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Abstract— We develop distributed scheduling schemes that are
based on simple random access algorithms and that have no
message passing. In spite of their simplicity, these schemes are
shown to provide high throughput performance: they achieve
the same performance as that of some maximal scheduling
algorithms, e.g. Maximum Size scheduling algorithms.

I. INTRODUCTION

A. Motivation and Summary

The quest for throughput optimal (distributed) scheduling
schemes in wireless networks has attracted a lot of attention
during the past ten years. We can categorize such distributed
scheduling schemes into two broad categories. A first class
of schemes aims at proposing distributed implementations
(e.g., see [1]–[4] and the references therein) of the central-
ized Max-Weight scheduler originally proposed by Tassiulas
and Ephremides [5]. To achieve throughput optimality, the
proposed algorithms rely on (sometimes heavy) signaling
procedures, whose impact on the actual performance is unclear
and has not been yet quantified. A second class of algorithms is
based on random access protocols (e.g., see [6], [7]). The idea
there is that each transmitter tunes its transmission probability
depending on information in its local neighborhood (typically
the set of neighbors and the states of their buffers). Then these
algorithms also rely on message passing among neighboring
links, and yet their throughput performance remains unclear.

In this paper, we propose a different approach for the design
of efficient scheduling schemes. The aim is to design schemes
based on simple random access algorithms (basically slight
extensions of ALOHA-like algorithms) that operate without
any information exchange among links. This is in sharp
contrast to the collision-free algorithms or random access algo-
rithm requiring queue-length information exchange mentioned
above, making it the most practical MAC protocol. Actually in
many practical scenarios, e.g. in case of networks with hidden
terminals, it proves difficult to exchange information among
neighbors. The main contribution of the paper is to show that
such simple schemes without message passing may provide
at least the same throughput performance guarantees as some
particular maximal scheduling algorithms, e.g. Maximum Size
scheduling algorithms.

The efficiency of simple random access algorithms without
message passing has been recently investigated by Durvy-
Thiran [8]. They proposed to model the behavior of such
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algorithms using loss networks. A similar model has been
suggested by Kelly [9]. In [8], the authors studied the spatial
reuse of a saturated network under very simplistic multi-
access schemes where all the transmitters attempt to use the
radio resource with fixed probability. The present paper ex-
tends Durvy-Thiran’s model to propose simple schemes whose
throughput performances are no less than maximal scheduling.
Unfortunately, maximal scheduling is known to be unable to
provide throughput-optimal [10], [11]. However, simulations
indicate that its throughput performance is generally good.
We provide further theoretical evidences of this throughput
efficiency.

We believe that the absence of information exchange makes
it impossible in most cases to achieve throughput optimality.
We explain this observation based on the models proposed of
this paper. However we also believe that further simple modi-
fications of random access schemes could greatly improve the
throughput performance, and make it very close to optimality.

B. Model

Network and Traffic Model. Consider a wireless multi-hop
network with a set L of L links. We model interference by a
boolean matrix A ∈ {0, 1}|L|×|L|, where Alk = 1 if and only
if the transmission on link l interferes that on link k, and 0
otherwise. For simplicity we assume that A is a symmetric
matrix1. The transmitters are assumed to transmit at a fixed
rate, say 1, when active. The results can be readily extended to
different transmission rates over links. Packets are assumed to
have a fixed size, so that the packet transmission on any link
has a fixed duration that we take equal to 1. Packets, stored
in the infinite buffers, are generated according to a stationary
ergodic process of intensity λl on link l. Unless otherwise
mentioned, we further assume that the numbers of packets
arriving at a transmitter per unit of time are i.i.d. across time
units, and do not exceed one packet per time unit.

Maximum throughput region. Let Γ be the set of vectors γ =
(γl, l ∈ L) representing feasible link throughputs. Let PL be
the set of subsets of L (including ∅). Further define Υ =
{τ = (τm,m ∈ PL),∀m, τm ≥ 0,

∑
m∈PL

τm ≤ 1}. Then,
we have:

Γ =

{
γ : ∃τ ∈ Υ,∀l ∈ L, γl =

∑
m∈PL:l∈m

τm

}
.

1Interference is not necessarily symmetric, but practically acknowledgement
at the MAC layer induces symmetry.
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Γ is referred to as the maximum throughput region, which
is a convex, coordinate convex set2. The boundary of Γ, ∂Γ,
can be represented using the set M of maximal schedules. A
maximal schedule is a set of non-interfering links such that
it is impossible to add a new link to this set without creating
interference.We have:

∂Γ =

{
γ : ∃τ ∈ Υ,

∑
m∈M

τm = 1,∀l, γl =
∑

m∈M:l∈m

τm

}
.

We know that Γ is the set of intensity vector λ =
(λ1, . . . , λL) for which there exists a scheduling algorithm
stabilizing the network [5]. The throughput performance of
a given scheduling algorithm Π is measured in terms of its
throughput region ΓΠ, i.e., the set of vectors λ for which the
algorithm Π stabilizes the network. An algorithm Π is said to
be θ-throughput optimal if θ is the maximum positive number
α such that αΓ ⊂ ΓΠ.

II. RANDOM ACCESS ALGORITHMS AND THEIR
THROUGHPUT REGIONS

In this section, we introduce a model to characterize the
throughput performance of simple random access algorithms.
We consider a slotted system where the slot duration is denoted
by β. Each transmitter runs a non-adaptive CSMA (Carrier-
Sensing Multiple-Access) protocol, i.e., after observing a idle
slot, the transmitter of link l attempts to use the channel with
probability pl if its buffer is not empty. When it decides to
transmit, it sends one packet before releasing the channel.
Non-adaptiveness means that we do no change transmission
probability over time.

Characterizing the throughput region of such algorithms is
notoriously extremely difficult. However, in recent work [12],
an approximation of the throughput region has been proposed
and evaluated. It has be shown that the approximation is
exact for some large networks, but is also very tight in small
networks. However, the approximation is quite complex, and
hard to manipulate and exploit: it involves the stationary
distribution π(p, ρ) of a certain discrete-time loss network
parameterized by the vector p = (p1, . . . , pL), and by some
other vector ρ = (ρ1, . . . , ρL) ∈ [0 : 1]L. Then there are
some well-defined functionals Fl such that for any point
λ on the Pareto-boundary of the approximated throughput
region, there exists a parameter vector ρ such that: for all
l, λl = Fl(π(p, ρ), p, ρ).

In Figure 1, we present a 6-link grid network and its
throughput region, when links 1, 2, 5, and 6 (resp. 3 and 4)
are equally loaded, i.e., λ1 = λ2 = λ5 = λ6 (resp. λ3 = λ4).
The throughput region is shown for β = 1/10 and β = 1/100.
All the transmitters transmit with probability 1/10.

Figure 1 suggests that when β is small enough (e.g.,
β = 1/100 roughly corresponds to today’s 802.11g-based net-
works), even non-adaptive random access algorithms achieve
very good throughput performance. In our example, for β =

2A set Y ⊂ RL
+ is coordinate-convex if x ∈ Y then for all y ∈ RL

+ with
y ≤ x, y ∈ Y .
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Fig. 1. A 6-link grid network and its throughput region. The left figure
represents the network interference graph, e.g., an edge between links 1 and
4 indicates that these links interfere.

1/100, transmitting with fixed probability 0.1 is almost 0.9-
throughput optimal. Note that in the model of our example,
there might be collisions when two interfering links start
transmitting simultaneously, where the collision durations are
set to be equal to those of successful packet transmissions. In
the following sections, we will consider the case where the
collisions last a single slot only. Then, we expect even higher
throughput efficiency.

III. WEIGHTED FAIR MAXIMAL SCHEDULING VIA
NON-ADAPTIVE RANDOM MAC ALGORITHMS

In this section, we show that by letting the contention
period, i.e., β, be very small, non adaptive MAC algorithms
approximately realize particular maximal scheduling schemes
that we call Weighted Fair Maximal (WFM) scheduling al-
gorithms. With WFM scheduling, at any time, a maximal
schedule is chosen according to some distribution that depends
on the set of active links (the links having packets in the
corresponding buffers).

As mentioned earlier, we henceforth assume that collisions
last for one slot only: if two transmitters of interfering links
try to transmit simultaneously, they figure out that there is a
collision at the end of the slot. We analyze the simple random
access algorithms by considering the following two types of
systems:

1) Synchronous systems. In these systems, time is divided
into frames. At the beginning of each frame, each trans-
mitter with non-empty buffer will attempt to use the
channel with fixed probability at each slot until it can
actually start transmitting, or until it senses activity of its
neighbors succeeding to start transmitting, in which case
it will wait for the next frame for further transmission
attempts.

2) Asynchronous systems. In these systems, transmitters
always sense the channel, and when their buffers are
not empty, they start transmission of data just after an
idle slot. As a consequence, the channel busy periods in
different areas of the network may be not synchronized.

A. Synchronous systems

In synchronous systems, each frame is divided into two
parts: (i) a first part devoted to contention resolution, and (ii)
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a second part corresponding to the transmission of actual data
packets. To formally let β tends to 0, we consider a sequence
of systems indexed by an integer N . In the N -th system, the
duration of a slot is βN and the contention resolution part of
each frame is composed by MN slots. The choices of βN and
MN are made such that

lim
N→∞

βN = 0, and βN × MN = ε, (1)

where ε is a very small constant. The second equation in
(1) guarantees that the contention time is kept constant at ε
irrespective of the sequence of systems. In what follows, for
any A ⊂ L, we denote by MA the set of maximal schedules
when the set of links is reduced to A.

Lemma 1: Denote by mN
p (t,A) the schedule used in frame

t in the N -th system when the transmission probabilities of
the various links are p and when the set of active links is A,
and define:

∀m ⊂ A, τN
p (m,A) , P[mN

p (t,A) = m].

Then for all m ⊂ A, τN
p (m,A) converges to τp(m,A) when

N tends to ∞, and τp(m,A) > 0 if and only if m ∈ MA.

The proof of the lemma relies on the fact that during the
contention period, a schedule is constructed through a random
packing process. This process ends if the contention period
expires or if a maximal schedule has been constructed. Now it
is easy to observe that the probability that a maximal schedule
is constructed after M slots tends to 1 when M grows large,
and the result follows.

Note that the random variables mN
p (t,A), t = 0, 1, . . . , are

i.i.d., which justifies the definition of τN
p (m,A). Lemma 1

says that, depending on the set of active links and on the
transmission probabilities, at each frame, a schedule is chosen
with some probability. With probability approaching 1, this
schedule is maximal. In other words we obtain a scheduling
algorithm that probabilistically chooses a maximal schedule
in each frame. Usually, the limiting distributions τp(·, ·) is
difficult to compute since the analysis of the random packing
process is not trivial [13]. This process is different than those
usually investigated in the literature, because here, several
links can be activated simultaneously. This property ensures a
better spatial reuse in the network.

As an example, consider a simple 3-link network where
links 1 and 3 interfere link 2, but do not interfere with each
other. Then, the limiting distribution of maximal schedules
when all links are backlogged (i.e., A = L) is:

τp({2},L) =
p2(1 − p1)(1 − p3)∏3

i=1(1 − pi) + p2(p1 + p3) −
∏3

i=1 pi

,

τp({1, 3},L) =
(1 − p2)(1 − (1 − p1)(1 − p3))∏3

i=1(1 − pi) + p2(p1 + p3) −
∏3

i=1 pi

.

When p1 = p2 = p3 = 1/2, the links 1 and 3 are
scheduled 3/4 of the frames. For more general networks, it
becomes non-trivial. However there are some cases where we
are able to identify the mapping p 7→ τp(·, ·). We propose

here two ways of controlling the weights of the WFM scheme
obtained as a limit of random access algorithms. One, where
the transmission probabilities are made very small, and the
other where they are made very close to 1.

1) Small transmission probabilities: In conjunction with
the assumption (1), the sequence of transmission probabilities
pN are such that:

∀l, lim
N→∞

pN
l = 0, lim

N→∞

βN

minl∈L pN
l

= 0. (2)

We further assume that all the following limits exist:

∀l, k ∈ L, lim
N→∞

pN
k

pN
l

= akl ∈ R+ ∪ {∞}. (3)

Fix the set of active links A, and define the following
randomized algorithm (R1) to build a maximal schedule S:
Step 1 S = ∅,R = A
Step 2 With probability (

∑
k∈R akl)−1 do S = S ∪ {l} and

R = R \ {k : Akl = 1},
Step 3 Apply Step 2 until R = ∅

We denote by τ1(m,A) the probability that the maximal
schedule built by R1 is m.

Lemma 2: Denote by mN
pN (t,A) the schedule used in frame

t in the N -th system when the set of active links is A, and
define ∀m ⊂ A, τN

pN (m,A) the probability that it is equal
to m. Then, under Assumptions (1)-(2)-(3), for all m ⊂ A,
τN
pN (m,A) converges to τ1(m,A) if m ∈ MA, and to 0

otherwise.

The proof is similar to that of Lemma 1. Note that As-
sumption (2) ensures that the construction of a maximal
schedule finishes before the end of the contention period with
a probability that tends to 1 when N grows large. Indeed, if
link l is in R, the probability that it will appear before its
neighbors in S during the next s fraction of the contention
period (that is during the next εs/βN slots) is roughly equal
to 1 − exp(−εspN

l /βN ), which tends to 1 when N tends to
∞.

Suppose that we set the transmission probabilities to be
equal to (cN )nl(A), where cN is a sequence tending to 0
when N tends to ∞, and nl(A) is the number of interfering
neighbors of link l in A. Then, the corresponding random
access algorithm tends to realize the minimum-degree greedy
algorithm [13] to build the schedule, i.e., it builds the schedule
sequentially choosing the link with the least number of inter-
fering neighbors. However, the transmitters have to know the
number of active interfering links. We next give an algorithm
that realizes minimum-degree greedy algorithm, but does not
require any information on active neighbors.

2) Large transmission probabilities: Again consider a se-
quence of systems, and assume:

∀l, lim
N→∞

pN
l = 1, lim

N→∞

βN

minl∈L(1 − pN
l )

= 0. (4)
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We further assume that all the following limits exist:

∀l, k ∈ L, lim
N→∞

∏
j 6=k:Ajk=1(1 − pN

j )∏
j 6=l:Ajl=1(1 − pN

j )
= bkl ∈ R+ ∪ {∞}.

(5)
Fix the set of active links A, and define the following

randomized algorithm (R2) to build a maximal schedule S:
Step 1 S = ∅,R = A
Step 2 With probability (

∑
k∈R bkl)−1 do S = S ∪ {l} and

R = R \ {k : Akl = 1},
Step 3 Apply Step 2 until P = ∅

We denote by τ2(m,A) the probability that the maximal
schedule built by Algorithm (R2) is m.

Lemma 3: Denote by mN
p (t,A) the schedule used in frame

t in the N -th system when the set of active links is A and
define ∀m ⊂ A, τN

pN (m,A) the probability that it is equal
to m. Then, under Assumptions (1)-(4)-(5), for all m ⊂ A,
τN
p (m,A) converges to τ2(m,A) if m ∈ MA, and to 0

otherwise.

The proof is similar to that of Lemma 2. If we set the
transmission probabilities to be equal to 1 − cN , where cN

is a sequence tending to 0 when N tends to ∞, then the
corresponding random access algorithm realizes the minimum-
degree greedy algorithm, where each node does not need to
know the active interfering links, different from the algorithm
R1. In other words, with the simplest random access algorithm,
we can realize the maximal scheduling algorithm that picks
the schedule according to the minimum-degree scheme (with
probabilistic tie breaking).

B. Asynchronous systems

In case of asynchronous systems, to understand the system
behavior, we have to fix the set of active links A. Then, for any
fixed β and p, the system can be modeled as a loss network
as explained in [12]. Due to collisions, the loss network loses
its reversibility and thus its analysis becomes non-trivial in
general. However we can build sequences of systems such that
the contention period tends to 0, such that the system behavior
becomes very close to that of a continuous-time reversible loss
network. Such reversible processes have been suggested by
Kelly [9] to model Local Area Networks and recently revisited
and extended by Durvy and Thiran [8] to understand random
access protocols in wireless networks. Next, we construct a
sequence of systems where all the transmitters use random
access algorithms, such that the system behavior converges to
that of a particular loss network in heavy traffic.

Let us first introduce the loss network model corresponding
to the system considered. We start from the interfernec (or
conflict) graph: for each edge between two (interfering) links
k and l in this graph, we build a unit-capacity link kl in
the loss network. In this loss network, the routes are rl =
{(kl) : Akl = 1} for all l ∈ A. Clients arrive on route
r according to a Poisson process of intensity νl and leave
the loss network with rate 1. Let m ⊂ A such that for all
k, l ∈ m, Akl = 0 (m is a feasible schedule): the stationary

probability that there is a client on route rl (which corresponds
to the fact that there is a successful transmission on link l) for
each l ∈ m is proportional to

∏
l∈m νl. Now consider the

loss network in heavy traffic: for all l, νl = u × ηl, where u
tends to ∞. Then at the limit when u tends to ∞, the set of
active routes mη(t,A) at time t can be seen as the state of
a Markov process alternating between maximal sets of routes
(corresponding to maximal schedules). This Markov process is
ergodic with stationary distribution (τη(m,A),m ⊂ A) such
that τη(m,A) = 0 if m /∈ MA and if m,m′ ∈ MA:

τη(m,A)
τη(m′,A)

=
∏

l∈m ηl∏
l∈m′ ηl

. (6)

Note that to have a Markovian setting, we need that the clients
use routes for exponentially distributed periods (exponentially
distributed packet transmission durations). However, this as-
sumption does not make change the picture here, since the
processes considered are reversible, and then insensitive to the
distribution of holding times.

Let us go back to wireless systems based on random access
algorithms. Consider a sequence of asynchronous systems such
that (1)-(2)-(3) are satisfied, with for all k, l ∈ L, akl = ηk/ηl,
with for all l, ηl > 0. We have:

Lemma 4: Assume that the set of active link is always A.
Denote by mN

pN (t,A) the schedule used at time t in the N -th
system. The process (mN

pN (t,A), t ≥ 0) converges in law (on
all compacts) to the process (mη(t,A), t ≥ 0) representing
the heavy-traffic behavior of the corresponding loss network.

Lemma 4 can be proved using classical continuity argu-
ments for finite state-space Markov processes. The lemma
states that in asynchronous systems, when the set of active
links is fixed, then after a while (after the time it takes for the
distribution of the limiting process (mη(t,A), t ≥ 0) to be
close to its stationary distribution), random access algorithms
tend to realize a Maximum Size scheduling scheme with
probabilistic tie breaking. It is important to note the difference
with synchronous systems. In synchronous systems, random
access algorithms realize a Maximal scheduling scheme, with
schedules chosen by the minimum-degree greedy algorithm,
and the maximal schedules are found at the beginning of each
frame.

C. Throughput guarantees

So far, we have shown that one can build sequences of
systems based on non-adaptive random access algorithms
that approximately realize particular maximal scheduling al-
gorithms. Does it imply that we have found non-adaptive
random access algorithms (without any message passing) that
achieve almost the same throughput performance as that of
these maximal scheduling algorithms? The answer is yes. In
particular, for synchronous systems, the proof basically comes
from the fact that the choices of the maximal schedule are
independent across frames. Denote by ΓMD the throughput
region of the scheduling scheme for which the maximal
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schedule is constructed using the minimum-degree greedy
algorithm.

Proposition 1: In synchronous systems, for any ε > 0, there
exists a scheduling scheme based on a non-adaptive random
access algorithm and with throughput region (1 − ε) × ΓMD.

In asynchronous systems, obtaining the similar result to syn-
chronous systems is less obvious, since identifying a schedule
with maximum size requires the underlying loss network to
be close to its stationary regime. We now sketch the way one
can handle this difficulty. The convergence to the stationary
regime is known to be geometric, and we can make the rate
of convergence uniform in the set of active links A. To allow
time for convergence, we need to ensure that the set of active
links does not change very often. To that end, we propose and
apply the following rules to the random access algorithms.
Rule 1. Let T > 0. The transmitter of a link l behaves as
follows: if its queue length becomes smaller than LT , it stops
trying to transmit; if its queue length becomes greater than
2LT then it will re-start trying to attempt the channel.
Rule 2. Periodic reset. Periodically, links wait after finishing a
transmission until all transmitters have also finished transmit-
ting their current packet. The period of resets T ′ can be made
large enough so that this impact on the throughput region of
resets is negligible.

Now, Rule 1 and the fact that the arrival and departure rates
of packets in any buffer is bounded by 1 (by assumption)
allows the interval between two successive changes in the set
of active links to be at least T. We consider a sequence of
systems based on random access algorithms satisfying Rules
1 and 2, and the assumptions of Lemma 4. Let us compute
the ergodic average of the chosen schedules in a period of
time where there is no change in the set of active links and no
reset. The duration T0 of this period lies between T and T ′.
Denote by rN

l (T0), rl(T0), and rMS
l (T0) the average number

of packets served on link l in the system indexed by N , the
limiting system, and the system where the schedule is chosen
according to the Maximum Size scheduling scheme. Let us
fix ε > 0, one can find T large enough such that |rl(T0) −
rMS
l (T0)| < ε/2, by ergodicity of the loss network process.

Then by Lemma 4, we may find N (depending on ε, T , and
T ′) such that |rN

l (T0) − rl(T0)| < ε/2. We then conclude
that between two resets, the average number of packets served
on link l in the N -th system and the system running with a
Maximum Size scheduling scheme are equal up to ε.

Denote by ΓMS the throughput region of the maximal
scheduling choosing schedules using Maximum Size algo-
rithm.

Proposition 2: In asynchronous systems, for any ε > 0,
there exists a scheduling scheme based on a non-adaptive ran-
dom access algorithm, modified as above, and with throughput
region (1 − ε) × ΓMS.

IV. STABILITY OF NETWORKS UNDER WEIGHTED-FAIR
MAXIMAL SCHEDULING

The stability properties of WFM scheduling schemes are
very difficult to analyze, since under these schemes, the service
rate on a link depends on the set of active links, i.e., a system
of interacting queues. It is a future direction to carry out an
exhaustive analysis of the throughput region of general WFM
algorithms.

In this section, we analyze, for some specific networks,
the throughput performance of the Maximum Size scheduling
schemes that can be realized using random access algorithms
for large transmission probabilities. Few papers have investi-
gated this issue. In [10], the authors provide a lower bound
on the stability region of maximal scheduling in general;
they prove that maximal scheduling is 1/κmax-throughput
optimal, where κmax is the maximum number of independent3

interferers of a link. The authors show that the bound is tight,
but to obtain tightness they consider a worst case in terms of
(a) the network topology and size, (b) the maximal scheduling
algorithm, (c) the relative mean arrival rates at the various
links, (d) the correlations among the packet arrival processes
at various links. In [11], the authors show that the bound is also
tight if we consider worst cases only w.r.t. (a), (b) and (c). The
worst network topology is that of a star network as depicted
Figure 2. This network has K + 1 links: link 0 interfered by
all other links, and links 1, . . . ,K that do not interfere with
each other. The worst maximal scheduling scheme is then a
Maximum Size scheduling scheme that always breaks ties in
favor of links 1, . . . ,K (link 0 then may transmit only when
the buffers of all the other links are empty).

Using random access algorithms, we may emulate Maxi-
mum Size scheduling scheme with probabilistic tie breaking
(the probabilistic tie breaking rule is done according to (6)).
For example, when all transmitters access the channel with
the same probability, tie is broken uniformly in symmetric
network. Note that tie is broken only when the buffers of link 0
and only one of the other links are not empty. Denote by a the
probability that link 0 captures the channel is such cases. We
show next that the probabilistic tie breaking rule considerably
improves the throughput performance (compared to that of
the worst maximal scheduling algorithms considered in [10],
[11], i.e., a = 0). Denote by λ (resp. λi) the packet arrival
rate at link 0 (resp. i for i ≥ 1). The following proposition
characterizes the throughput region of the Maximum Size
scheduling schemes with probabilistic tie breaking. We use
the notations:

fi =
K∏

j=1,j 6=i

(1 − λj), f =
K∏

j=1

(1 − λj).

Proposition 3: The network is unstable if and only if one
of the following conditions holds:
(i) ∃i ∈ {1, . . . ,K}: λi + λ > 1,

3Two links are independent if they do not interfere.
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(ii) ∀i ∈ {1, . . . ,K}: λi + λ ≤ 1 and afi ≤ 1, and

λ >

(
1 + a

K∑
i=1

λifi

1 − λi − afi

)−1 (
f + a

K∑
i=1

λi(1 − λi)fi

1 − λi − afi

)
.

The previous proposition is a generalization of a result ob-
tained by Zhang-Shen et al. [14] for 2x2 switches (equivalent
to the wireless network considered here with K = 2). Let us
sketch the proof of the result. Without loss of generality, we
consider now a slotted system, where the packet transmission
duration is one slot, and where packets are generated at the
beginning of time slots (at most one packet per slot per
link). Instability under condition (i) is immediate since in this
case, the arrival rate vector does not belong to the maximum
throughput region Γ. Now assume that the arrival rate vector
is in Γ, and assume the system is empty at time 0 (we can
do that by irreducibility). Then remark that at any time t, at
most one of the links 1, . . . ,K is active (because when two
buffers from links 1, . . . ,K are not empty, they are served in
priority). We can show as in [14] that in case of instability,
buffer 0 has to be unstable. Hence we may assume that link 0
is always active. With this assumption the system behavior is
simple to analyze and we easily deduce that (ii) is a necessary
and sufficient condition for instability.

In Figure 2, we give the worst throughput efficiency of the
star network with K + 1 link depending on the tie breaking
parameter a. Note that a = 0.5 is simply achieved assuming
that transmitters attempt to access the channel with the same
probability. As illustrated, the worst efficiency is far from
being 1/κmax. The latter lower bound is only tight when the
number of links K is very large.
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Fig. 2. The worst throughput efficiency in a star network with K + 1 link.

V. BEYOND NON-ADAPTIVE RANDOM ACCESS
ALGORITHMS

Although non-adaptive random access algorithms can of-
fer good throughput performance, these algorithms may not
provide throughput optimality. Actually, one may argue that
it is impossible to guarantee throughput optimality without
any information exchange among links. An idea to provide
throughput optimality in asynchronous systems could be to
let the transmitters access the channel with probabilities that
depend on the size of the corresponding buffer. In the setting
of Section III-B, one may propose that link l transmits with

probability 1−exp(−αQl), where Ql is the buffer size of link
l and α is large parameter. With such choices, one can show
that in the limiting regime characterized by (6), the system
would choose the schedule with maximum weight with high
probability (depending on α). The problem is that we can
not bound the time it takes to converge to such favorable
configuration uniformly in the buffer sizes: it would take
roughly exp(αQl) slots to identify the favorable schedule.

Hence it seems crucial to exchange information among
links if we want to design throughput optimal schemes using
random access algorithms. First steps in this direction have
been provided in [6], [7]: the proposed schemes are certainly
very close to optimality. We let for future work a formal
proof of this fact. However, as to whether it is better to
deploy a very simple MAC protocol that does not have
throughput optimality, or increasingly sophisticated ones with
such optimality at the expense of communication overhead,
the answer will depend on the actual application. This paper
serves to provide another step along the way of understanding
the really simple ones without any message passing.
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