T-Chain: A General Incentive Scheme for
Cooperative Computing

Kyuyong Shin*, Carlee Joe-Wong!, Sangtae Ha®, Yung Yi%, Injong Rhee¥, Douglas Reeves¥
*Korea Military Academy, TPrinceton University, iUniversity of Colorado—Boulder, §KAIST, NCSU
Emails: kyshin@kma.ac kr, cjoe@princeton.edu, sangtae.ha@colorado.edu, yiyung@kaist.edu, {rhee,reeves}@ncsu.edu

Abstract—In this paper, we propose a simple, distributed,
but highly efficient fairness-enforcing incentive mechanism for
cooperative computing. The proposed incentive scheme, called
Triangle Chaining (T-Chain), enforces reciprocity to minimize
the exploitable aspects of other schemes that allow free-riding.
In T-Chain, symmetric key cryptography provides the basis for
a lightweight, almost-fair exchange protocol, which is coupled
with a pay-it-forward mechanism. This combination increases the
opportunity for multi-lateral exchanges and further maximizes
the resource utilization of participants, each of whom is assumed
to operate solely for his or her own benefit. T-Chain also provides
barrier-free entry to newcomers with flexible resource allocation,
providing them with immediate benefits, and therefore is suitable
for dynamic environments with high churn (i.e., turnover). T-
Chain is distributed and simple to implement, as no trusted third
party is required to monitor or enforce the scheme, nor is there
any reliance on reputation information or tokens.

I. INTRODUCTION

In many distributed systems, participants voluntarily pool or
share their resources (e.g., computing power, storage space,
and network bandwidth) in order to obtain mutual benefits.
This general notion may be termed cooperative comput-
ing. Examples of cooperative computing include the Domain
Name System, BGP-4 routing, grid and cloud computing,
application-layer multi-cast, file sharing, streaming, etc.

The information and services provided by cooperative com-
puting to its participants can be thought of as examples of a
public good. In sharing the public good, cooperation among
participants is important to ensure a satisfactory experience
for all, but there may exist some free-riders, i.e., free-riding
participants, who try to enjoy the benefits of the good without
contributing to it. If free-riders are present, contributing partic-
ipants can experience under-provisioning of the good, leading
to inefficiency, unfairness, and even system collapse in some
cases, i.e., the “tragedy of the commons” [1]. Reciprocity pre-
vents such under-provisioning through the expectation that a
participant who consumes resources will contribute equivalent
resources for the benefit of others, while those unwilling to
reciprocate will be excluded from the public good’s benefits.
Enforcing the principle of reciprocity, however, is surprisingly
difficult in fully distributed systems [2]-[4].

A large range of incentive mechanisms to enforce reci-
procity in cooperative computing have been proposed, which
can be categorized into three groups: direct reciprocity [5]-
[8], indirect reciprocity [9]-[13], and the use of coding or
encryption [2], [7], [10], [14]. Currently, however, none of
these techniques have been notably successful in preventing

free-riding. Reasons may include their complexity and/or
overhead, slow convergence times, the absence of trust among
participants, and the ease of bypassing the proposed mecha-
nisms [2].

Preventing free-riding may conflict with other important
performance metrics in cooperative computing, such as ef-
ficiency (e.g., file downloading time), introducing a trade-
off between the desired objectives (see [15] for details).
This trade-off occurs because the goals of ensuring fairness
and getting better efficiency (through donating bandwidth
for fast newcomer bootstrapping) may conflict with each
other. Bandwidth donated to newcomers, for example, is often
exploited for the purposes of free-riding. Another challenge
in designing incentive mechanisms comes from the diversity
of cooperative computing applications. As a result, many
existing incentive mechanisms emphasize one goal (either
fairness or efficiency/bootstrapping speed) at the expense of
the other. Thus, a good incentive mechanism in cooperative
computing should satisfy two requirements simultaneously: (i)
strict fairness to overcome free-riding; and (ii) adaptive (but
not exploitable) newcomer bootstrapping for efficiency.

This paper proposes a general incentive mechanism for
cooperative computing, enforcing direct and/or indirect reci-
procity among participants, that is designed to meet the two
afore-mentioned requirements. Under the proposed scheme,
a participant A contributes an almost complete resource re-
quested by another participant B. A also informs B of the
party to whom B must reciprocate. If A and B have symmetric
interests, A can designate itself as the party to whom B must
reciprocate. Otherwise, A designates another participant C as
the participant to whom B must reciprocate. This represents a
pay-it-forward policy [16]. It reduces the difficulty of finding a
compatible participant with mutual interests by expanding the
definition of reciprocation to include (almost) any participant.
The (almost complete) resource contributed by A to B is
completed if, and only if, the request for reciprocation is
fulfilled. The steps just outlined constitute an almost-fair
exchange protocol, in which neither party can gain advantage
by terminating the protocol early.

In fulfilling its obligation to reciprocate, B likewise con-
tributes an almost complete resource to the designated re-
cipient, and requires that recipient to reciprocate exactly as
B was required to do. The completion of one almost-fair
exchange thus begins another almost-fair exchange, leading to
a chain of reciprocal exchanges. In this method, resources for

bootstrapping are dynamically adjusted, based on the arrival
rate and demands of newcomers. The proposed solution is
called Triangle Chaining, or T-Chain for short. T-Chain has
several favorable points:

e [ncentive compatibility: T-Chain triggers strong incentives
for all participants to follow the given protocol in order to
maximize their own benefits. This property is discussed in
detail in Section II-B.

e Fuast but non-exploitable bootstrapping: Newcomers can
immediately participate in and fully contribute to the
cooperative system. The way in which this is achieved,
however, cannot be exploited for free-riding purposes,
except under rare circumstances. In contrast to other incen-
tive schemes, no fixed amount of system resources needs to
be pre-allocated for newcomer bootstrapping. Rather, these
resources are adjusted according to the system needs.

e Fairness: In order to complete the received resource, the
recipient must reciprocate with virtually the same amount
of work or resource contribution. This ensures excellent
fairness among participants.

e Robustness: The creation of multiple identities, changing
identities, or frequent changing of the neighbor set will
not be helpful to a potential free-rider, since reputation is
neither computed nor used in T-Chain. Opportunities for
collusion by free-riders are extremely limited, because the
party to whom reciprocation must occur is selected by the
donor of the resource, not the recipient.

We illustrate the benefits and practicality of T-Chain by
applying it to BitTorrent [5], currently the most popular
file sharing application. BitTorrent suffers substantial loss of
performance due to free-riding, despite repeated attempts to
address the issue. Compared with current approaches (BitTor-
rent [5], PropShare [7], and FairTorrent [8]) under realistic
conditions, T-Chain prevents, instead of merely penalizing,
free-riding, and protects compliant peers from free-riding’s
detrimental effects. T-Chain also fully utilizes the upload ca-
pacity of compliant participants despite free-riding, in contrast
to these other approaches. Finally, the additional overhead of
T-Chain is about 1% of the normal bandwidth and storage
requirements of BitTorrent.

The remainder of this paper is organized as follows. First,
Section II details our method, T-Chain. Security considera-
tions, newcomer bootstrapping performance, and an overhead
analysis are discussed in Section III. Section IV presents
our evaluation of T-Chain, comparing it with BitTorrent,
PropShare, and FairTorrent. Section V briefly surveys related
works and, finally, Section VI concludes the paper.

II. DESIGN OF T-CHAIN

In this section, we present a new method, T-Chain, for
minimizing or preventing free-riding. We apply T-Chain to
BitTorrent and assume that the resource being shared (and
the limiting factor on the system performance) is upload
bandwidth. We use some BitTorrent terminology and concepts

TABLE I: Summary of Notations

A, B, ... | Participants (leechers or seeders) in a swarm
F The file being shared by a swarm
Dik The " piece of F in k" transaction in a chain
Kpix] Encryption of p;; with a symmetric key K
I The set of pieces completed (downloaded and
decrypted) by A (Fa C {p1,p2,-..,Pm})
Kk The symmetric encryption key used by A
AB to encrypt p;x when sent to B
t; The ;%" transaction of a chain
D, Donor (i.e., uploader) in the jth transaction
R, Requestor (i.e., downloader) in the j** transaction
P; Payee in the 5" transaction

(refer to Cohen’s original paper [5] for details) for better
understanding. Table I introduces our notation.

In BitTorrent, participants form a swarm sharing a single
file divided into many fixed size pieces, each of which is
further subdivided into blocks. Participants logically share or
exchange file pieces, with blocks as the actual unit of transfer.
It is assumed that participants are rational and selfish; they
wish to maximize their benefits (i.e., minimize the time to
download a file), while minimizing their contributions (i.e.,
file piece uploads to others).

A seeder creates and posts a .torrent file describing the
file it wants to share. Leechers wishing to download the file
retrieve the .torrent and contact a tracker identified there.
The tracker forwards a list of up to 50 randomly selected
members (i.e., seeders and other leechers) of the swarm. A
newcomer attempts to establish a TCP connection to each
member in that list; if the connection is accepted, they become
neighbors. Leechers with fewer than 30 neighbors can ask the
tracker for another list. A leecher can exchange file pieces
with its neighbors and download pieces from the seeder(s);
each leecher periodically sends its neighbors a list of its file
pieces. Leechers download the file piece for which the fewest
copies exist among their neighbors first, following the Local
Rarest First (LRF) policy. They wish to download the file
as quickly as possible, while seeders altruistically upload to
others without expecting anything in return.

BitTorrent discourages free-riding using rate-based tit-for-
tat (TFT) [5], in which a leecher initially chokes all connec-
tions to its neighbors and uploads no data. Roughly every 10
seconds, the leecher unchokes the k neighbors who have up-
loaded the most to it over the past 10 second interval, where &
usually equals 4. Every 30 seconds, a leecher randomly selects
and unchokes one additional neighbor, regardless of its past
upload history. This optimistic unchoking allows newcomers
to be easily bootstrapped into the system (i.e., some pieces
are altruistically uploaded to newcomers) and helps leechers
partner with new, potentially better, neighbors.

A. Basic T-Chain Protocol

T-Chain primarily changes BitTorrent’s seeding and unchok-
ing procedures. We modify what seeders upload to leechers,
which neighbors are selected for unchoking, and how much is
uploaded to each neighbor and when.

7 K«i:z,ny
B — -
@2)[(11-A) | K¢ [pi) | D}
(a) Initiation Phase(t1) (b) Continuation Phase(t2 ~ t,—1)

@ [(i(n), W) | Pin | null]@

(¢) Termination Phase(t,,)

; 4K}
@1) [null | Ki'; [pia] | C]

Fig. 1: The initial, intermediate, and terminal transactions in each
chain of T-Chain.

File piece exchanges in T-Chain are termed transactions.
The j'" transaction ¢; usually involves three parties: a Re-
questor (R;), a Donor (D;), and a Payee (P;). In transaction
t;, D; will upload a file piece p; to R;, who is one of its
requesting neighbors. This file piece is first encrypted by
D; with key KD r, to ensure payment (i.e., reciprocation).
To receive the decryptlon key K]D R; from Dj;, R; must
reciprocate ID;’s upload by uploadmg another encrypted file
piece to payee]P’ designated by ID;. If R; does not reciprocate,
the encrypted ﬁle piece provided by le cannot be decrypted,
preventing R; from getting something (useful) for nothing.! A
transaction completes as soon as R; reciprocates the download
and receives the decryption key.

In the next transaction, R; and P; of transaction ¢; change
roles to become the donor D;i; and requestor R, ; of
transaction t;41, with a new payee P, ¢; note that ¢;4q is
thus initiated by the requestor’s reciprocation in transaction
t;. A sequence of transactions (¢1, t2, ---), each completing
the one before, can continue indefinitely, constituting a chain.
As seen in Figure 1, each chain has three phases: (a) initiation,
(b) continuation, and (c) termination.

1) Initiation Phase: Figure I(a): As in BitTorrent, initially
the seeder has all the pieces of a file F' and will begin the
process of distributing file pieces without expecting anything
in return. The seeder (A in Figure 1(a)) begins a chain of
transactions by uploading a file piece p;1, selected (by B) with
the LRF policy, to a randomly selected requestor leecher B.
A is thus the donor of the first transaction.

Before uploading, A encrypts the file piece p;; with a
symmetric key Ki'p. The donor A also informs requestor B
that it must reciprocate by uploading a file piece to payee
(leecher) C. The payee C may be randomly selected by A from
among A’s neighbors that desire at least one of B’s file pieces.”
If the selected payee C is not a neighbor of B, then B should
send a neighboring request before reciprocation; alternatively,
A can provide a list of candidate payees to B for reciprocation.

'We assume that each key is used to encrypt only one file piece and never
used thereafter, which need not be the case in practice).
2A different method is used when B is a newcomer (Section II-C1).

The requestor B satisfies the reciprocity requirement by
uploading another file piece p;2 to C, encrypted with its
own key Kg’c; the piece is chosen by C using the LRF
policy. While uploading, B also informs C that this upload
is reciprocation for A’s upload of p;; to B. If (and only if)
C notifies A that B has reciprocated,> A will release the key
K Ap to B. This key allows B to decrypt the file piece p;1,
completmg the first transaction of the chain. Note that B’s
upload reciprocation to the payee C starts a second transaction
in the chain; this is indicated with blue in Figure 1(a).

2) Continuation Phase: Figure 1(b): As described above,
the fulfillment of one transaction requires another to be started.
In the second transaction, B acts as A did in the first transac-
tion. Along with uploading an encrypted file piece p;2 to C,
B selects a qualified participant D (among its neighbors) and
designates it to C as the payee to whom C must reciprocate.
The transaction then completes as in the initiation phase.

The donor B cannot choose the requestor C in this phase of
the chain, since C is selected by A in the previous transaction.
However, B can freely choose the payee D to whom C must
reciprocate. This choice follows one of two strategies:

o Direct reciprocity. If the requestor C possesses at least
one file piece that B needs, B designates itself as the
payee D to whom C must reciprocate. This designation
represents simple bi-lateral reciprocation between B and
C, as in BitTorrent’s TFT policy; note that C is still free
to choose the payee for the next transaction in the chain,
which can continue as usual. Similarly, there is no harm
or confusion if one leecher takes part in multiple chains
simultaneously. In general, this is desirable to fully utilize
the available upload bandwidth of all the leechers (see
Section II-C3 for details).

o Indirect reciprocity. If direct reciprocity is not possible,
the donor B randomly chooses a payee among its neigh-
bors who need at least one of C’s file pieces (including the
file piece p;» about to be uploaded). If no such neighbor
exists in the donor’s (not requestor’s) neighbor set, then
the chain terminates, as discussed in the next section.

Note that as the fraction of newcomers increases, the
probability that indirect reciprocity will select a newcomer
as the payee will also increase. T-Chain thus automatically
adjusts the resources allocated to newcomers depending on
their prevalence in the system.

3) Termination Phase: Figure I(c): A leecher X who is
required (by W) to upload a file piece to Y will normally des-
ignate another leecher, Z, to whom Y must upload. However,
if X has no neighbor (including itself) who needs to download
at least one piece from Y, X will upload an un-encrypted file
piece to Y, releasing Y from the responsibility to reciprocate
and terminating the chain.

Termination of a chain should occur only when newcomers
stop joining a swarm. Under these conditions, as all leechers

3Receiver reports or notifications are assumed to be communicated directly
by the payee (e.g., C) to the donor (e.g., A). If IP address spoofing is con-
sidered to be a threat, there are standard ways to authenticate communication
between these two parties, and to prevent replay attacks (refer to RFC4953).

finish downloading the file and leave the swarm, all chains
must eventually terminate. In the most extreme case of a
swarm consisting of a single seeder and a single leecher,
the seeder will simply upload the complete, unencrypted file
directly to the leecher: the leecher cannot reciprocate to any
other peer. Although this is a form of free-riding, it cannot
be exploited by selfish participants unless they are willing to
wait until all leechers depart and hope that no one else will
join the swarm.

B. Incentives in T-Chain

In this section, we show that each party in Figure 1(a) (i.e.,
A, B, and C) has an incentive to follow the T-Chain protocol.

Proposition 2.1 (Incentive compatibility): Assume that A
receives a positive utility from distributing each file piece, B
receives a positive utility from receiving piece 1 from A, and
C receives a positive utility from receiving piece i2 from B.
If A, B, and C do not collude and the cost of transmitting
encryption keys is negligible, then all three players increase
their utility by participating in T-Chain.

Proof: A clearly benefits from uploading a file piece and
corresponding encryption key to B; in fact, A will initiate as
many chains with as many participants as possible, so as to
distribute more file pieces. B is incentivized to reciprocate to
C, as otherwise C will not send a notification to A and A will
refuse to send B the key K}';. The payee C has an incentive
to report its reception of an encrypted piece from B to A.
Otherwise, B will not release its decryption key K33 to C in
the next transaction. l [|

Upon uploading to C, B can also benefit from direct reci-
procity, i.e., designating itself as the next payee in the chain,
if it needs a file piece that C possesses. If direct reciprocity
is not possible, B will designate some other payee D at no
cost to itself. Designating ID as the payee reduces B’s potential
competition with D in other chains and in future transactions in
the same chain, benefitting B through an offloading effect [17].

The above mentioned incentives for the donor A, requestor
B, and payee C apply to all participants in each transaction of
a chain. Since there are strong incentives for all participants
to follow the given protocol so as to maximize their benefits,
we claim that T-Chain is incentive compatible.

C. Additional Features of T-Chain Protocol

T-Chain’s basic protocol can be improved through new-
comer bootstrapping, flow control (adaptive receiver selec-
tion), and opportunistic seeding. Each of these is motivated
and described below.

1) Newcomer Bootstrapping: In order to reciprocate, re-
questors must have at least one completed (i.e., decrypted)
file piece needed by the payee. This may not be the case for
newcomers, however. For instance, suppose B in Figure 1(a)
is a newcomer. B is required by A to reciprocate for p;; by
uploading another encrypted file piece p;> to C. Since B has
no completed file pieces yet, it has difficulty in complying.

In this case A must select a piece p;; that both B and C
need, which is the only case in which the LRF policy is not

used in T-Chain. Now A uploads the piece p;; after encryption
(e, Ki'glpa]) to B. Then B will be able to reciprocate
by simply forwarding the encrypted piece K&B [pi1] or by
uploading it after re-encryption using its own key to C.

Note that this procedure makes no change in the basic
protocol, except for the piece selection scheme. No system
resources need to be set aside for newcomer bootstrapping, in
contrast with other schemes (e.g., PropShare [7]).

A significant innovation of T-Chain is that this method for
bootstrapping newcomers is difficult for free-riders to exploit.
Newcomers, like all file requestors, must reciprocate to other
leechers in order to receive decryption keys for the (encrypted)
pieces they receive. We believe the combination of immediate,
barrier-free entry of newcomers into the swarm, without risk
of free-riding, is unique in the literature (c.f. Section V).

2) Flow Control (Adaptive Receiver Selection): In the basic
protocol described above, qualified neighbors have a uniform
probability of being designated as the payee of an encrypted
file piece upload. However, in a real swarm, some neighbors
may have heterogeneous upload bandwidth capacities, making
this policy sub-optimal. A leecher with low upload bandwidth
can accumulate a backlog of encrypted file pieces that need to
be reciprocated, while a leecher with high upload bandwidth
may download pieces at a rate too slow to use its full upload
capacity while reciprocating.

To prevent these scenarios, each leecher in T-Chain can
maintain a local history of its neighbors that records the
number of pending file pieces, defined as the number of
encrypted file pieces uploaded to that neighbor for which it
has not yet received notification of reciprocation. A neighbor
who has received more than %k pending file pieces from A will
be neither selected by A to receive pieces nor designated as a
payee until its number of pending file pieces drops below k.
This procedure also helps participants identify uncooperative
or malfunctioning neighbors. If a neighbor does not reciprocate
its uploads, its number of pending file pieces will increase
and it will be banned as a payee. Note that this adaptive
selection requires no centralized monitoring or information
sharing between participants.

The value of k determines how many pending file pieces
a leecher is permitted to buffer. A higher value of k£ helps
smooth out variations in system capacity, processing and
networking delays, upload bandwidths, etc., but increases the
probability that some leechers are over- and some underloaded.
An alternative option for A is to choose a neighbor with
the smallest number of pending pieces. In the experiments
described in Section IV, k was set to 2.

3) Opportunistic Seeding: In the basic T-Chain protocol,
only a seeder may initiate a chain. However, if too many chains
are terminated, e.g., due to leecher failure, departure of the
leecher from the swarm without completing the file download,
temporary network problems, or free-riding, then the number
of chains in the swarm may not fully utilize all of the available
upload capacity, degrading system performance. Yet the seeder
may not be able to keep up with the rate at which existing
chains terminate.

To compensate for too few chains in the swarm, T-Chain can
use opportunistic seeding: a leecher B initiates a new chain by
voluntarily uploading an encrypted file piece to another leecher
C, if B in possession of at least one completed file piece and
has no pending (not yet reciprocated) file pieces. In such a
transaction, the leecher B plays the role of the seeder and
thus selects both the requestor and the payee, as is the case
for normal seeders. The leecher B may, and probably will,
designate itself as the leecher to whom C must reciprocate,
which benefits B itself. Opportunistic seeding immediately
increases the number of chains in which B is participating,
benefiting both B and the system. We investigate the frequency
and the effect of opportunistic seeding in Section IV-D.

III. SECURITY, PERFORMANCE, AND OVERHEAD

In this section, we discuss how T-Chain counteracts known
strategic manipulation techniques for free-riding and increases
the rate of peer bootstrapping. We also show that these benefits
come with small additional overhead.

A. Countering Known Free-Riding Attacks

In this section, we first consider T-Chain’s vulnerability to
five previously-known free-riding attacks (exploiting altruism,
cheating, the large-view exploit, whitewashing, and the Sybil
attack), and then discuss its vulnerability to attacks tailored
to the operation of T-Chain. Attacks with other goals, such as
denial of service, content pollution, or malicious disruption of
system operation, are outside the scope of T-Chain.

1) Exploiting Altruism: In BitTorrent, free-riders can ex-
ploit the altruism of seeders, who do not expect reciprocation
for uploads, and optimistic unchoking [18]. In contrast, T-
Chain does not use altruism: any work that is done requires
reciprocation in order to be successfully completed. The only
exception occurs during chain termination (Section II-A3): a
seeder or a leecher X in a tiny swarm, who cannot find any
leecher (including itself) needing a file piece from Y, may
upload an unencrypted file piece to Y. However, this is a
rare occurrence; moreover, as discussed in Section II-A3, free-
riders cannot easily cause and exploit chain terminations.

2) Cheating: Cheating, or initiating transactions with other
leechers and later refusing to reciprocate by uploading to
those leechers, can easily occur in BitTorrent [2]. With T-
Chain, however, leechers derive no advantage from refusing
to reciprocate: the pieces downloaded from other peers are
encrypted, and are therefore useless to the downloader without
the matching decryption key, which is only released upon
reciprocation.

3) Large-view-exploit and Whitewashing: Since T-Chain
prevents exploiting altruism and cheating, there is little benefit
for free-riders to increase their chances of receiving altruistic
uploads by artificially increasing their number of neighbors
(i.e., using the large-view-exploit [19], [20]) or by frequently
changing their identities (i.e., engaging in whitewashing [9],
[21]). Even though they can potentially increase the number
of encrypted pieces received through these techniques, they
must still reciprocate to decrypt the encrypted pieces.

4) Collusion and the Sybil Attack: Free-riders can collude
with each other to maximize their benefits without contribu-
tion. For instance, indirect reciprocity (e.g., reputation) based
schemes are vulnerable to collusive behavior such as false
accusation and praise [22]. Such attacks are more difficult in
T-Chain and can only occur in isolated, rare scenarios: suppose
D uploads to R and designates P as the leecher to whom R
must reciprocate. If R and PP are in collusion (or R and P are
false IDs of the same peer), leecher P may lie to D, falsely
stating that R uploaded an encrypted piece to it when in fact
R did not. In this case, D will upload the matching key to R
“for free”, so free-riding will occur.

This type of collusion or Sybil attack is possible only during
indirect reciprocity: in direct reciprocity, D designates itself
as the payee P to whom R must upload and will not give the
key to R for decryption unless it actually receives a reciprocal
piece from R. We now calculate the probability that a collusion
(or Sybil) attack can occur during indirect reciprocity. For such
attacks to be successful, the requestor and the payee of the
same transaction must be colluders (or Sybils). We argue that
probability of this occurring is very small, unless the colluder
(or Sybil) set is very large, which is difficult to achieve.

Suppose that there are N peers in the system. Then each
peer receives b randomly chosen neighbors from the tracker.
Let S denote one colluder (or Sybil) set of m peers; typically,
m < N and b < N. We now calculate the probability of a
successful collusion (or Sybil) attack, i.e., that the payee and
requestor are both from S.

Since the requestor R; 1 of transaction ¢+ 1 is the payee P;
of the previous transaction ¢ (i.e., R;;; = P;), the requestor
R;+1 and payee P;;; of transaction 7 + 1 must have been
separately chosen by the donors D; and D, of the previous
and current transactions ¢ and ¢ + 1. Both randomly choose
their payees P; and P;;,; from among their neighbors. To
simplify the discussion, we assume that the current transaction
is not terminating and that all neighbors are equally eligible
to be chosen as payees. By the definition of T-Chain, D; and
D;+1 (= Ry, the requestor of transaction ¢) must be different
peers. We thus compute the probability P, of a successful
attack as follows: we first denote by P; the probability that
l out of b peers returned from the tracker are colluders (or
Sybils) in S, and by P, the probability that both the requestor
and the payee of a “random” chain are from these [. Then, it
is not hard to see that:

min(m,b)

P,= Y PP,
=2

where
Trm—i Sy
P, = P.= —_—
! _HN—z" 115
1=0 7=0

Note that when m < N, the probability Py is very
small. Moreover, since successful attacks require indirect reci-
procity, the actual success probability is much lower than P,.
Section IV-C experimentally investigates the effect of many

LN S S
P

(a) BitTorrent-like model.

(V2
P

(b) T-Chain model.

Fig. 2: Transition diagrams for the two protocols.

leechers colluding with each other; the colluders receive very
slow download times, making collusion impractical.

5) Failure to Complete the Exchange: In Figure 1(b), the
participant B, having previously uploaded an encrypted file
piece to C, may later fail to upload the decryption key to
C. There is minimal gain for B in failing to upload the key,
however, since uploading the key requires several orders of
magnitude less bandwidth than uploading the file piece did.

B. Newcomer Bootstrapping Speed

We compare T-Chain’s bootstrapping speed with that of a
simplified BitTorrent-like protocol in which each peer selects
a random peer to unchoke every 1/§ timeslots (normally
1/6 is 5, ie., 20% of bandwidth is used for BitTorrent’s
optimistic unchoking). We consider a discrete-time system
with t = 0,1,2,... indexing the timeslot and suppose that
one file piece per chain is uploaded in each timeslot. Thus,
each T-Chain transaction spans two timeslots: one in which
the donor uploads a file piece to the receiver, and one in
which the receiver uploads a piece to the payee. We do not
explicitly consider the time for transmitting file piece receipts
and decryption keys, since they are much smaller than the file
pieces (c.f. Section III-C). All proofs are given in [23].

We define three state variables to track the number of
peers in the swarm at each time ¢: x(t), the number of com-
pletely un-bootstrapped peers; y(t), the number of partially
bootstrapped peers (i.e., they have received an encrypted file
piece in their first transaction but have not yet reciprocated),
and n(t), the total number of peers. The total number of un-
bootstrapped peers is then y(t) + x(t). For ease of notation,
we also define z(t) = n(t) — x(t) — y(t) as the number of
fully bootstrapped peers.

We define 3 as the peers’ departure rate and « as the
newcomer arrival rate, as shown in Figure 2’s state transition
diagrams. Here P represents the probability of bootstrapping.
We use M to denote the total number of file pieces, and
assume that each (bootstrapped) peer in T-Chain participates
(i.e., uploads a file piece and designates a payee) in on
average K chains per timeslot. Peers participate in direct
reciprocity if they require any file pieces possessed by the
designated recipient of the current transaction; we use w to
denote the fraction of chains in which bootstrapped peers do
not participate in direct reciprocity.

1) BitTorrent-like Dynamics: In this simplified BitTorrent-
like method, a peer uploads a piece to a randomly selected
peer with probability ¢ in each timeslot and otherwise uploads
based on the peers’ contributions (generally, 6 = 0.2 for
BitTorrent as discussed above). In this case, y(t) = 0, since
no peers are partially bootstrapped. We now calculate the
probability that an un-bootstrapped peer will be bootstrapped

at time ¢ (Figure 2(a)):

e (1 (o S

n(t) (1) Umﬁ
z(t)
<1(1—5+((())_12)))n(lt)’

where the first term is the probability that the seeder bootstraps
the peer, the second term is the probability that another
downloader (i.e., leecher) bootstraps the peer, and the third
term accounts for the fact that it is possible that the peer will
be chosen by both the seeder and a downloader. We then have
the dynamical equation for the expected values of x:

21— B)(n(t) —1) [n(t)—1—5)" o
z(t+1) = n(t) (n@ =1) + ((3

where we have simplified the expression for P. Moreover, we
find that n(t 4+ 1) = (1 — 8+ a)n(t), allowing us to solve for
n(t) = (1 — B+ a) n(0). Thus, if 8 = a, i.e., the arrival and
departure rates are the same, then the number of peers in the
system remains constant: n(t) = n.

2) T-Chain Dynamics: We now formulate the dynamics for
T-Chain, with the state transition diagram in Figure 2(b). We
suppose that ¢ > 1 and find that

n(t) — 2

re- () (o ?

in Figure 2(b), accounting for both the seeder’s probability of
choosing a given un-bootstrapped peer and the probability that
a fully bootstrapped peer at time ¢t — 1 designated a currently
un-bootstrapped peer as the next recipient in the chain. We
next calculate w, or the probability that a bootstrapped peer
engages in indirect reciprocity in a given chain. This occurs if
(1) the peer must upload to another bootstrapped peer and does
not need any of its file pieces, or (ii) the peer must upload to
a fully un-bootstrapped peer. Thus,
xt—1)+w'yt—1)+w"(z(t—-1)—-1)

nt—1)—1 ’
where W' = 271\;[_% pjn;/M is the probability that the peer
already has the s1ngle file piece possessed by a partially
bootstrapped peer and w’ is the probability that the peer
already has all the file pieces of another fully bootstrapped
peer. Here we define p,, as the probability that a given
bootstrapped peer has m file pieces. To calculate w’’, we find
the probability that bootstrapped peer j does not need any
pieces from bootstrapped peer i, i.e.,

M-1 |

Z Pm; Z me M mz)"r;nﬁ'- “)

mj;=1 m;=1

)Kw(z(t—l))

3)

If M is large and the p,, are uniform, then we have w” =
log(M)/M. Note that w’ and w” are independent of the state
variables and may be taken as fixed constants. Thus, we can
write down equations for the state variables using (2) and (4):

z(t+1) = an(t) + z(t)(1 — B) (1 — P) (5)
y(t+1) =z(t)(1 - p)P (6)

— BitTorrent
- = -TChain
BitTorrent - TChain|

Number of Un-Bootstrapped Peers
Number of Un-Bootstrapped Peer
N
8
8

) 20 80 100 0 10 40 50

40 60 20 30
Time (s) Time (s)

(a) (o, B) = (0.1,0.1). ®) (a,B) = (0,0).

Fig. 3: Evolution of the number of un-bootstrapped peers with K =
5, w” = log(100)/100, w’ = 0.495, § = 0.25, n = 500.

where n(t) = (1 — B+ «)'n(0), P is given by (2), and w is
given by (3) and (4). Again, if § = «, n(t) is a constant n.

3) Protocol comparison: First, we take 5 = «, so that both
BitTorrent and T-Chain have a constant number of peers n. We
use xp(t) to denote the number of un-bootstrapped BitTorrent
peers and (z4(t),y:(t)) to denote the numbers of fully and
partially un-bootstrapped T-Chain peers; equilibria are denoted
by omitting the () argument. We then find that:

Proposition 3.1 (Equilibrium un-bootstrapped peers.):
Suppose that & = 3. The system converges to an equilibrium
under either method, y; = B(n —), and a necessary
condition for z, > x; + y; (i.e., BitTorrent to have more
un-bootstrapped peers than T-Chain in equilibrium) is that

nil <14+(1-p) (1_ (n;l) (Z_i)K(l_ﬂ)%).

)

A sufficient condition for x, > x; + y; is that

15 (1-B)n
nﬁ1<(”nil) <1+u—ﬁ>

K(1-B8)%nw
)) 3)

(
(n—l) (n—Z)W
x|1-—
n n—1

o=n(B+wB1-B)+uw"(1-p5)?) -w")/(n-1).
Intuitively, as K@ grows, both (7) and (8) are more likely to
be satisfied, since T-Chain peers are more likely to engage in
indirect reciprocity and bootstrap newcomers.

We now focus on the case « = S = 0, i.e., peers
neither depart nor enter the system, to examine the relative
convergence rates of both methods. It is easy to see from (1)
and (5) that the system converges exponentially fast. Thus,
if a flash crowd of newcomers arrives, the largest decrease in
the number of un-bootstrapped peers comes at the beginning
of the time interval. We therefore examine how quickly these
newcomers are bootstrapped in the first few timeslots:

Proposition 3.2 (Short-term convergence rates): Suppose
that « = B = 0. Then at the equilibrium, z;, = z; = y; = 0.
If n — xp(t) << n for BitTorrent and z:(t — 1) << n for
T-Chain, then T-Chain converges faster to the equilibrium if
K%a_n<m@n+wmun+w%nunm>

n—1
> d(n — xzp(t)).)

Intuitively, at time ¢, K z;(t — 1)w peers are chosen for indirect
reciprocity in T-Chain, and d(n — x(t)) peers are chosen for

optimistic unchoking by BitTorrent. Thus, in order for T-Chain
to converge faster than BitTorrent, T-Chain should choose
more peers, giving it a larger probability of bootstrapping
newcomers. For instance, if x:(t — 1) + y:(t — 1) < (%)
and z4(t — 1) + y:(t — 1) > np (T-Chain has fewer un-
bootstrapped peers than BitTorrent, and a fraction p of peers
are not bootstrapped), then a sufficient condition is Kw'p > 4,
which holds, e.g., if § = 0.2, w’ = 0.495 (approximating w’
with M =100 and p,, = 1/M), p = 0.5, and K = 2.
Figure 3 illustrates Propositions 3.1 and 3.2’s results when
a flash crowd of newcomers arrives at time ¢ = 0. T-Chain
has consistently fewer un-bootstrapped peers than BitTorrent,
both when @ = 3 = 0.1 (peers arrive and depart, Figure 3(a))
and when o« = 8 = 0 (no arrivals or departures, Figure 3(b)).

C. Overhead of T-Chain

To implement T-Chain on top of BitTorrent, we must add
some additional mechanisms (e.g., symmetric key encryption,
reception reports, etc), which yield some additional overhead.

1) Encryption Overhead: Each leecher in T-Chain must
decrypt and encrypt the equivalent of the entire file once.
Sirivianos et al. [10] have shown that the encryption of a
128KB piece with a symmetric key takes only 0.715 millisec-
onds. Thus, a 1GB file, for instance, requires only 12 seconds
for encryption and decryption, compared to the 1024 seconds
required to transfer the file at 1IMBps. The encryption and
decryption time yields an overhead of less than 1.2%.

2) Report Overhead: T-Chain file transfers experience ad-
ditional delay due to the reciprocal upload of a file piece,
transmission of a reception report, and key uploading that must
occur before a transaction completes. However, the reception
report and the key uploaded are very small in size compared to
file pieces, and thus the transmission time for those messages
is negligible. Moreover, consecutive transactions in a chain
are interleaved as seen in Figure 1, so (without encryption)
the total completion time of n transactions in a single chain
of T-Chain takes no more than the time for n+2 piece uploads
in BitTorrent. More importantly, each leecher may engage
in multiple uploads and downloads simultaneously. Leechers
waiting for a key upload can still participate in other chains
until the transaction is complete.

3) Required Space: T-Chain requires space to store pending
file pieces (i.e., the encrypted pieces received but not yet
reciprocated) and their decryption keys, as well as encrypted
file pieces before transmission. The space used for pending file
pieces, however, can be reused to store the decrypted pieces
once the key to a pending file piece is received. Encrypted files
prepared for transmission can be deleted after transmission; the
leecher only needs to store the matching key to complete the
transaction. Thus, each leecher would require only 256KB of
additional space for a 1GB file if 128KB file pieces and 256-
bit encryption keys are used, representing a 0.02% overhead.

I1V. EVALUATION

We evaluate T-Chain’s effectiveness through event-driven
simulations in a wide range of scenarios and present the

results here. To perform our experiments, we use a BitTorrent
simulator [2] to measure the performance of a standard Bit-
Torrent system as the basis of the experiments. This simulator
models all of the usual BitTorrent protocol functions, including
joining and leaving the swarm, neighbor choking, normal and
optimistic unchokings, seeding, piece exchanges, etc.

A. Simulation Setup

Each experimental run started with a swarm consisting of a
single seeder (without leechers). This seeder remained in the
swarm throughout the simulation run. A leecher joining the
swarm was assumed to begin downloading file pieces, remain
in the swarm until its download of the file completed, and
exit the swarm immediately upon completion. We initially
model the leechers’ arrival as a flash crowd in which all
leechers joined the swarm within the first 10 seconds. For
instance, a file may attract high interest prior to its release [24],
representing a demanding test case for file sharing. We later
use a real trace arrival model taken from the RedHat 9 Torrent
tracker trace [25], which represents 5 months of activity in an
actual BitTorrent swarm.

We compared the performance of four protocols: original
BitTorrent [S], PropShare [7], FairTorrent [8], and T-Chain.
The latter three protocols were implemented as BitTorrent
extensions in our simulator. In each, we set the seeder’s upload
bandwidth to 6,000 Kbps. The upload bandwidth of leechers
was assumed to be heterogeneous, varying from 400 Kbps
to 1,200 Kbps, in accordance with the assumptions of [2],
[18], [24]. There was no limit on the download bandwidth of
leechers; upload bandwidth was assumed to be the limiting
factor or resource [26]. The file size was taken as a fixed size
of 128 MB (1 Gb) unless otherwise stated. The block sizes of
BitTorrent and PropShare were set to 16 KB, and the piece size
was set to 256 KB (i.e., one piece = 16 blocks), agreeing with
the values used by most actual BitTorrent clients. A piece size
of 64 KB was used for T-Chain and FairTorrent without further
subdivision; this is the basic exchange unit of FairTorrent [8].

Data points in each graph show the mean and 95% confi-
dence intervals of the average file download completion time
over 30 runs, using different random number seeds.

B. Effect of Free-Riding

T-Chain is designed to enforce reciprocity and thereby pre-
vent free-riding in file sharing applications, without degrading
the system performance. To evaluate whether this goal has
been achieved, we first measure the system performance when
there are only compliant leechers (i.e., leechers that comply
with all the normal requirements of each protocol) and then
compare it to the performance with free-riders.

Figure 4 shows the results without free-riders. Figure 4(a)
shows that all methods perform similarly (in terms of average
download completion time) and close to optimal (cf. [24]).
T-Chain and FairTorrent have slightly smaller download com-
pletion times than the other methods due to their better uplink
utilization, which can be observed from Figure 4(b). This
improvement comes from the fact that T-Chain and FairTorrent

1600 . ' i o

1400 [g _ w0

1200

1000
800

-+
2 3

avg. uplink utilization (%
o
3

avg. download completion time (sec)

600 Original BT - -6+ - | Original BT - ¢ -
400 PropShare il 30 PropShare n
FairTorrent 20 FairTorrent i+
200 T-Chain —&— | 10 T-Chain —&— | |
Optimal ---&A-- Optimal_---&A:--
0 L T T 0 L T T
200 400 600 800 1000 200 400 600 800 1000

swarm size swarm size

(a) Avg. download completion time. (b) Avg. uplink utilization.

Fig. 4: (a) Average download completion time and (b) average uplink
utilization for leechers in BitTorrent, PropShare, FairTorrent and T-
Chain under a flash crowd leecher arrival model without free-riders.

3000 T T T

T

L[Original BT - -&- - 4
50000 PropShare
FairTorrent

40000 4

2500

2000 |

1500 7 :
— 8 —8—u—4

30000

avg. download completion time (sec)
avg. download completion time (sec)

20000
1000 Orignal BT =0
PropShare L
500 FairTorrent i 10000 3
T-Chain —@— S SRS S
0 L T T 0
200 400 600 800 1000 200 400 600 800 1000

swarm size

(b) Free-riders.

swarm size
(a) Compliant leechers.

Fig. 5: Average download completion time for (a) compliant leechers
and (b) free-riders in BitTorrent, PropShare, FairTorrent and T-Chain
in a flash crowd (with the large-view-exploit and whitewashing).

dynamically adjust the system resources to bootstrap more
newcomers soon after their arrival, compared to the fixed 20%
of system resources that are pre-allocated for bootstrapping in
BitTorrent and PropShare. All methods are scalable; as the
swarm size and demand on each peer’s upload bandwidth in-
crease, the download completion times stay relatively constant.
We next show the results of an experiment in which 25% of
the leechers were free-riders. Each free-rider engaged in the
worst possible behavior and provided zero upload bandwidth
to other leechers. In addition, it was assumed that each
free-rider attempted to avoid penalties for its behavior by
using the large-view-exploit. Leechers requested a new list
of neighbors from the tracker at every rechoking period (10
second intervals), more frequently than in normal BitTorrent
operations, and accepted all neighboring requests. We further
assumed that the free-riders employed whitewashing and the
Sybil attack [18]-[20]. A free-rider in FairTorrent may want to
employ whitewashing to neutralize the deficit-based approach
by disconnecting and reconnecting its TCP connection as soon
as it gets one (free) piece from one of its neighbors. This
effectively restores its deficit value (to zero), allowing it to be
treated as another newcomer by the deceived neighbor.
Figure 5(a) indicates that the addition of the free-riders
lengthens the average download completion time for com-
pliant leechers by as much as 33%, 29% and 28% for
BitTorrent, PropShare, and FairTorrent respectively. T-Chain,
in contrast, effectively protects compliant leechers from this
performance degradation. Figure 5(b) shows that free-riders
are successful in BitTorrent, PropShare, and FairTorrent, with
FairTorrent delivering the best and PropShare the worst (i.e.,
longest completion times) performance for the free-riders.
Simple whitewashing thus enables free-riders in FairTorrent
to finish their downloads as fast as compliant leechers. The

§ 3000 § _ _ ‘0 |
2 < 50000 || Original BT - &~

g 2500 qé PropShare

5 1 = FairTorrent

; & i : § 40000 H " “T.Chain —m—

S 2000 . R 5

8 Y S 2

= e 5

g " 2 30000

: 8

g © 20000

S 1000 Original BT -+ -&- - g

E PropShare 2

g 500 FairTorrent ul B 10000

E T-Chain —#— 3 e e e

e 0 ‘ : ‘ : .

© 200 400 600 800 1000 ® 200 400 600 800 1000

swarm size

(b) Free-riders.

swarm size
(a) Compliant leechers.

Fig. 6: The effects of collusion in T-Chain under the flash crowd
arrival model (the same setting as in Figure 5 except with collusion
in T-Chain).

figure contains no line for T-Chain, since not a single free-
rider completed the download of the unencrypted file. The
almost-fair exchange protocol and designated reciprocation
effectively prevent successful free-riding, even under these
challenging conditions. Leechers in T-Chain can easily identify
uncooperative neighbors through adaptive receiver selection
(Section II-C2), minimizing the amount of system resources
allocated to free-riders.

C. Impact of Collusion

We next evaluate T-Chain’s performance when free-riders
collude with each other, i.e., lie on each other’s behalf. While
T-Chain is designed to eliminate incentives for collusion, it
cannot absolutely prevent it from occurring; collusion oppor-
tunities are highly limited (Section III-A4) but do exist. We
investigate collusion under the same experimental settings with
free-riders as in Section IV-B. We assumed that all free-riders
in T-Chain colluded, sending false reception reports on behalf
of other colluding free-riders.

Figure 6 shows the impact of collusion against T-Chain.
Since collusion only affects T-Chain, the results for the other
methods are as before. As seen in Figure 6(b), with collusion
free-riders are able to complete their downloads. However, the
average download completion time for a free-rider is almost
40 times longer than for a compliant leecher when the swarm
size is 1,000. Free-riders’ average download speeds are thus
less than 20Kbps (slower than dial-up). The average down-
load completion times for free-riders are 103%, 1,066%, and
3,497% higher with T-Chain than with PropShare, BitTorrent
and FairTorrent, respectively. In addition, collusion has little
effect on the average download completion times for T-Chain’s
compliant leechers (compare Figures 5(a) and 6(a)).

D. Opportunistic Seeding

As discussed previously in Section II-C3, opportunistic
seeding (i.e., initiation of a new chain by a leecher) is helpful
when the number of chains in the swarm is insufficient to
fully utilize all of the available upload capacity of the system.
Leechers can benefit from opportunistic seeding through direct
reciprocity (i.e., designating themselves as transaction payees).
We conducted two experiments to investigate the frequency of
opportunistic seeding in T-Chain.

Figure 7(a) shows the cumulative number of chains created
by the seeder (green dotted line) and leechers (black dotted
line) in a flash crowd model. In this graph, it was assumed that

30000

by the seeder ===
by leechers ——

L]
0.8

25000

20000

15000

ratio

0.6

10000 oa b i

5000

02 - n

cumulative number of chains

0
0 500 1000 1500 2000 2500
time (sec)

0 10 25 50
percentage of free-riders (%)

(a) Under a flash crowd. (b) Under a real trace.

Fig. 7: (a) The cumulative number of chains created by the seeder and
by leechers in a flash crowd, and (b) the fraction of chains resulting
from opportunistic seeding in a real trace, as a function of the fraction
of free-riders in the system.

8 9000 T :

- i riginal R

g 8000 PropShare

"; 7000 [FairTorrent

_% 6000 T-Chain ——

2 5000

S 4000

g 3000

< 2000 S

: to0o . —
-g'-’ 0 r 1 1 1 1 —l
& 0 10 20 30 40 50

percentage of free-riders (%)

Fig. 8: The average download completion times for compliant
leechers in BitTorrent, PropShare, FairTorrent and T-Chain under a
continuous stream model.

600 compliant leechers without free-riders join the system.
As seen in the figure, the amount of opportunistic seeding is
high when the system is newly initiated and the seeder cannot
satisfy the demands of all newcomers, resulting in under-
utilization of newcomers’ available upload bandwidth without
opportunistic seeding. After several dozens of seconds, the rate
of opportunistic seeding is nearly zero, as reciprocation fully
utilizes the upload capacity.

Figure 7(b) shows the fraction of chains resulting from
opportunistic seeding under a real trace model, as a function
of the fraction of free-riders in the system. As the number
of free-riders increases, opportunistic seeding creates more
chains, since each instance of free-riding will terminate a
chain. The under-utilization of upload capacity caused by such
chain termination is immediately compensated by leechers
using opportunistic seeding with T-Chain. However, free-riders
are still unlikely to successfully download the file.

E. Real Swarm Performance

We next consider conditions more gradual than flash crowds
by examining the system performance when arrivals mirrored
the behavior of leechers in a single BitTorrent swarm that
downloaded the RedHat 9 release [25]. Free-riders provided no
upload bandwidth and attempted to avoid penalties by means
of the large-view-exploit and whitewashing. We measured
completion times for the first 1,000 compliant leechers that
successfully completed their downloads for each method, but
excluded the first 500 compliant leechers from the average
performance in order to avoid startup transients and focus on
the steady state performance.

Figure 8 demonstrates the average download completion

0.8 0.8

0.6 0.6

0.4 0.4

Cumulative Distribution Function
Cumulative Distribution Function

[Original BT ~ -
0.2 : PropShare
FairTorrent

i [Original BT - -~

02 f PropShare
FairTorrent
T-Chain

T-Chain
0 - 0 L
0 05 1 1.5 2 25 0 05 1 15 2 25
nomalized faimess factor normalized fairness factor

(b) 25% free-riders.
Fig. 9: Fairness enforced by each method.

(a) No free-riders.

times for compliant leechers with each method. These times
are quite similar until the fraction of free-riders exceeds
10%, at which point T-Chain clearly delivers better results.
When the fraction of free-riders is 50%, the average down-
load completion time for compliant leechers with BitTorrent,
PropShare, and FairTorrent is roughly 5 times longer than
with T-Chain. Compliant leechers in T-Chain can effectively
detect and penalize free-riders through adaptive receiver se-
lection (Section II-C2), and opportunistic seeding enables
better utilization of the system resources (Section IV-D) than
BitTorrent’s and PropShare’s fixed resource allocations for
newcomer bootstrapping. Simple whitewashing severely de-
teriorates FairTorrent’s performance for compliant leechers.

We next evaluate T-Chain’s performance in terms of fair-
ness, or the ratio of leechers’ benefits (i.e., received piece
downloads) to their contributions (piece uploads). In a fair sys-
tem, this ratio would be 1: leechers would benefit according to
their contributions, encouraging participation in a cooperative
system. To evaluate the fairness offered by each method, we
define the fairness factor as the ratio of the pieces downloaded
to the pieces uploaded by each leecher during its participation
in the swarm.

We use the same experimental conditions as in Figure 8 and
show the resulting fairness in Figures 9(a) and 9(b). These
figures plot the Cumulative Distribution Function (CDF) of
the fairness factors of the last 500 compliant leechers in each
system. Figure 9(a) demonstrates that all four methods are
quite fair when there is no free-riding in the system, with T-
Chain and FairTorrent being slightly more fair than the others.
However, Figure 9(b) shows that when free-riding increases to
25% of leechers, only T-Chain continues to achieve a high
level of fairness, with only a few leechers receiving more
pieces than they contribute. BitTorrent, PropShare, and Fair-
Torrent show a marked divergence from fairness. Compliant
leechers are therefore likely to conclude that T-Chain is fairer
than BitTorrent, PropShare, or FairTorrent.

E. Performance with Small Files

We finally measure T-Chain’s performance when trans-
ferring small files. We compare the four methods above
(BitTorrent, PropShare, FairTorrent, and T-Chain) to Random
BitTorrent, in which all leechers’ and seeders’ bandwidth was
only used for optimistic unchoking, for different file sizes
ranging from 64 KB to 3.2 MB. In this experiment, it was
assumed that 1,000 leechers join the system as a flash crowd
and that a leecher leaves the system upon completing its
download, but is then immediately replaced by a newcomer.

900 T 900

Random BitTorrent R‘andom‘ BitTor‘ren(;
800 H Original BT - 4 800 H Original BT
@ PropShare - 7 @ PropShare
& 700 H FairTorrent -5 4 & 700 FairTorrent
£ ol T-Chain —— /./5/@5 £ w0 T-Chain ——
Fl =3 Fl e
g 50 e g 50 o
o o
2 400 ” 2 400 4
s Q]
$ 300 = : $ 300 e
g 200 e 3 200
“ 00 I/"/./ B TS I//'/' v
o g Y . o GO Ry
2 3 4 5 10 20 3 50 2 3 4 5 10 20 30 50

Num of file pieces Num of file pieces

(b) 50% free-riders.

Fig. 10: The average download throughput of compliant leechers in
Random BitTorrent, BitTorrent, PropShare, FairTorrent, and T-Chain
under various file sizes with different numbers of free-riders.

(a) No free-riders.

We thus capture the performance of each approach under high
churn rates (in a swarm sharing a small file). We measured the
average download throughput of compliant leechers (i.e., the
average amount of data successfully downloaded per second)
in each system during the first 1,000 seconds. We consider
one case with no free-riding and one with 50% of leechers
being free-riders.

Figures 10(a) and 10(b) show the download throughput of
leechers in a swarm with different file sizes (i.e., different
number of file pieces). As seen in Figure 10(a), if the shared
file has relatively few pieces (e.g., below 5), the average
throughputs of BitTorrent, Random BitTorrent, PropShare, and
FairTorrent are extremely low, even without free-riding. The
lack of file pieces reduces opportunities for reciprocation, so
seeding is the primary method of distribution. In an extreme
case with only one shared piece, every compliant leecher
leaves the system as soon as the piece is attained, and the
system effectively functions as a client-server model with the
seeder as the server and the leechers as the clients. T-Chain
achieves better performance than do other methods in this
scenario, since leechers are forced to reciprocate.

When the number of file pieces ranges between 5 and 30,
Random BitTorrent and FairTorrent outperform T-Chain due
to the overhead of the piece encryption and key exchange. The
effect of this overhead, however, is quickly diluted as the file
size grows, as seen from the previous results with large files
(Sections IV-B — IV-E). BitTorrent and PropShare continue to
perform worse than T-Chain: their fixed bandwidth allocation
for newcomer bootstrapping is insufficient for small files and
high churn rates. If 50% of the leechers are free-riders, T-
Chain performs better than all the other methods, regardless
of file size (Figure 10(b)).

V. RELATED WORK

The success of cooperative computing depends on effec-
tively motivating or incentivizing participants to voluntarily
donate their resources to the system. If reciprocity can be
enforced, the problem of free-riding can be greatly reduced or
eliminated. To achieve cooperation, many incentive schemes
have been proposed in the literature. These schemes encourage
or enforce reciprocity based on direct experience, on informa-
tion indirectly obtained (e.g., reputation), or on the use of
encryption. Table II summarizes the advantages provided by
T-Chain when compared to other major direct and indirect
reciprocity schemes.

TABLE II: Comparison of major incentives under possible attacks (/ : Good, (blank) : Medium, x : Bad)

Features] Direct Reciprc_)city _Indirect Reciprocity
BitTorrent | PropShare [FairTorrent | T-Chain | EigenTrust | Dandelion
Simplicity & Scalability v/ v/ v/ v/ X X
Fairness X v/ v/ N v/
Flexible Newcomer Bootstrapping X X v/ v/ X X
Exploiting Altruism X X X NV v v
Cheating X V4 v VA
. Large-view-exploit X

Immunity to Sybil %)r Whitewre)\shing V4 \></ \\; > >
Collusion V4 V4 V4 VA

False Praise (Accusation) VA VA VA VA
Asymmetric Interest v/ v/ N N

Work with small files X X v/

Direct reciprocity [5]-[8] is a straightforward approach in
which the willingness of two participants to cooperate is
influenced by the quality of their past direct interactions. The
rate-based TFT policy of BitTorrent is a well known example.
BitTyrant [18], PropShare [7], and FairTorrent [8] attempt to
improve TFT’s fairness by tweaking resource allocation to
unchoked neighbors. The most significant advantage of direct
reciprocity is its simplicity of implementation, in that any
decision depends only upon local observations. However, it
is difficult for these approaches to accommodate asymmetric
interests, capabilities, and state among participants, with the
result that some of the system capacity may be wasted. Addi-
tionally, these approaches have been shown to be vulnerable
to cheating, in that a file piece upload by one participant may
not be reciprocated by the other party. Note that approximately
20% of the system resources in BitTorrent and PropShare
are reserved for transaction initiation, which has been shown
to be a vulnerable target of strategic free-riding. The simple
elimination of such initiation mechanisms to prevent free-
riding, however, would significantly hurt overall system per-
formance [27]. FairTorrent [8] uses a deficit-based distributed
algorithm to achieve strong fairness, but its immunity to
whitewashing and the Sybil attack is questionable in that it
still uploads unencrypted blocks for transaction initiation (as
seen in Sections IV-B — IV-F). In addition, FairTorrent cannot
prevent seeders from being exploited by free-riders.

There also exist variants of direct reciprocity. Give-to-
Get [6] uses a TFT policy based on forwarding pieces to
other participants; this policy is somewhat similar to T-Chain’s
pay-it-forward reciprocity. Give-to-Get does not, however,
designate recipients or validate their feedback, and is therefore
readily susceptible to collusion or Sybil attacks. Accelerated
Chaining [28] was proposed to let peers in a Video-On-
Demand (VOD) application forward video data to their chil-
dren in a chain at a rate slightly faster than the rate they receive
from their parents, virtually eliminating the server workload.
The concept of pay-it-forward with chaining in Accelerated
Chaining is very similar to Give-to-Get and T-Chain, but they
did not consider the strategic manipulation techniques that
free-riders could take.

Indirect reciprocity schemes (e.g., reputation or monetary
approaches [9]-[13]) base decisions about cooperation on
past interactions that are direct (mutual), or that are indirect

(involving other participants). Therefore, these schemes can
potentially lead to better decisions about cooperation. Eigen-
Trust [9] is a representative example. The largest drawback
of these approaches is the complexity of their implemen-
tations. Reputation schemes are frequently complicated by
the opportunity for participants to spread false information,
while monetary systems require significant infrastructure to
monitor credit, account for individual transactions, and prevent
counterfeiting. One-hop reputation [11], PledgeRoute [12], and
Dandelion [10] attempt to reduce this complexity by either
limiting the scope of reputation calculations or by relying on
a central (trusted) server. Unfortunately, newcomer bootstrap-
ping (which is a critical factor in large, dynamic systems)
is ignored in some of these approaches. When considered,
bootstrapping commonly relies on some sort of altruism (e.g.,
in EigenTrust, 10% of each participant’s resources are allotted
for newcomers with no previous reputation). Those resources
have been the target of strategic free-riders.

Encryption-based approaches [2], [7], [10], [14] are at-
tractive because they attempt to prevent altruism (allocated
for newcomer bootstrapping) from being exploited by free-
riders. Existing schemes, however, have several limitations.
Dandelion [10] uses both indirect reciprocity, as discussed
above, and file piece encryption to force reciprocity, yet also
relies on a trusted third party. This has scalability issues,
and represents a single point of failure or compromise. In
addition, the issue of seeding, or newcomer bootstrapping, is
avoided by assuming that newcomers start with some initial
credit, earned by some means outside the scope of the file-
sharing system. The authors of PropShare [7] suggested a
bootstrapping scheme using encryption (without providing
details). However, T-Chain bootstraps newcomers very differ-
ently, and uses encryption throughout for enforcing reciprocity.
We can in fact identify several differences between T-Chain
and PropShare: (a) PropShare uses only a fixed amount
(i.e., 20%) of total system resources for bootstrapping; (b) it
provides no direct incentives to the two participants involved
in bootstrapping; (c) it assumes that two participants A and B
have had multiple interactions in the past; and (d) it assumes
A and B have mutual (i.e., symmetric) interests. PropShare
also has no chaining effect (i.e., propagation of reciprocation).
The secret sharing approach of TBeT [2] is not applicable
to streaming applications and is also vulnerable to the key

disclosure problem.The hierarchical chunk cipher scheme [14]
is another encryption-based approach, based on hierarchical
circular shifting of bits. The scheme is, however, designed to
prevent the fake chunk attack rather than free-riding.

The use of symmetric key cryptography to enforce reci-
procity in T-Chain is reminiscent of a fair exchange proto-
col [29]. Such a protocol guarantees that either all or no
parties benefit from shared resources, effectively preventing
free-riding. Fair exchange is relatively easy to accomplish
by means of an online, trusted third party, but otherwise is
surprisingly difficult, slow, and complex to achieve. Note that
T-chain is not a strictly fair exchange protocol, in that cheating
is possible, but it removes most of the incentive for cheating.
Moreover, T-Chain is extremely lightweight and simple in
comparison and requires no trust or central server.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This work proposes T-Chain, a general incentive mechanism
to enforce cooperation among participants. T-Chain has two
components: (i) an almost-fair exchange protocol based on
symmetric key cryptography, which does not require a trusted
third party; and (ii) a pay-it-forward reciprocation scheme
that increases opportunities for multi-lateral cooperation and
reduces free-riders’ opportunities for collusion. We apply T-
Chain to the BitTorrent protocol. Leechers download encrypted
file pieces from other peers and must reciprocate each piece
by uploading another (encrypted) file piece before receiving
the decryption key. T-Chain thus makes cooperation manda-
tory and easily bootstraps newcomers by letting them upload
their first received file piece to another peer. No centralized
monitoring or control is required, and overhead costs are very
low.

The method was evaluated with extensive simulations and
compared with BitTorrent, PropShare, and FairTorrent. Un-
der normal conditions, T-Chain provides significantly faster
downloads for compliant leechers and prevents all free-riders
from completing their downloads. Even under unrealistically
severe collusion, free-riders can only download files with
extremely slow speeds. T-Chain is also fairer than BitTorrent,
PropShare, or FairTorrent for compliant leechers, incentivizing
cooperation.

The simplicity of T-Chain fosters cooperation among par-
ticipants and can be readily adapted to other applications
or protocols. Future work will include the application of T-
Chain to streaming, content distribution, overlay routing, file
replication (and preservation), and name resolution services.

ACKNOWLEDGEMENTS

K.Shin gratefully acknowledges partial support from the
2013 Korea Military Academy Hwarangdae Research Institute.
Y.Yi was supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIP)
(NRF- 2013R1A2A2A01067633).

[1]
[2]

[3]

[4]

[5]
[6]

[7]

[8]
[9]
[10]

(11]
[12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]
[20]

[21]
[22]

(23]

[24]

[25]
[26]
[27]

(28]

[29]

REFERENCES

G. Hardin, “Tragedy of the commons,” Science, vol. 162, 1968.

K. Shin, D. S. Reeves, and I. Rhee, “Treat-before-trick : Free-riding pre-
vention for bittorrent-like peer-to-peer networks,” in IPDPS’09, Rome,
Italy, May 2009.

R. Guerraoui, K. Huguenin, A.-M. Kermarrec, M. Monod, S. Prusty, and
A. Roumy, “Tracking freeriders in gossip-based content dissemination
systems,” Computer Networks, vol. 64, no. 8, pp. 322-338, May 2014.
W. Wu, R. T. Ma, and J. C. Lui, “Distributed caching via rewarding: An
incentive scheme design in p2p-vod systems,” TPDS’14, vol. 25, no. 3,
pp. 612-621, March 2014.

B. Cohen, “Incentives build robustness in bittorrent,” in P2PECON,
2003.

J. J. D. Mol, J. A. Pouwelse, M. Meulpolder, D. H. J. Epema, and
H. J. Sips, “Give-to-get: free-riding resilient video-on-demand in p2p
systems,” in SPIE Conference Series, 2008.

D. Levin, K. LaCurts, N. Spring, and B. Bhattacharjee, “Bittorrent is an
auction: Analyzing and improving bittorrent’s incentives,” SIGCOMM,
2008.

A. Sherman, J. Nieh, and C. Stein, “Fairtorrent : Bringing fairness to
peer-to-peer systems,” in ACM CoNEXT’09, December 2009.

S. D. Kamvar, M. T. Schlosser, and H. Garcia-molina, “The eigentrust
algorithm for reputation management in p2p networks,” in WWW, 2003.
M. Sirivianos, J. H. Park, X. Yang, and S. Jarecski, “Dandelion:
Cooperative content distribution with robust incentives,” in USENIX,
2007.

M. Piatek, T. Isdal, A. Krishnamurthy, and T. Anderson, “One hop
reputations for peer to peer file sharing workloads,” in NSDI’08, 2008.
R. Landa, D. Griffin, R. G. Clegg, E. Mykoniati, and M. Rio, “A
sybilproof indirect reciprocity mechanism for peer-to-peer networks,”
in INFOCOM’09, 2009.

X. Kang and Y. Wu, “Incentive mechanism design for heterogeneous
peer-to-peer networks: A stackelberg game approach,” To be appear in
IEEE Transactions on Mobile Computing, submitted on 24 Jul 2014.
J. Wang, X. Hu, X. Xu, and Y. Yang, “A verifiable hierarchical
circular shift cipher scheme for p2p chunk exchanges,” in Peer-to-Peer
Networking and Applications, 2013.

B. Fan, J. C. Lui, and D.-M. Chiu, “The design trade-offs of bittorrent-
like file sharing protocols,” IEEE/ACM Transactions on Networking,
vol. 17, pp. 365-376, 2009.

L. Jian and J. K. MacKie-Mason, “Why share in peer-to-peer networks?”
in International Conference on Electronic Commerce, 2008.

R. Krishnan, M. Smith, Z. Tang, and R. Telang, “The virtual commons:
Why free-riding can be tolerated in file sharing networks?” in ICIS,
2002.

M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkatara-
mani, “Do incentives build robustness in bittorrent?” in USENIX
NSDI'07, May 2007.

T. Locher, P. Moor, S. Schmid, and R. Wattenhofer, “Free riding in
bittorrent is cheap,” in HotNets’06, November 2006.

M. Sirivianos, J. H. Park, R. Chen, and X. Yang, “Free-riding in
bittorrent networks with the large view exploit,” in I/PTPS’07, 2007.

J. R. Douceur, “The sybil attack,” in /PTPS’02, March 2002.

M. Feldman and J. Chuang, “Overcoming free-riding behavior in peer-
to-peer systems,” in ACM Sigecom Exchanges, vol. 5, July 2005.

K. Shin, C. Joe-Wong, S. Ha, Y. Yi, I. Rhee, and D. Reeves,
“T-chain: A general incentive scheme for cooperative computing,”
Princeton University, Tech. Rep., 2014. [Online]. Available: http:
/Iwww.princeton.edu/~cjoe/TChain.pdf

A. R. Bharambe, C. Herley, and V. N. Padmanabhan, “Analyzing
and improving a bittorrent network’s performance mechanisms,” in
INFOCOM’06, 2006.

“Redhat 9 torrent tracker trace.” [Online]. Available: http://mikel.tlm.
unavarra.es/~mikel/bt_pam2004/

W. Wu, J. C. Lui, and R. T. Ma, “On incentivizing upload capacity in
p2p-vod systems: Design, analysis and evaluation,” Comp. Netw., 2013.
S. Jun and M. Ahamad, “Incentives in bittorrent induce free riding,” in
P2PECON’05, Philadelphia, PA, August 2005.

J.-F. Pris, A. Amer, and D. D. E. Long, “Accelerated chaining: A better
way to harness peer power in video-on-demand applications,” in ACM
Symposium on Applied Computing(SAC), 2011.

I. Ray, I. Ray, and N. Natarajan, “An anonymous and failure resilient
fair-exchange e-commerce protocol,” Dec. Supp. Sys., vol. 39, 2005.

