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Abstract—We consider a widely applicable model of resource
allocation where two sequences of events are coupled: on a
continuous time axis (t), network dynamics evolve over time.
On a discrete time axis[t], certain control laws update resource
allocation variables according to some proposed algorithm. The
algorithmic updates, together with exogenous events out ofthe
algorithm’s control, change the network dynamics, which inturn
changes the trajectory of the algorithm, thus forming a loopthat
couples the two sequences of events. In between the algorithmic
updates at [t − 1] and [t], the network dynamics continue to
evolve randomly as influenced by the previous variable settings
at time [t − 1]. The standard way used to avoid the subsequent
analytic difficulty is to assume the separation of timescales, which
in turn unrealistically requires either slow network dynamics
or high complexity algorithms. In this paper, we develop an
approach that does not require separation of timescales. Itis
based on the use of stochastic approximation algorithms with
continuous-time controlled Markov noise. We prove convergence
of these algorithms without assuming timescale separation. This
approach is applied to develop simple algorithms that solvethe
problem of utility-optimal random access in multi-channel, multi-
radio wireless networks.

I. I NTRODUCTION

In many resource allocation problems in wireless networks,
there are two sequences of events coupled together. First, on a
continuous time axis(t), network dynamics evolve over time.
Such dynamics could be service rate, channel state, buffer
size, network topology, etc. Then, on a discrete time axis
[t], certain control laws update resource allocation variables
according to some proposed algorithm. These variables could
be contention probabilities, channel holding times, transmit
powers, routes, source rates, etc. Algorithmic updates, together
with exogenous events out of the algorithm’s control, change
the network dynamics, which in turn changes the trajectory
of the algorithm, thus forming a loop that couples the two
sequences of events. Examples of such systems include:
(a) Adaptive random back-off CSMA systems, where users
adapt the mean of their contention window periodically, de-
pending on the level of their buffer. The continuous time net-
work dynamics include those of users’ buffers and activities,
which in turn depend on their periodic contention window
updates.
(b) Systems with power control over fading channel, where
transmitters adapt their powers periodically, depending on
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the average SINR observed between two power updates. The
network dynamics here are those of the SINR’s on the various
links driven by the constantly evolving fading gains and by
the transmit powers.

In between the algorithmic updates at[t − 1] and [t], the
network dynamics continue to evolve randomly as influenced
by the previous variable settings at time[t − 1]. This turns
out to introduce substantial difficulty in these systems. The
standard way used to avoid this issue is to assume the
separation of timescales, i.e., that the network dynamics are
either much slower or much faster than the algorithm update
frequency. In the former case, either the network condition
is only slowly varying, which limits the applicability of the
model, or the algorithm updates very frequently, thus carrying
the cost of high communication complexity, if each update
involves message passing, or high computation complexity
otherwise. In the latter case, the algorithm is assumed to see
an averaged network behaviour, i.e., between two algorithm
updates, the network dynamics have time to converge to some
equilibrium. However, most resource allocation algorithms,
especially those based on convex optimization, are iterative
and asymptotically convergent. Assuming timescale separa-
tion, and in particular slow network dynamics, means that the
algorithm achieves optimality instantaneously. Yet it is often
impossible to achieve exact optimality in finite time. Even for
some target suboptimality gap, instantaneously achievingit is
impractical in real systems.

Throughout this paper, we donot assume timescale sep-
aration. Instead we take the natural and general framework
where the network dynamics evolve continuously while the
resource allocation algorithm updates on discrete periods. The
algorithm does not need to achieve optimality in each update,
nor do the network dynamics have to converge between two
algorithm updates. Hence we consider a “lazy” and simple
resource allocation algorithm under realistic constraints of
complexity. Nonetheless, in Section II, we prove convergence
of the above system under mild sufficient conditions. We
only assume that the network dynamics can be modelled as a
continuous time Markov process, whose generator evolves in
time as it depends on the parameters updated in the discrete
time by the proposed algorithm. The convergence result resem-
bles those obtained in the stochastic approximation literature
[1], [2]. In particular, our algorithm can be interpreted asa
stochastic approximation algorithm with controlled Markov
“noise” as considered by Borkar in [3], except for a subtle
and important difference that widdens the applicability ofthe
theory: here the “noise” is allowed to evolve in continuous
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time rather than just in discrete time.
The main theorem in Section II is mathematical in nature,

yet its applications are widespread due to its generality. Due
to space restriction, we limit our application focus to one
of the central problems in distributed resource allocation
in wireless networks. Further applications are discussed in
[4]. In Section III, we apply the framework to address the
problem of utility-optimal scheduling in multi-channel multi-
radio wireless networks. Based on recent advances ideas on
adaptive CSMA algorithms [5], [6], [7], [8], we develop a
simple CSMA-based distributed scheduling scheme that does
not require any message passing to achieve utility-optimality.

II. STOCHASTIC APPROXIMATION WITH CONTROLLED

CONTINUOUS-TIME MARKOV NOISE

Stochastic approximation algorithms are discrete-time
stochastic processes whose general form can be written as

∀n ∈ N, xn+1 = xn + anξn, (1)

wherexn is thesystem stateat stepn, an refers to as thestep-
size, andξn is a random variable representing theobservation
during stepn to update the system state at the next step. Here
we consider very general algorithms where the system state
xn controls the transition rates of a continuous-time Markov
process, and where the observationξn actually depends on the
behaviour of the latter process during stepn. Such algorithms
are referred to as stochastic approximation algorithms with
controlled continuous-time Markov noise. We assume that the
system statexn is in R

L.

A. Algorithms and assumptions

Consider the algorithm described by (1) with for alln ∈ N,

ξn = h(xn, Yn), andYn =

∫ n+1

n

f(m(t))dt. (2)

(m(t), t ≥ 0) is a stochastic process with values in a
finite setM, f : M → R

K is an arbitrary mapping, and
h : R

L × R
K → R

L is a bounded continuous function,
Lipschitz in the first variable, uniformly over the second
variable. More precisely, whent ∈ [n, n + 1), the process
m(t) evolves as a continuous-time Markov processmxn(t)
of generatorGxn . For left-handed continuity, we impose that
m(n) = limt→n,t<n m(t). We assume that for anyz ∈ R

L, the
Markov process with generatorGz is irreducible and ergodic
with stationary distributionπz , that the applicationz 7→ Gz

is continuous and thatz 7→ πz is Lipschitz continuous. In
the following, for all z ∈ R

L, ζz(dy) denotes the stationary
distribution of

∫ 1

0
f(mz(t))dt, where mz(·) is a Markov

process of generatorGz.
We further assume thatxn remains bounded, which can be

imposed by projecting (1) to a bounded subset ofR
L (see [1]).

Finally, we make the usual following assumption on the step-
sizes:an is a decreasing sequence of positive real numbers
such thatan ∼ c/n as n → ∞, so that

∑

n an = ∞ and
∑

n a2
n < ∞.

Intuitively, we expect that due to the decreasing step-
sizes, the speed of variations of the system state decreases

and tends to 0 when time grows. As a consequence, the
dynamics ofm(t) are close to those of a Markov process
with fixed generator (as if the system state was frozen), and
has time to converge to its ergodic behaviour. Hence, when
time grows large, we expect that the system behaves as if the
observation was averaged, i.e., as if in (1), we could replace
ξn = h(xn, Yn) by

∫

y
ζxn(dy)h(xn, y). We formalize this

intuition below.

B. Convergence analysis

Definet(n) =
∑n−1

i=0 an. To conduct the convergence anal-
ysis of the algorithm, we use a continuous-time interpolation
of the system state. Definēx as: for all n ∈ N, for all
t ∈ [t(n), t(n + 1)),

x̄(t) = xn + (xn+1 − xn) ×
t − t(n)

t(n + 1) − t(n)
.

The following theorem provides the convergence analysis of
the algorithm defined by (1)-(2).

Theorem 1:Let T > 0, and denote bỹxs(·) the solution
on [s, s + T ] of the following ordinary differential equation
(ode):

ẋ =

∫

y

ζx(t)(dy)h(x(t), f(y)), x̃s(s) = x̄(s). (3)

We have almost surely,

lim
s→∞

sup
t∈[s,s+T ]

|x̄(t) − x̃s(t)| = 0. (4)

As we expected, the theorem states that when time grows,
the dynamics of the underlying continuous-time processm(t)
are averaged. A usefull observation is that when the ode

ẋ =

∫

y

ζx(t)(dy)h(x(t), f(y))

represents the evolution of a stable dynamical system, with
unique fixed pointx⋆, then we deduce from Theorem 1 that
almost surely:xn → x⋆ whenn → ∞.

It is worth noting that we could also consider constant step-
sizesan = a in the algorithm, and study its convergence. The
difference is that we would obtainweakconvergence only; for
example, we would have that fora very small,xn is close to
x⋆ for largen with high probability.

III. U TILITY -OPTIMAL DISTRIBUTED SCHEDULING IN

MULTI -CHANNEL WIRELESS SYSTEMS

We apply stochastic approximation methods to develop
utility-optimal random access in wireless networks with mul-
tiple channels and multiple radios. The design of efficient
scheduling schemes in such networks is notoriously chal-
lenging, even with a centralized scheduler, see [9], [10]. In
fact it resembles NP-hard graph-coloring problems. Refer to
[11] for a survey on multi-channel networks. Scheduling in a
distributed manner is even harder, and all existing solutions
require the use of message passing procedures that can be
heavy, and offer only partial performance guarantees, see [12],
[13]. It has been recently suggested (see [5], [6], [14], [8])
that in single-channel networks, CSMA-based random access
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protocols could be modified so as to achieve high efficiency.
The application of these ideas to multi-channel multi-radio
systems is non-trivial, requiring careful treatment of theuse
of the various channels and radios.

A. Network model and objectives

Network model. The network consists in a setV of V nodes
and a setL of L links. Denote bys(l) ∈ V and byd(l) ∈ V
the transmitter and the receiver corresponding to linkl. We
also use the notationv ∈ l if either v = s(l) or v = d(l).
Nodev hascv(> 0) radio interfaces orradios. On each link,
data transmissions can be handled on any channel of a setC
of C channels. These channels are assumed to be orthogonal
in the sense that two transmissions on different links and
different channels do not interfere. We model interferenceby
a symmetric boolean matrixA ∈ {0, 1}L×L, whereAkl = 1 if
link k interferes linkl when transmitting on the same channel,
and Akl = 0 otherwise. A node uses a radio interface to
transmit or receive data on a given channel. Denote byRcl

the rate at whichs(l) can send data tod(l) on channelc.

Feasible schedules and rate region. Interference and the
limited number of radios at each node impose some con-
straints on the set of possible simultaneous and successful
transmissions on the various links and channels. We capture
these constraints with the notion of schedule. A schedule
m ∈ {0, 1}C×L represents the activities of various links on
different channels:mcl = 1 if and only if link l is active on
channelc (i.e., s(l) is transmitting on channelc). A schedule
m is feasibleif all involved transmissions are successful, i.e.,
if for all k, l ∈ L and allv ∈ V ,

(mck = 1 = mcl) ⇒ (Akl = 0) (Interference constraint)
∑

l∈L:v∈l

∑

c∈C

mcl ≤ cv (Radio interface constraint)

We define byM ⊂ {0, 1}C×L the set of theM feasible
schedules. We are now ready to define therate regionΓ as
the set of achievable long-term throughputsγ = (γl, l ∈ L)
on the various links:

Γ =

{

γ : ∃π ∈ [0, 1]M ,
∑

m∈M

πm = 1,

∀l ∈ L, γl ≤
∑

m∈M

πm

∑

c∈C

mclRcl

}

. (5)

In the above expression,πm may be interpreted as the fraction
of time the schedulem is activated.

Maximizing network utility. When the transmitters are
saturated (i.e., they always have packets to send), the objective
is to design a scheduling algorithm maximizing the network-
wide utility. Specifically, letU : R

+ → R be an increasing,
strictly concave, differentiable objective function. We wish
to design an algorithm solving the following optimization
problem:

max Σl∈LU(γl), s.t. γ ∈ Γ. (6)

We denote byγ⋆ = (γ⋆
l , l ∈ L) the optimizer of (6). Note that

the network is assumed to handle single-hop data connections.

However, the proposed framework can be extended to handle
multi-hop connections (using classical back-pressure ideas).

B. Multi-channel CSMA algorithms

CSMA-based multi-access random back-off protocols are
the most popular distributed protocols to share radio resources
in wireless networks. One of the major challenges in extending
CSMA protocols to multi-channel systems is channel coordi-
nation: before initiating a transmission on a given channel, a
transmitter has to make sure that the corresponding receiver
is actually ready to receive data on this channel using one
of its radios. There have been many proposals to solve this
issue. We assume hereafter that transmitters and receiversare
coordinated.

Multi-channel CSMA. We propose the following extension
of random back-off CSMA protocols to the case of multi-
channel systems. The transmitter of linkl hasC independent
Poisson clocks, ticking at ratesλcl, c ∈ C. When a clockc
ticks, if the transmitter does have an available radio or if it is
already transmitting or receiving on channelc, it does not do
anything. Otherwise, it senses channelc, and checks whether
the receiver has an available radio. If the channel is idle and if
the receiver can receive data, it starts a transmission on channel
c, and keeps the channel for an exponentially distributed
period of time of averageµcl. Define λ·l = (λcl, c ∈ C)
and µ·l = (µcl, c ∈ C), and denote by CSMA(λ·l, µ·l) the
above access protocol. We also introduceλ = (λ·l, l ∈ L)
andµ = (µ·l, l ∈ L). When each linkl runs CSMA(λ·l, µ·l),
the network dynamics and performance can be analyzed using
the theory of reversible Markov chains. More precisely, we
have:

Proposition 1: Let mλ,µ(t) be the active schedule at timet.
Then(mλ,µ(t), t ≥ 0) is a continuous-time reversible Markov
chain whose stationary distributionπλ,µ is given by

∀m ∈ M, πλ,µ
m =

∏

l∈L,c∈C(λclµcl)
mcl

∑

n∈M

∏

l∈L,c∈C(λclµcl)ncl

,

where by convention
∏

l∈∅(·) = 1. Moreover, the link through-
puts are given by

∀l ∈ L, γλ,µ
l =

∑

m∈M

πλ,µ
m

∑

c∈C

mclRcl.

Proof. To prove the above result, we first consider thefree
process(fλ,µ(t), t ≥ 0) with values inN

C×L. This process
is obtained assuming that linkl initiates transmissions on
channelc of exponentially distributed durations with mean
µcl according to a Poisson process of intensityλcl without
accounting for the interference and radio interface constraints.
(fλ,µ(t), t ≥ 0) then represents the user populations inC×L
independentM/M/∞ queues, and hence is a continuous-
time reversible Markov chain whose stationary distribution is
proportional toξλ,µ, where

∀m ∈ N
C×L, ξλ,µ

m =
∏

l∈L,c∈C

(λclµcl)
mcl .

Now (mλ,µ(t), t ≥ 0) is obtained from(fλ,µ(t), t ≥ 0)
just truncating the state space toM. It is then well-known
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from the classic theory of reversible processes (see [15])
that (mλ,µ(t), t ≥ 0) is also a continuous-time reversible
Markov chain whose invariant measures coincide with those
of (fλ,µ(t), t ≥ 0), and the proposition follows. 2

C. Distributed utility-optimal scheduling schemes

Algorithm description. In the previous subsection, we have
proposed multi-channel CSMA protocols whose parameters
(λcl, µcl, c ∈ L) for link l are fixed. Next, we propose an
algorithm that dynamically adapts these parameters so as to
approximately solve the utility-maximization problem (6).
This algorithm in turn is a stochastic approximation algorithm
with controlled Markov noise. Time is divided intoframesof
fixed durations, and the transmitters of each link update their
CSMA parameters (i.e.,λcl, µcl) at the beginning of each
frame. To do so, they maintain a virtual queue, denoted by
ql[n] in framen, for link l. The algorithm operates as follows:

UO-MC-CSMA (Utility-Optimal Multi-Channel CSMA)

1) During frame n, the transmitter of link l runs
CSMA(λ·l[n], µ·l[n]), and records the sumSl[n] of the
services received during this frame over all channels;

2) At the end of framen, it updates its virtual queue
according to

ql[n + 1] =

[

ql[n] +
an

W ′(ql[n])

(

U ′−1
(W (ql[n])

V

)

− Sl[n]

)]qmax

qmin

,

and sets theλcl[n + 1]’s andµcl[n + 1]’s such that their
products are equal toexp{RclW (ql[n + 1])}.

In the above algorithm,a : N → R is a decreasing step size
function satisfying

∑

n an = ∞ and
∑

n a2
n < ∞; W : R

+ →
R

+ is a strictly increasing and continuously differentiable
function, termed theweight function; V , qmin, qmax(> qmin)
are positive parameters, and[·]dc ≡ max(d, min(c, ·)). As
shown later on,V controls the accuracy of the algorithm.

The UO-MC-CSMA algorithm is a stochastic approxima-
tion algorithm with controlled continuous-time Markov noise
as considered in Section II. The equivalence is obtained as
follows. xn ≡ q[n] ∈ R

L represents the virtual queues;
Yn ≡ S[n] ∈ R

L represents the service received on each link
in framen (we haveK ≡ L); m(t) is the process recording the
active schedule at timet under the algorithm, and is obtained
in framen as the Markov processmλ,µ(t) where for alll and
c, λcl andµcl are such that their product isexp(RclW (ql[n]);
S[n] = (S1[n], . . . , SL[n]) with for all l,

Sl[n] =

∫ n+1

n

∑

c∈C

mcl(t)Rcldt, ∀l,

hence the functionf : M → R
L is given by: for allm ∈ M,

fl(m) ≡
∑

c mclRcl; finally, the functionh : R
L ×R

L → R
L

is given by: for allq, y ∈ R
L × R

L,

hl(q, y) ≡
1

W ′(ql)
(U ′−1(W (ql)/V ) − yl).

For any vectorq ∈ R
L, we denote byπq the distribution onM

resulting from the dynamics of the CSMA(λ·l, µ·l) algorithms,
where for all l ∈ L and all c ∈ C, λclµcl = Rcl exp(W (ql)).
In other words,

∀m∈M, πq
m=

exp(
∑

l∈L,c∈CmclRclW (ql))
∑

n∈Mexp(
∑

l∈L,c∈CnclRclW (ql))
. (7)

We can now easily verify that the assumptions made in
Section II are satisfied. First note that in view of the regularity
of functionsW and U , h is a bounded Lipschitz continuous
function. Then it is clear that the generator ofmλ,µ(t) is
a continuous function ofq, and thatq → πq is Lipschitz
continuous.

Convergence and Optimality. We now analyze the conver-
gence and optimality of UO-MC-CSMA. For any linkl, we
define γl[n] = (

∑n−1
i=0 Sl[i])/n the throughput achieved by

link l up to framen. To prove the convergence and optimality
of UO-MC-CSMA, we will need the following assumption.

(A1) If q0 ∈ R
L
+ solves, for all l ∈ L, W (q0

l ) =

V U ′(
∑

m πq0

m

∑

c mclRcl), then qmin ≤ q0
l ≤ qmax, for all

l ∈ L.

For example, if the utility functionU is such thatU ′(0) <
+∞, then (A1) is satisfied whenqmin ≤ W−1(V U ′(CRmax))
and qmax ≥ W−1(V U ′(0)), where Rmax = maxc,l Rcl.
The next theorem states the convergence of UO-MC-CSMA
towards a point that is arbitrarily close to the utility-optimizer.

Theorem 2:Under (A1), for any initial conditionq[0], UO-
MC-CSMA converges in the following sense:

lim
n→∞

q[n] = q⋆ and lim
n→∞

γ[n] = γ⋆, almost surely,

whereγ⋆ andq⋆ are such that(γ⋆, π
q⋆) is the solution of the

following convex optimization problem (overγ andπ):

max V
∑

l∈L

U(γl) −
∑

m∈N

πm(log πm − 1)

s.t. γl ≤
∑

m∈M

πm

∑

c∈C

mclRcl, Σm∈Mπm = 1. (8)

Furthermore UO-CSMA approximately solves (6) as

∣

∣

∑

l∈L

(

U(γ⋆,l) − U(γ⋆
l )
)
∣

∣ ≤
log(M) + 1

V
. (9)

Proof. Step 1. AveragingWe first use the analysis of Section
II to show that in the algorithm we can average the received
servicesS[n]. Remark that ifζq(dy) is the stationary distri-
bution of S[n] assuming that the virtual queues are fixed to
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q, we have by ergodicity: for alll ∈ L, almost surely,
∫

y

ζq(dy)hl(q, y)

= lim
P→∞

1

P

P−1
∑

n=0

1{qmin≤ql≤qmax}

W ′(ql)

[

U ′−1(
W (ql)

V
)

−

∫ n+1

n

∑

c

mq
cl(u)Rcldu

]

=
1{qmin≤ql≤qmax}

W ′(ql)

[

U ′−1(
W (ql)

V
)

− lim
P→∞

1

P

∫ P

0

∑

c

mq
cl(u)Rcldu

]

=
1{qmin≤ql≤qmax}

W ′(ql)

[

U ′−1(
W (ql)

V
) −

∑

m∈M

πq
m

∑

c

mclRcl

]

.

Now, denote byq̄ the continuous interpolation ofq[n] (see
Section II). Fix s > 0. Denote by q̃s the solution of the
following ode, for all l ∈ L,

q̇l =

[

U ′−1
(

Wl(ql)/V
)

−
∑

m∈M

πq
m

∑

c

mclRcl

]

×
1{qmin≤ql≤qmax}

W ′(ql)
, (10)

with q̃s(s) = q̄(s). Then applying Theorem 1, we have that,
for all T > 0,

lim
s→∞

sup
t∈[s,s+T ]

|q̄(t) − q̃s(t)| = 0 a.s. (11)

Now if the ode (10) is stable and has a unique fixed point
q⋆, then we would also havelimn→∞ q[n] = q⋆ a.s..
Step 2.To complete the convergence proof, we show, using
a similar technique as in [5] that (10) may be interpreted
as a sub-gradient algorithm (projected on a bounded interval)
solving the dual of the convex problem (8). The Lagrangian
of (8) is given by

L(γ,π;ν,η)=
(

∑

l∈L

V U(γl)−νlγl

)

+
(

∑

l∈L

νl

∑

m∈M

πm

∑

c

mclRcl

−
∑

m∈M

πm(logπm−1)
)

−η
(

∑

m∈N

πm−1
)

.

Then, the Karush-Kuhn-Tucker (KKT) conditions of (8) are
given by, for all l ∈ L, andm ∈ M,

V U ′(γl) = νl, (12)

− log πm +
∑

l

νl

∑

c

mclRcl − η = 0, (13)

νl ×
(

γl −
∑

m∈M

πm

∑

c

mclRcl

)

= 0, νl ≥ 0, (14)

η × (
∑

m∈M

πm − 1) = 0, (15)

Introduce the variablesq such that for alll, ql = W−1(νl), and
the boundsνmin = W (qmin), νmax = W (qmax). By choosing

η = log
(

∑

m

exp(
∑

l,c

W (ql)mclRcl)
)

,

πq (given in (7)) solves (13) and (15). Now the sub-gradient
algorithm corresponding to (12) (when accounting for (14))is

ν̇l =

(

U ′−1
(νl

V

)

−
∑

m∈M

πq
m

∑

c

mclRcl

)

. (16)

Note that (16) is equivalent to (10), provided that theνl(t)’s
remain in [νmin, νmax]. But thanks to Assumption (A1), the
fixed points of (16) actually belongs to[νmin, νmax]. Finally,
since (8) is a strictly convex optimization problem, (16) con-
verges to its unique equilibriumν⋆, and hence (10) converges
to q⋆ such that for alll ∈ L, W (q⋆,l) = ν⋆,l. Using Step
1, we conclude that almost surely,q[n] converges toq⋆. The
convergence ofγ[n] to γ⋆ follows.

To prove the inequality (9), we just note that (6) is equiva-
lent to the following optimization problem:

max V Σl∈LU(γl)

s.t. γl ≤
∑

m∈M

πm

∑

c

mclRcl,
∑

m∈M

πm = 1. (17)

Eq. (9) is obtained by comparing (8) and (17), and using the
fact that the entropy

∑

m πm log πm is always bounded by
log M . The proof of Theorem 2 is completed. 2
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