘A’ is
defined as the increase of the penalized cost (in (OPT)) of ‘A’
over that of WiSAG, ( cost of ‘A’−cost of WiSAG

cost of WiSAG × 100). Fig. 3(a)
shows that the average gains of iPhone users over PERD (resp.
AI) is 34% (resp. 16%). The maximum gain among all users is
161% over PERD and 52% over AI. In the scenario of Fig. 3(b)
where users carry their devices during active hours and charge
them at night, WiSAG still outperforms other algorithm by
20% over PERD and 25% over AI on average. The maximum
gain over PERD (resp. AI) is 54% (resp. 107%). The average
performance gap between WiSAG and IDEAL is less than
1.7%, which means that missing AP event due to fast mobility
does not have huge effect on the performance. The average
gains over ExBackoff for all cases are more than 65%. Recall
that PERD, AI, and ExBackoff operate with the best parameters
in terms of our objective, acquired from offline computations
over a large set of parameter candidates, whereas WiSAG
computes the sensing intervals without any parameter tuning,
relying only on the IAT and CDT distributions.

As shown in Fig. 3(c) of KAIST users, WiSAG outperforms
PERD by 29.5% and AI by 13% on average. The maximum
gain among all users are 97.7% over PERD and 38.6% over
AI. A larger fraction of users with small α in Weibull and large
ξ in Pareto (thus negative aging), plotted in Figs. 2(a) and (b),
leads to the worse performance in PERD and relatively better
performance in AI. However, the active-hour scenario causes
the poor performance of AI as shown in Fig 3(d), where the
average gain over PERD (resp. AI) is 23% (resp. 23.5%). The
maximum gains among all users during active hours are 60%
over PERD and 64% over AI. We also observe as for such
campus-wide trace that WiSAG performs closely to IDEAL
and outperforms ExBackoff more than 40% on average.

The main reason behind the lower performance of AI during
the active hours in both traces is that their shape parameters
of IAT distributions tend to form light tails than those during
all times, as already observed in Figs. 2(a) and (b). Moreover,
due to the increase of the users with positive aging in their
IAT distributions, the algorithms with increasing intervals (e.g.,
AI, ExBackoff) does not work well. To see this, we plot the
average gain for IFR (positive aging) and DFR (negative aging)
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Fig. 4. (a) The average performance gain of IFR (positive aging) and DFR
(negative aging) users from both iPhone and KAIST traces during active hours.
(b) The trade-off between the energy and data loss per a Wi-Fi contact in
KAIST campus trace. In the x-axis, P (s) and W (r) means periodic sensing
with fixed sensing interval s(sec) and WiSAG with γ = r, respectively.

users in Fig 4. Using a CSVM test on two traces, we pick
(i) IFR users whose IAT distributions during active hours are
accepted to Weibull with α > 1 or Pareto with ξ < 0, and
(ii) DFR users who are fitted to Weibull with α < 0.8 or
Pareto with ξ > 0. For IFR users, WiSAG outperforms AI
by 47% on average, since WiSAG successfully reduces the
sensing intervals by adapting to the IFR distributions. For DFR
users where the optimal sensing interval should increase over
time, AI performs better than PERD. However, WiSAG still
outperforms AI by 20%, because the increasing intervals in
WiSAG are more accurate. In Fig 4(b), we show that the trade-
off between energy and data loss in WiSAG can be controlled
by γ. We observe that controlling the balance between the
energy and data loss in periodic sensing is conducted on much
higher cost region of both energy and data loss than WiSAG.

V. CONCLUDING REMARKS

The main contributions of this paper are two-folds. First, we
analyze the fundamental interconnection between the tendency
of “best” sensing intervals and distributions of inter-AP arrival
and contact duration times. We classify these distributions by
aging and show that the aging is the key property which decides
whether to increase or decrease sensing intervals. Second, in-
spired by our analytical work, we develop a near-optimal Wi-Fi
sensing algorithm, WiSAG, and show that WiSAG outperforms
other algorithms through the extensive trace-driven simulations.

The study on Wi-Fi sensing algorithms includes the ones
which use surrounding informations [13]–[16]. In some cases,
such algorithms may outperform WiSAG which does not use
the extra information. However, due to the additional overheads
for using them, our focus is first to study the sensing patterns
without surrounding informations by figuring out which factor
is the key to the optimal blind sensing. We believe that WiSAG
is widely beneficial in current smartphones, most of which also
use a blind sensing policy [13]. It is left as a future work to
extend our framework in WiSAG to account for the advantage
of the surrounding information.
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