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Abstract
We explore value-based solutions for multi-agent
reinforcement learning (MARL) tasks in the cen-
tralized training with decentralized execution
(CTDE) regime popularized recently. However,
VDN and QMIX are representative examples that
use the idea of factorization of the joint action-
value function into individual ones for decentral-
ized execution. VDN and QMIX address only
a fraction of factorizable MARL tasks due to
their structural constraint in factorization such
as additivity and monotonicity. In this paper, we
propose a new factorization method for MARL,
QTRAN, which is free from such structural con-
straints and takes on a new approach to trans-
forming the original joint action-value function
into an easily factorizable one, with the same
optimal actions. QTRAN guarantees successful
factorization of any factorizable task, thus cov-
ering a much wider class of MARL tasks than
does VDN or QMIX. Our experiments for the
tasks of multi-domain Gaussian-squeeze and mod-
ified predator-prey demonstrate QTRAN’s supe-
rior performance with especially larger margins
in games whose payoffs penalize non-cooperative
behavior more aggressively.

1. Introduction
Reinforcement learning aims to instill in agents a good
policy that maximizes the cumulative reward in a given
environment. Recent progress has witnessed success in
various tasks, such as Atari games (Mnih et al., 2015), Go
(Silver et al., 2016; 2017), and robot control (Lillicrap et al.,
2015), just to name a few, with the development of deep
learning techniques. Such advances largely consist of deep
neural networks, which can represent action-value functions
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and policy functions in reinforcement learning problems
as a high-capacity function approximator. However, more
complex tasks such as robot swarm control and autonomous
driving, often modeled as cooperative multi-agent learning
problems, still remain unconquered due to their high scales
and operational constraints such as distributed execution.

The use of deep learning techniques carries through to coop-
erative multi-agent reinforcement learning (MARL). MAD-
DPG (Lowe et al., 2017) learns distributed policy in con-
tinuous action spaces, and COMA (Foerster et al., 2018)
utilizes a counterfactual baseline to address the credit assign-
ment problem. Among value-based methods, value function
factorization (Koller & Parr, 1999; Guestrin et al., 2002a;
Sunehag et al., 2018; Rashid et al., 2018) methods have been
proposed to efficiently handle a joint action-value function
whose complexity grows exponentially with the number of
agents.

Two representative examples of value function factorization
include VDN (Sunehag et al., 2018) and QMIX (Rashid
et al., 2018). VDN factorizes the joint action-value function
into a sum of individual action-value functions. QMIX ex-
tends this additive value factorization to represent the joint
action-value function as a monotonic function — rather
than just as a sum — of individual action-value functions,
thereby covering a richer class of multi-agent reinforcement
learning problems than does VDN. However, these value
factorization techniques still suffer structural constraints,
namely, additive decomposability in VDN and monotonic-
ity in QMIX, often failing to factorize a factorizable task.
A task is factorizable if the optimal actions of the joint
action-value function are the same as the optimal ones of
the individual action-value functions, where additive decom-
posability and monotonicity are only sufficient — somewhat
excessively restrictive — for factorizability.

Contribution In this paper, we aim at successfully
factorizing any factorizable task, free from additiv-
ity/monotonicity concerns. We transform the original joint
action-value function into a new, easily factorizable one
with the same optimal actions in both functions. This is
done by learning a regularized value function, which cor-
rects for the severity of the partial observability issue in the
agents.
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We incorporate the said idea in a novel architecture, called
QTRAN, consisting of the following inter-connected deep
neural networks: (i) joint action-value network, (ii) indi-
vidual action-value networks, and (iii) regularizing value
network. To train this architecture, we define loss func-
tions appropriate for each neural network. We develop two
variants of QTRAN: QTRAN-base and QTRAN-alt, whose
distinction is twofold: how to construct the transformed
action-value functions for non-optimal actions; and the de-
gree of stability and convergence speed. We assess the
performance of QTRAN by comparing it against VDN and
QMIX in three environments. First, we consider a simple,
single-state matrix game that does not satisfy additivity or
monotonicity, where QTRAN successfully finds the joint
optimal action, whereas neither VDN nor QMIX does. We
then observe a similarly desirable cooperation-inducing ten-
dency of QTRAN in more complex environments: modified
predator-prey games and multi-domain Gaussian squeeze
tasks. In particular, we show that the performance gap
between QTRAN and VDN/QMIX increases with environ-
ments having more pronounced non-monotonic characteris-
tics.

Related work Extent of centralization varies across the
spectrum of cooperative MARL research. While more de-
centralized methods benefit from scalability, they often suf-
fer non-stationarity problems arising from a trivialized su-
perposition of individually learned behavior. Conversely,
more centralized methods alleviate the non-stationarity is-
sue at the cost of complexity that grows exponentially with
the number of agents.

Prior work tending more towards the decentralized end of
the spectrum include Tan (1993), whose independent Q-
learning algorithm exhibits the greatest degree of decentral-
ization. Tampuu et al. (2017) combines this algorithm with
deep learning techniques presented in DQN (Mnih et al.,
2015). These studies, while relatively simpler to implement,
are subject to the threats of training instability, as multiple
agents attempt to improve their policy in the midst of other
agents, whose policies also change over time during training.
This simultaneous alteration of policies essentially makes
the environment non-stationary.

The other end of the spectrum involves some centralized
entity to resolve the non-stationarity problem. Guestrin et al.
(2002b) and Kok & Vlassis (2006) are some of the ear-
lier representative works. Guestrin et al. (2002b) proposes
a graphical model approach in presenting an alternative
characterization of a global reward function as a sum of
conditionally independent agent-local terms. Kok & Vlassis
(2006) exploits the sparsity of the states requiring coordina-
tion compared to the whole state space and then tabularize
those states to carry out tabular Q-learning methods as in
Watkins (1989).

The line of research positioned mid-spectrum aims to put
together the best of both worlds. More recent studies, such
as COMA (Foerster et al., 2018), take advantage of CTDE;
actors are trained by a joint critic to estimate a counterfac-
tual baseline designed to gauge each agent’s contribution to
the shared task. Gupta et al. (2017) implements per-agent
critics to opt for better scalability at the cost of diluted bene-
fits of centralization. MADDPG (Lowe et al., 2017) extends
DDPG (Lillicrap et al., 2015) to the multi-agent setting by
similar means of having a joint critic train the actors. Wei
et al. (2018) proposes Multi-Agent Soft Q-learning in contin-
uous action spaces to tackle the relative overgeneralization
problem (Wei & Luke, 2016) and achieves better coordina-
tion. Other related work includes CommNet (Sukhbaatar
et al., 2016), DIAL (Foerster et al., 2016), ATOC (Jiang
& Lu, 2018), and SCHEDNET (Kim et al., 2019), which
exploit inter-agent communication in execution.

On a different note, value-based methods benefit from the
fact that “values” are naturally analogous to the payoffs
considered in many classes of MARL tasks. As such, two
representative examples of value-based methods have re-
cently been shown to be somewhat effective in analyzing
a class of games. Namely, VDN (Sunehag et al., 2018)
and QMIX (Rashid et al., 2018) represent the body of lit-
erature most closely related to this paper. While both are
value-based methods and follow the CTDE approach, the
additivity and monotonicity assumptions naturally limit the
class of games that VDN or QMIX can solve.

2. Background
2.1. Model and CTDE

DEC-POMDP We take DEC-POMDP (Oliehoek et al.,
2016) as the de facto standard for modelling coopera-
tive multi-agent tasks, as do many previous works: as
a tuple G =< S,U , P, r,Z, O,N, γ >, where s ∈ S
denotes the true state of the environment. Each agent
i ∈ N := {1, ..., N} chooses an action ui ∈ U at each time
step, giving rise to a joint action vector, u := [ui]

N
i=1 ∈ UN .

Function P (s′|s,u) : S × UN × S 7→ [0, 1] governs all
state transition dynamics. Every agent shares the same joint
reward function r(s,u) : S × UN 7→ R, and γ ∈ [0, 1)
is the discount factor. Each agent has individual, partial
observation z ∈ Z , according to some observation function
O(s, i) : S × N 7→ Z. Each agent also has an action-
observation history τi ∈ T := (Z × U)∗, on which it
conditions its stochastic policy πi(ui|τi) : T × U 7→ [0, 1].

Training and execution: CTDE Arguably the most
naïve training method for MARL tasks is to learn the in-
dividual agents’ action-value functions independently, i.e.,
independent Q-learning. This method would be simple and
scalable, but it cannot guarantee convergence even in the
limit of infinite greedy exploration. As an alternative solu-
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tion, recent works including VDN (Sunehag et al., 2018)
and QMIX (Rashid et al., 2018) employ centralized training
with decentralized execution (CTDE) (Oliehoek et al., 2008)
to train multiple agents. CTDE allows agents to learn and
construct individual action-value functions, such that opti-
mization at the individual level leads to optimization of the
joint action-value function. This in turn, enables agents at
execution time to select an optimal action simply by looking
up the individual action-value functions, without having to
refer to the joint one. Even with only partial observability
and restricted inter-agent communication, information can
be made accessible to all agents at training time.

2.2. IGM Condition and Factorizable Task

Consider a class of sequential decision-making tasks that are
amenable to factorization in the centralized training phase.
We first define IGM (Individual-Global-Max):
Definition 1 (IGM). For a joint action-value function
Qjt : T N × UN 7→ R, where τ ∈ T N is a joint action-
observation histories, if there exist individual action-value
functions [Qi : T × U 7→ R]Ni=1, such that the following
holds

arg max
u

Qjt(τ ,u) =

 arg maxu1
Q1(τ1, u1)
...

arg maxuN
QN (τn, uN )

 , (1)

then, we say that [Qi] satisfy IGM for Qjt under τ . In this
case, we also say thatQjt(τ ,u) is factorized by [Qi(τi, ui)],
or that [Qi] are factors of Qjt.

Simply put, the optimal joint actions across agents are equiv-
alent to the collection of individual optimal actions of each
agent. If Qjt(τ ,u) in a given task is factorizable under all
τ ∈ T N , we say that the task itself is factorizable.

2.3. VDN and QMIX

Given Qjt, one can consider the following two sufficient
conditions for IGM:

(Additivity) Qjt(τ ,u) =

N∑
i=1

Qi(τi, ui),

(Monotonicity)
∂Qjt(τ ,u)

∂Qi(τi, ui)
≥ 0, ∀i ∈ N .

(2)

(3)

VDN (Sunehag et al., 2018) and QMIX (Rashid et al., 2018)
are methods that attempt to factorize Qjt assuming addi-
tivity and monotonicity, respectively. Thus, joint action-
value functions satisfying those conditions would be well-
factorized by VDN and QMIX. However, there exist tasks
whose joint action-value functions do not meet the said con-
ditions. We illustrate this limitation of VDN and QMIX
using a simple matrix game in the next section.

3. QTRAN: Learning to Factorize with
Transformation

In this section, we propose a new method called QTRAN,
aiming at factorizing any factorizable task. The key idea is
to transform the original joint action-value function Qjt into
a new one Q′jt that shares the optimal joint action with Qjt.

3.1. Conditions for the Factor Functions [Qi]

For a given joint observation τ , consider an arbitrary fac-
torizable Qjt(τ ,u). Then, by Definition 1 of IGM, we can
find individual action-value functions [Qi(τi, ui)] that fac-
torize Qjt(τ ,u). Theorem 1 states the sufficient condition
for [Qi] that satisfy IGM. Let ūi denote the optimal local
action arg maxui

Qi(τi, ui) and ū = [ūi]
N
i=1,. Also, let

Q = [Qi] ∈ RN , i.e., a column vector of Qi, i = 1, . . . , N.

Theorem 1. A factorizable joint action-value function
Qjt(τ ,u) is factorized by [Qi(τi, ui)], if

N∑
i=1

Qi(τi, ui)−Qjt(τ ,u)+Vjt(τ )=

{
0 u = ū, (4a)
≥ 0 u 6= ū, (4b)

where

Vjt(τ ) = max
u

Qjt(τ ,u)−
N∑
i=1

Qi(τi, ūi).

The proof is provided in the Supplementary. We note that
conditions in (4) are also necessary under an affine trans-
formation. That is, there exists an affine transformation
φ(Q) = A ·Q+B, whereA = [aii] ∈ RN×N+ is a symmet-
ric diagonal matrix with aii > 0,∀i and B = [bi] ∈ RN ,
such that if Qjt is factorized by [Qi], then (4) holds by re-
placing Qi with aiiQi + bi. This is because for all i, bi
cancels out, and aii just plays the role of re-scaling the
value of

∑N
i=1Qi in multiplicative (with a positive scaling

constant) and additive manners, since IGM is invariant to φ
of [Qi].

Factorization via transformation We first define a new
function Q′jt as the linear sum of individual factor functions
[Qi]:

Q′jt(τ ,u) :=

N∑
i=1

Qi(τi, ui). (5)

We call Q′jt(τ ,u) the transformed joint-action value func-
tion throughout this paper. Our idea of factorization is
as follows: from the additive construction of Q′jt based
on [Qi], [Qi] satisfy IGM for the new joint action-value
function Q′jt, implying that [Qi] are also the factorized in-
dividual action-value functions of Q′jt. From the fact that
arg maxuQjt(τ ,u) = arg maxuQ

′
jt(τ ,u), finding [Qi]

satisfying (4) is precisely the factorization of Q′jt(τ ,u).
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(𝜏1, 𝑢1)

…

+
Execution

Training

(𝜏𝑁, 𝑢𝑁)

𝑄1(𝜏1, 𝑢1)

ℎ1(𝜏1, 𝑢1)

𝑄𝑁(𝜏𝑁, 𝑢𝑁)

ℎ𝑁(𝜏𝑁, 𝑢𝑁)

𝑄1 𝜏1,⋅

𝑄𝑁 𝜏𝑁,⋅
QTRAN-alt

𝑄𝑗𝑡
′ (𝝉, 𝒖)

𝑄𝑗𝑡 𝝉, 𝒖 𝑳𝒕𝒅

𝑳𝒐𝒑𝒕, 𝑳𝒏𝒐𝒑𝒕

𝑉𝑗𝑡 𝝉

+

𝑄𝑗𝑡
′ 𝝉,⋅, 𝒖−1

𝑄𝑗𝑡
′ 𝝉,⋅, 𝒖−𝑁

𝑉𝑗𝑡 𝝉

𝑳𝒐𝒑𝒕, 𝑳𝒏𝒐𝒑𝒕−𝒎𝒊𝒏

𝑳𝒕𝒅

𝑄𝑗𝑡 𝝉,⋅, 𝒖−𝑁

𝑄𝑗𝑡 𝝉,⋅, 𝒖−1

𝑳𝒕𝒅

𝑳𝒐𝒑𝒕, 𝑳𝒏𝒐𝒑𝒕−𝒎𝒊𝒏

QTRAN-base
or

Figure 1. QTRAN-base and QTRAN-alt Architecture

One interpretation of this process is that rather than directly
factorizingQjt, we consider an alternative joint action-value
function (i.e., Q′jt) that is factorized by additive decompo-
sition. The function Vjt(τ ) plays the role of a regularizer
for a given τ and corrects for the discrepancy between the
centralized joint action-value functionQjt and the sum of in-
dividual joint action-value functions [Qi]. This discrepancy
arises from the partial observability of agents. If bestowed
with full observability, Vjt can be re-defined as zero, and the
definitions would still stand. Refer to the Supplementary for
more detail.

3.2. Method

Overall framework In this section, we propose a new
deep RL framework with value function factorization, called
QTRAN, whose architectural sketch is given in Figure 1.
QTRAN consists of three separate estimators: (i) each agent
i’s individual action-value network for Qi, (ii) a joint action-
value network for Qjt to be factorized into individual action-
value functions Qi, and (iii) a regularizing value network
for Vjt, i.e.,

(Individual action-value network) fq : (τi, ui) 7→ Qi,

(Joint action-value network) fr : (τ ,u) 7→ Qjt,

(Regularizing value network) fv : τ 7→ Vjt.

Three neural networks are trained in a centralized manner,
and each agent uses its own factorized individual action-
value function Qi to take action during decentralized execu-
tion. Each network is elaborated next.

Individual action-value networks For each agent, an
action-value network takes its own action-observation his-
tory τi as input, and produces action-values Qi(τi, ·) as

output. This action-value network is used for each agent to
determine its own action by calculating the action-value for
a given τi. As defined in (5), Q′jt is just the summation of
the outputs of all agents.

Joint action-value network The joint action-value net-
work approximates Qjt. It takes as input the selected action
and produces the Q-value of the chosen action as output. For
scalability and sample efficiency, we design this network
as follows. First, we use the action vector sampled by all
individual action-value networks to update the joint action-
value network. Since the joint action space is UN , finding
an optimal action requires high complexity as the number
of agents N grows, whereas obtaining an optimal action
in each individual network is done by decentralized poli-
cies with linear-time individual arg max operations. Sec-
ond, the joint action-value network shares the parameters
at the lower layers of individual networks, where the joint
action-value network combines hidden features with summa-
tion

∑
i hQ,i(τi, ui) of hi(τi, ui) = [hQ,i(τi, ui), hV,i(τi)]

from individual networks. This parameter sharing is used to
enable scalable training with good sample efficiency at the
expense of expressive power.

Regularizing value network The regularizing value net-
work is responsible for computing a scalar state-value, simi-
lar to V (s) in the dueling network (Wang et al., 2016). The
state-value is independent of the selected action for a given
τ . Thus, this value network does not contribute to choosing
an action, and is instead used to calculate the loss of (4).
Like the joint action-value network, we use the combined
hidden features

∑
i hV,i(τi) from the individual networks

as input to the value network for scalability.
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3.3. Loss Functions

There are two major goals in centralized training. One is
that we should train the joint action-value function Qjt to
estimate the true action-value; the other is that the trans-
formed action-value function Q′jt should “track” the joint
action-value function in the sense that their optimal actions
are equivalent. We use the algorithm introduced in DQN
(Mnih et al., 2015) to update networks, where we maintain
a target network and a replay buffer. To this end, we devise
the following global loss function in QTRAN, combining
three loss functions in a weighted manner:

L(τ ,u, r, τ ′;θ) = Ltd + λoptLopt + λnoptLnopt, (6)

where r is the reward for action u at observation histories τ
with transition to τ ′. Ltd is the loss function for estimating
the true action-value, by minimizing the TD-error as Qjt is
learned. Lopt and Lnopt are losses for factorizing Qjt by [Qi]
satisfying condition (4), when u = ū and u 6= ū, respec-
tively. In this procedure, Qjt is not learned, which is repre-
sented by Q̂jt in the loss function definition below. λopt and
λnopt are the weight constants for two losses. The detailed
forms of Ltd, Lopt, and Lnopt are given as follows, where we
omit their common function arguments (τ ,u, r, τ ′) in loss
functions for presentational simplicity:

Ltd(;θ) =
(
Qjt(τ ,u)− ydqn(r, τ ′;θ−)

)2
,

Lopt(;θ) =
(
Q′jt(τ , ū)− Q̂jt(τ , ū) + Vjt(τ )

)2
,

Lnopt(;θ) =
(

min
[
Q′jt(τ ,u)− Q̂jt(τ ,u) + Vjt(τ ), 0

])2
,

where ydqn(r, τ ′;θ−) = r + γQjt(τ
′, ū′;θ−), ū′ =

[arg maxui
Qi(τ

′
i , ui;θ

−)]Ni=1, and θ− are the periodically
copied parameters from θ, as in DQN (Mnih et al., 2015).

3.4. Tracking the Joint Action-value Function
Differently

We name the method previously discussed QTRAN-base,
to reflect the basic nature of how it keeps track of the joint
action-value function. Here on, we consider a variant of
QTRAN, which utilizes a counterfactual measure. As men-
tioned earlier, Theorem 1 is used to enforce IGM by (4a)
and determine how the individual action-value functions
[Qi] and the regularizing value function Vjt jointly “track”
Qjt by (4b), which governs the stability of constructing the
correct factorizing Qi’s. We found that condition (4b) is
often too loose, leading the neural networks to fail their
mission of constructing the correct factors of Qjt. That is,
condition (4b) imposes undesirable influence on the non-
optimal actions, which in turn compromises the stability
and/or convergence speed of the training process. This mo-
tivates us to study conditions stronger than (4b) that would
still be sufficient for factorizability, but at the same time

would also be necessary under the aforementioned affine
transformation φ, as in Theorem 2.
Theorem 2. The statement presented in Theorem 1 and the
necessary condition of Theorem 1 holds by replacing (4b)
with the following (7): if u 6= ū,

min
ui∈U

[
Q′jt(τ , ui,u−i)−Qjt(τ , ui,u−i)

+ Vjt(τ )
]

= 0, ∀i = 1, . . . , N, (7)

where u−i = (u1, . . . , ui−1, ui+1, . . . , uN ), i.e., the action
vector except for i’s action.

The proof is presented in the Supplementary. The key idea
behind (7) lies in what conditions to enforce on non-optimal
actions. It stipulates that Q′jt(τ ,u) − Qjt(τ ,u) + Vjt(τ )
be set to zero for some actions. Now, it is not possible to
zero this value for every action u, but it is available for at
least one action whilst still abiding by Theorem 1. It is
clear that condition (7) is stronger than condition (4b), as
desired. For non-optimal actions u 6= ū, the conditions
of Theorem 1 are satisfied when Qjt(τ ,u) − Vjt(τ ) ≤
Q′jt(τ ,u) ≤ Q′jt(τ , ū) for any given τ . Under this condi-
tion, however, there can exist a non-optimal action u 6= ū
whose Q′jt(τ ,u) is comparable to Q′jt(τ , ū) but Qjt(τ ,u)
is much smaller than Qjt(τ , ū). This may cause instabil-
ity in the practical learning process. However, the newly
devised condition (7) compels Q′jt(τ ,u) to track Qjt(τ ,u)
even for the problematic non-optimal actions mentioned
above. This helps in widening the gap between Q′jt(τ ,u)
and Q′jt(τ , ū), and this gap makes the algorithm more sta-
ble. Henceforth, we call the deep MARL method outlined
by Theorem 2 QTRAN-alt, to distinguish it from the one
due to condition (4b).

Counterfactual joint networks To reflect our idea of (7),
we now propose a counterfactual joint network, which re-
places the joint action-value network of QTRAN-base, to
efficiently calculate Qjt(τ , ·,u−i) and Q′jt(τ , ·,u−i) for
all i ∈ N with only one forward pass. To this end, in
the QTRAN-alt module, each agent has a counterfactual
joint network with the output of Qjt(τ , ·,u−i) for each
possible action, given other agents’ actions. As a joint
action-value network, we use hV,i(τi) and the combined hid-
den features

∑
j 6=i hQ,j(τj , uj) from other agents. Finally,

Q′jt(τ , ·,u−i) is calculated as Qi(τi, ·) +
∑
j 6=iQj(τj , uj)

for all agents. This architectural choice is realized by
choosing the loss function to be Lnopt-min, replacing Lnopt in
QTRAN-base as follows:

Lnopt-min(τ ,u, r, τ ′;θ) =
1

N

N∑
i=1

min
ui∈U

D(τ , ui,u−i),

where

D(τ , ui,u−i)=(Q′jt(τ , ui,u−i)−Q̂jt(τ , ui,u−i)+Vjt(τ ))2.
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u1

u2 A B C

A 8 -12 -12
B -12 0 0
C -12 0 0

(a) Payoff of matrix game

Q1

Q2 4.16(A) 2.29(B) 2.29(C)

3.84(A) 8.00 6.13 6.12
-2.06(B) 2.10 0.23 0.23
-2.25(C) 1.92 0.04 0.04

(b) QTRAN: Q1, Q2, Q
′
jt

u1

u2 A B C

A 8.00 -12.02 -12.02
B -12.00 0.00 0.00
C -12.00 0.00 -0.01

(c) QTRAN: Qjt

u1

u2 A B C

A 0.00 18.14 18.14
B 14.11 0.23 0.23
C 13.93 0.05 0.05

(d) QTRAN: Q′
jt −Qjt

Q1

Q2 -3.14(A) -2.29(B) -2.41(C)

-2.29(A) -5.42 -4.57 -4.70
-1.22(B) -4.35 -3.51 -3.63
-0.73(C) -3.87 -3.02 -3.14

(e) VDN: Q1, Q2, Qjt

Q1

Q2 -0.92(A) 0.00(B) 0.01(C)

-1.02(A) -8.08 -8.08 -8.08
0.11(B) -8.08 0.01 0.03
0.10(C) -8.08 0.01 0.02

(f) QMIX: Q1, Q2, Qjt

Table 1. Payoff matrix of the one-step game and reconstructed Qjt

results on the game. Boldface means optimal/greedy actions from
the state-action value

In QTRAN-alt, Ltd, Lopt are also used, but they are also
computed for all agents.

3.5. Example: Single-state Matrix Game

In this subsection, we present how QTRAN performs com-
pared to existing value factorization ideas such as VDN
and QMIX, and how the two variants QTRAN-base and
QTRAN-alt behave. The matrix game and learning results
are shown in Table 11. This symmetric matrix game has
the optimal joint action (A,A), and captures a very simple
cooperative multi-agent task, where we have two users with
three actions each. Evaluation with more complicated tasks
are provided in the next subsection. We show the results
of VDN, QMIX, and QTRAN through a full exploration
(i.e., ε = 1 in ε-greedy) conducted over 20,000 steps. Full
exploration guarantees to explore all available game states.
Therefore, we can compare only the expressive power of the
methods. Other details are included in the Supplementary.

Comparison with VDN and QMIX Tables 1b-1f show
the learning results of QTRAN, VDN, and QMIX. Table 1b
shows that QTRAN enables each agent to jointly take the
optimal action only by using its own locally optimal action,
meaning successful factorization. Note that Tables 1c and
1d demonstrate the difference between Qjt and Q′jt, stem-
ming from our transformation, where their optimal actions
are the nonetheless same. Table 1d shows that QTRAN
also satisfies (4), thereby validating our design principle as
described in Theorem 1. However, in VDN, agents 1’s and
2’s individual optimal actions are C and B, respectively.
VDN fails to factorize because the structural constraint of

1We present only Qjt and Q′
jt, because in fully observable

cases (i.e., observation function is bijective for all i) Theorem 1
holds for Vjt(τ) = 0. We discuss further in Supplementary.
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Figure 2. base: QTRAN-base, alt: QTRAN-alt. x-axis and y-axis:
agents 1 and 2’s actions, respectively. Colored values represent the
values of Qjt ((a)-(d)) and Q′

jt ((e)-(l)) for selected actions.

additivity Qjt(u) =
∑
i=1,2Qi(ui) is enforced, leading to

deviations from IGM, whose sufficient condition is addi-
tivity, i.e., Qjt(u) =

∑
i=1,2Qi(ui) for all u = (u1, u2).

QMIX also fails in factorization in a similar manner due to
the structural constraint of monotonicity.

Impact of QTRAN-alt In order to see the impact of
QTRAN-alt, we train the agents in a matrix game where
two agents each have 21 actions. Figure 2 illustrates the
joint action-value function and its transformations of both
QTRAN-base and QTRAN-alt. The result shows that both
algorithms successfully learn the optimal action by correctly
estimating the Qjt for u = ū for any given state. Q′jt values
for non-optimal actions are different from Qjt, but it has a
different tendency in each algorithm as follows. As shown
in Figures 2e-2h, all Q′jt values in QTRAN-base have only
a small difference from the maximum value of Qjt, whereas
Figures 2i-2l show that QTRAN-alt has the ability to more
accurately distinguish optimal actions from non-optimal ac-
tions. Thus, in QTRAN-alt, the agent can smartly explore
and obtain good samples to train the networks, and it can
be said to have better sample efficiency. This feature of
QTRAN-alt also prevents learning unsatisfactory policies
in complex environments. Full details on the experiment are
included in the Supplementary.

4. Experiment
4.1. Environments

To demonstrate the performance of QTRAN, we consider
two environments: (i) Multi-domain Gaussian Squeeze and
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(c) Multi-domain Gaussian Squeeze K = 2

Figure 3. Average reward on the GS and GMS tasks with 95% confidence intervals for VDN, QMIX, and QTRAN

(ii) modified predator-prey. Details on our implementation
of QTRAN, the source code of our implementation in Ten-
sorFlow, and other experimental scripts are available in the
Supplementary.

Multi-domain Gaussian Squeeze (MGS) Gaussian
Squeeze (GS) (HolmesParker et al., 2014) is a simple non-
monotonic multi-agent resource allocation problem, used
in other papers, e.g., Yang et al. (2018) and Chen et al.
(2018). In GS, multiple homogeneous agents need to work
together for efficient resource allocation whilst avoiding
congestion. We use GS in conjunction with Multi-domain
Gaussian Squeeze (MGS) as follows: we have ten agents;
each agent i takes action ui, which controls the resource
usage level, ranging over {0, 1, ..., 9}. Each agent has its
own amount of unit-level resource si ∈ [0, 0.2], given by
the environment a priori. Then, a joint action u determines
the overall resource usage x(u) =

∑
i si × ui. We assume

that there exist K domains, where the above resource allo-
cation takes place. Then, the goal is to maximize the joint
reward defined as G(u) =

∑K
k=1 xe

−(x−µk)
2/σk

2

, where
µk and σk are the parameters of each domain. Note that
GS is a special case of MGS when K = 1. Depending on
the number of domains, GS has only one local maximum,
whereas MGS has multiple local maxima. In our MGS set-
ting, compared to GS, the optimal policy is similar to that in
GS, and through this policy, the reward similar to that in GS
can be obtained. Additionally, in MGS, a new sub-optimal
“pitfall” policy that is easier to achieve but is only half as
rewarding as the optimal policy. The case when K > 1 is
usefully utilized to test the algorithms that are required to
avoid sub-optimal points in the joint space of actions. The
full details on the environment setup and hyperparameters
are described in the Supplementary.

Modified predator-prey (MPP) We adopt a more com-
plicated environment by modifying the well-known predator-
prey (Stone & Veloso, 2000) in the grid world, used in many
other MARL research. State and action spaces are con-
structed similarly to those of the classic predator-prey game.
“Catching” a prey is equivalent to having the prey within an
agent’s observation horizon. We extend it to the scenario

that positive reward is given only if multiple predators catch
a prey simultaneously, requiring a higher degree of coopera-
tion. The predators get a team reward of 1, if two or more
catch a prey at the same time, but they are given negative
reward −P , when only one predator catches the prey.

Note that the value of penalty P also determines the degree
of monotonicity, i.e., the higher P is, the less monotonic the
task is. The prey that has been caught regenerated at random
positions whenever caught by more than one predator. In
our evaluation, we tested up to N = 4 predators and up
to two prey, and the game proceeds over fixed 100 steps.
We experimented with six different settings with varying
P values and numbers of agents, where N = 2, 4 and
P = 0.5, 1.0, 1.5. For the N = 4 case, we placed two prey;
otherwise, just one. The detailed settings are available in
the Supplementary.

4.2. Results

Multi-domain Gaussian Squeeze Figure 3a shows the
result of GS, where it is not surprising to observe that all al-
gorithms converge to the optimal point. However, QTRAN
noticeably differs in its convergence speed; it is capable
of handling the non-monotonic nature of the environment
more accurately and of finding an optimal policy from well-
expressed action-value functions. VDN and QMIX have
some structural constraints, which hinder the accurate learn-
ing of the action-value functions for non-monotonic struc-
tures. These algorithms converge to the locally optimal
point — which is the globally optimal point in GS, where
K = 1 — near the biased samples by a wrong policy with
epsilon-decay exploration. To support our claim, we experi-
ment with the full exploration without epsilon-decay for the
same environment, as shown in Figure 3b. We observe that
QTRAN learns more or less the same policy as in Figure 3a,
whereas VDN and QMIX significantly deteriorate. Fig-
ure 3c shows the result for a more challenging scenario of
MGS, with each of [si] being the same, where agents can al-
ways achieve higher performance than GS. VDN and QMIX
are shown to learn only a sub-optimal policy in MGS, whose
rewards are even smaller than those in GS. QTRAN-base
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Figure 4. Average reward per episode on the MPP tasks with 95% confidence intervals for VDN, QMIX, and QTRAN

and QTRAN-alt achieve significantly higher rewards, where
QTRAN-alt is more stable, as expected. This is because
QTRAN-alt’s alternative loss increases the gap between Q′jt
for non-optimal and optimal actions, and prevents it from
being updated to an undesirable policy.

Modified predator-prey Figure 4 shows the performance
of the three algorithms for six settings with different N and
P values, where all results demonstrate the superiority of
QTRAN to VDN and QMIX. In Figures 4a and 4d with
low penalties P , all three algorithms learn the policy that
catches the prey well and thus obtain high rewards. How-
ever, again, the speed in finding the policy in VDN and
QMIX is slower than that in QTRAN. As the penalty P
grows and exacerbates the non-monotonic characteristic of
the environment, we observe a larger performance gap be-
tween QTRAN and the two other algorithms. As shown in
Figures 4b and 4c, even for a large penalty, QTRAN agents
still cooperate well to catch the prey. However, in VDN
and QMIX, agents learn to work together with somewhat
limited coordination, so that they do not actively try to catch
the prey and instead attempt only to minimize the penalty-
receiving risk. In Figures 4e and 4f, when the number of
agents N grows, VDN and QMIX do not cooperate at all
and learn only a sub-optimal policy: running away from the
prey to minimize the risks of being penalized.

For the tested values of N and P , we note that the perfor-
mance gap between QTRAN-base and QTRAN-alt is influ-
enced more strongly by N . When N = 2, the gap in the
convergence speed between QTRAN-base and QTRAN-alt
increases as the penalty grows. Nevertheless, both al-

gorithms ultimately turn out to train the agents to coop-
erate well for every penalty value tested. On the other
hand, with N = 4, the gap of convergence speed between
QTRAN-base and QTRAN-alt becomes larger. With more
agents, as shown in Figures 4d and 4e, QTRAN-alt achieves
higher scores than QTRAN-base does, and QTRAN-base
requires longer times to reach positive scores. Figure 4f
shows that QTRAN-base does not achieve a positive reward
until the end, implying that QTRAN-base fails to converge,
whereas QTRAN-alt’s score increases, with training steps
up to 107.

5. Conclusion
This paper presented QTRAN, a learning method to fac-
torize the joint action-value functions of a wide variety
of MARL tasks. QTRAN takes advantage of centralized
training and fully decentralized execution of the learned
policies by appropriately transforming and factorizing the
joint action-value function into individual action-value func-
tions. Our theoretical analysis demonstrates that QTRAN
handles a richer class of tasks than its predecessors, and our
simulation results indicate that QTRAN outperforms VDN
and QMIX by a substantial margin, especially so when the
game exhibits more severe non-monotonic characteristics.
An in-depth analysis of the simple matrix game reveals
that QTRAN indeed handles greater representational com-
plexity, thanks to the role of its regularizer. This intuitive
observation is confirmed by empirical results from much
more complicated settings, such as MGS and MPP.
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Supplementary
A. QTRAN Training Algorithm
The training algorithms for QTRAN-base and QTRAN-alt are provided in Algorithm 1.

Algorithm 1 QTRAN-base and QTRAN-alt

1: Initialize replay memory D
2: Initialize [Qi], Qjt, and Vjt with random parameters θ
3: Initialize target parameters θ− = θ
4: for episode = 1 to M do
5: Observe initial state s0 and observation o0 = [O(s0, i)]Ni=1 for each agent i
6: for t = 1 to T do
7: With probability ε select a random action uti
8: Otherwise uti = arg maxut

i
Qi(τ

t
i , u

t
i) for each agent i

9: Take action ut, and retrieve next observation and reward (ot+1, rt)
10: Store transition (τ t,ut, rt, τ t+1) in D
11: Sample a random minibatch of transitions (τ ,u, r, τ ′) from D
12: Set ydqn(r, τ ′;θ−) = r + γQjt(τ

′, ū′;θ−), ū′ = [arg maxui Qi(τ
′
i , ui;θ

−)]Ni=1,
13: If QTRAN-base, update θ by minimizing the loss:

L(τ ,u, r, τ ′;θ) = Ltd + λoptLopt + λnoptLnopt,

Ltd(τ ,u, r, τ ′;θ) =
(
Qjt(τ ,u)− ydqn(r, τ ′;θ−)

)2
,

Lopt(τ ,u, r, τ
′;θ) =

(
Q′jt(τ , ū)− Q̂jt(τ , ū) + Vjt(τ )

)2
,

Lnopt(τ ,u, r, τ
′;θ) =

(
min

[
Q′jt(τ ,u)− Q̂jt(τ ,u) + Vjt(τ ), 0

])2
.

14: If QTRAN-alt, update θ by minimizing the loss:

L(τ ,u, r, τ ′;θ) = Ltd + λoptLopt + λnopt-minLnopt-min,

Ltd(τ ,u, r, τ ′;θ) =
(
Qjt(τ ,u)− ydqn(r, τ ′;θ−)

)2
,

Lopt(τ ,u, r, τ
′;θ) =

(
Q′jt(τ , ū)− Q̂jt(τ , ū) + Vjt(τ )

)2
,

Lnopt-min(τ ,u, r, τ ′;θ) =
1

N

N∑
i=1

min
ui∈U

(
Q′jt(τ , ui,u−i)− Q̂jt(τ , ui,u−i) + Vjt(τ )

)2
.

15: Update target network parameters θ− = θ with period I
16: end for
17: end for

B. Proofs
In this section, we provide the proofs of theorems and propositions coming from theorems.

B.1. Proof of Theorem 1

Theorem 1. A factorizable joint action-value function Qjt(τ ,u) is factorized by [Qi(τi, ui)], if

∑N
i=1Qi(τi, ui)−Qjt(τ ,u) + Vjt(τ ) =

{
0 u = ū,

≥ 0 u 6= ū,

(4a)
(4b)
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where

Vjt(τ ) = max
u

Qjt(τ ,u)−
N∑
i=1

Qi(τi, ūi).

Proof. Theorem 1 shows that if condition (4) holds, then Qi satisfies IGM. Thus, for some given Qi that satisfies (4), we
will show that arg maxuQjt(τ ,u) = ū. Recall that ūi = arg maxui

Qi(τi, ui) and ū = [ūi]
N
i=1,.

Qjt(τ , ū) =

N∑
i=1

Qi(τi, ūi) + Vjt(τ ) (From (4a))

≥
N∑
i=1

Qi(τi, ui) + Vjt(τ )

≥ Qjt(τ ,u) (From (4b)).

It means that the set of optimal local actions ūmaximizesQjt, showing thatQi satisfies IGM. This completes the proof.

B.2. Necessity in Theorem 1 Under Affine-transformation

As mentioned in Section 3.1, the conditions (4) in Theroem 1 are necessary under an affine transformation. The necessary
condition shows that for some given factorizable Qjt, there exists Qi that satisfies (4), which guides us to design the QTRAN
neural network. Note that the affine transformation φ is φ(Q) = A ·Q + B, where A = [aii] ∈ RN×N+ is a symmetric
diagonal matrix with aii > 0,∀i and B = [bi] ∈ RN . To abuse notation, let φ(Qi(τi, ui)) = aiiQi(τi, ui) + bi.
Proposition 1. IfQjt(τ ,u) is factorized by [Qi(τi, ui)], then there exists an affine transformation φ(Q) such thatQjt(τ ,u)
is factorized by [φ(Qi(τi, ui))] and the condition (4) holds by replacing [Qi(τi, ui)] with [φ(Qi(τi, ui))].

Proof. To prove, we will show that, for the factors [Qi] of Qjt, there exists an affine transformation of Qi that also satisfies
conditions (4).

By definition, if Qjt(τ ,u) is factorized by [Qi(τi, ui)], then the followings hold: (i) Qjt(τ , ū) − maxuQjt(τ ,u) = 0,
(ii) Qjt(τ ,u) − Qjt(τ , ū) < 0, and (iii)

∑N
i=1(Qi(τi, ui) − Qi(τi, ūi)) < 0 if u 6= ū. Now, we consider an affine

transformation, in which aii = α and bi = 0 ∀i, where α > 0, and φ(Qi) = αQi with this transformation. Since this is
a linearly scaled transformation, it satisfies the IGM condition, and thus (4a) holds. We also prove that φ(Qi) satisfies
condition (4a) by showing that there exists a constant α small enough such that

N∑
i=1

αQi(τi, ui)−Qjt(τ ,u) + Vjt(τ ,u) =

N∑
i=1

α(Qi(τi, ui)−Qi(τi, ūi))− (Qjt(τ ,u)−Qjt(τ , ū)) ≥ 0,

where Vjt(τ ) is redefined for linearly scaled αQi as maxuQjt(τ ,u)−
∑N
i=1 αQi(τi, ūi). This completes the proof.

B.3. Special Case: Theorem 1 in Fully Observable Environments

If the task is a fully observable case (observation function is bijective for all i), the regularizing value network is not required
and all Vjt(τ) values can be set to zero. We show that Theorem 1 holds equally for the case where Vjt(τ ) = 0 for a fully
observable case. This fully observable case is applied to our example of the simple matrix game. The similar necessity
under an affine-transformation holds in this case.

Theorem 1a. (Fully observable case) A factorizable joint action-value function Qjt(τ ,u) is factorized by [Qi(τi, ui)], if

N∑
i=1

Qi(τi, ui)−Qjt(τ ,u)=

{
0 u = ū, (9a)
≥ 0 u 6= ū, (9b)

Proof. We will show arg maxuQjt(τ ,u) = ū (i.e., IGM), if the (9) holds.

Qjt(τ , ū) =

N∑
i=1

Qi(τi, ūi) ≥
N∑
i=1

Qi(τi, ui) ≥ Qjt(τ ,u).
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The first equality comes from (9a), and the last inequality comes from (9b). We note that arg maxuQjt(τ ,u) =
[arg maxui Qi(τi, ui)], so this completes the proof.

Proposition 1a. If Qjt(τ ,u) is factorized by [Qi(τi, ui)], then there exists an affine transformation φ(Q), such that
Qjt(τ ,u) is factorized by [φ(Qi(τi, ui))] and condition (9) holds by replacing [Qi(τi, ui)] with [φ(Qi(τi, ui))].

Proof. From Theorem 1a, if Qjt(τ ,u) is factorizable, then there exist [Qi] satisfying both IGM and (9). Now, we define
an additive transformation φ′i(Qi(τi, ui)) = Qi(τi, ui) + 1

N maxuQjt(τ ,u)−Qi(τi, ūi) for a given τi, which is uniquely
defined for fully observable cases. [φ′i(Qi(τi, ui))] also satisfy IGM, and the left-hand side of (9) can be rewritten as:

N∑
i=1

Qi(τi, ui)−Qjt(τ ,u)−
N∑
i=1

Qi(τi, ūi) + max
u

Qjt(τ ,u) =

N∑
i=1

φ′i(Qi(τi, ui))−Qjt(τ ,u)

So there exist individual action-value functions [φ′i(Q
′
i(τi, ui))] that satisfy both IGM and (9), where Vjt(τ ) is redefined as

0. This completes the proof of the necessity.

B.4. Proof of Theorem 2

Theorem 2. The statement presented in Theorem 1 and the necessary condition of Theorem 1 holds by replacing (4b) with
the following (7): if u 6= ū,

min
ui∈U

[
Q′jt(τ , ui,u−i)−Qjt(τ , ui,u−i) + Vjt(τ )

]
= 0, ∀i = 1, . . . , N, (7)

where u−i = (u1, . . . , ui−1, ui+1, . . . , uN ), i.e., the action vector except for i’s action.

Proof. (⇒) Recall that condition (7) is stronger than (4b), which is itself sufficient for Theorem 1. Therefore, by transitivity,
condition (7) is sufficient for Theorem 2. Following paragraphs focus on the other direction, i.e., how condition (7) is
necessary for Theorem 2.

(⇐) We prove that, if there exist individual action-value functions satisfying condition (4), then there exists an individual
action-value function Q′i that satisfies (7). In order to show the existence of such Q′i, we propose a way to construct Q′i.

We first consider the case with N = 2 and then generalize the result for any N . The condition (7) for N = 2 is denoted as:

min
ui∈U

[
Q1(τ1, u1) +Q2(τ2, u2)−Qjt(τ , u1, u2) + Vjt(τ )

]
= 0.

Since this way of constructing Q′i is symmetric for all i, we present its construction only for u1 without loss of generality.

For Q1 and Q2 satisfying (4), if β := minu1∈U

[
Q1(τ1, u1) + Q2(τ2, u2) − Qjt(τ , u1, u2) + Vjt(τ )

]
> 0 for given τ

and u2, then u2 6= ū2. This is because Q1(τ1, ū1) + Q2(τ2, ū2) − Qjt(τ , ū1, ū2) + Vjt(τ ) = 0 by condition (4a). Now,
we replace Q2(τ2, u2) with Q′2(τ2, u2) = Q2(τ2, u2)− β. Since Q2(τ2, ū2) > Q2(τ2, u2) > Q2(τ2, u2)− β, it does not
change the optimal action and other conditions. Then, (7) is satisfied for given τ and u2. By repeating this replacement
process, we can construct Q′i that satisfies condition (7).

More generally, when N 6= 2, if minui∈U

[
Q′jt(τ , ui,u−i) − Qjt(τ , ui,u−i) + Vjt(τ )

]
= β > 0 for given τ and u−i,

then there exists some j 6= i that satisfies uj 6= ūj . Therefore, by repeating the same process as when N = 2 through j,
we can construct Q′i for all i, and this confirms that individual action-value functions satisfying condition (7) exist. This
completes the proof.
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B.4.1. PROCESS OF CONSTRUCTING Q′i IN THE MATRIX GAME USING THEOREM 2

We now present the process of how we have demonstrated through the example in Section 3.5. In the original matrix shown
in Tables 2a and 2d, the second row does not satisfy the condition (7), and β = 0.23 for u1 = B. Then, we replace Q1(B)
as shown in Table 2e. Table 2b shows that its third row does not satisfy the condition (7). Finally, we replace Q1(C) as
shown in Table 2f. Then, the resulting Table 2c satisfies the condition (7).

u1

u2 A B C

A 0.00 18.14 18.14
B 14.11 0.23 0.23
C 13.93 0.05 0.05

(a) Q′
jt −Qjt

u1

u2 A B C

A 0.00 18.14 18.14
B 13.88 0.00 0.00
C 13.93 0.05 0.05

(b) Q′
jt −Qjt after one replacement

u1

u2 A B C

A 0.00 18.14 18.14
B 13.88 0.00 0.00
C 13.88 0.00 0.00

(c) Q′
jt −Qjt after two replacements

Q1

Q2 4.16(A) 2.29(B) 2.29(C)

3.84(A) 8.00 6.13 6.12
-2.06(B) 2.10 0.23 0.23
-2.25(C) 1.92 0.04 0.04

(d) Q1, Q2, Q
′
jt

Q1

Q2 4.16(A) 2.29(B) 2.29(C)

3.84(A) 8.00 6.13 6.12
-2.29(B) 1.87 0.00 0.00
-2.25(C) 1.92 0.04 0.04

(e) Q1, Q2, Q
′
jt after one replacement

Q1

Q2 4.16(A) 2.29(B) 2.29(C)

3.84(A) 8.00 6.13 6.12
-2.29(B) 1.87 0.00 0.00
-2.30(C) 1.87 -0.01 -0.01

(f) Q1, Q2, Q
′
jt after two replacements

Table 2. The process of replacing [Qi] satisfying the condition (9b) with [Qi] satisfying the condition (7)

C. Details of environments and implementation
C.1. Environment

Matrix game In order to see the impact of QTRAN-alt, we train the agents in a single state matrix game where two agents
each have 21 actions. Each agent i takes action ui, ranging over ∈ {0, ..., 20}. The reward value R for a joint action is given
as follows:

f1(u1, u2) = 5−
(

15− u1
3

)2

−
(

5− u2
3

)2

f2(u1, u2) = 10−
(

5− u1
1

)2

−
(

15− u2
1

)2

R(u1, u2) = max(f1(u1, u2), f2(u1, u2))
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Figure 5. x-axis and y-axis: agents 1 and 2’s actions, respectively. Colored values represent the reward for selected actions.

Figure 5 shows reward for selected action. Colored values represent the values. In the simple matrix game, the reward
function has a global maximum point at (u1, u2) = (5, 15) and a local maximum point at (u1, u2) = (15, 5).
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Multi-domain Gaussian Squeeze We adopt and modify Gaussian Squeeze, where agent numbers (N = 10) and action
spaces (ui ∈ {0, 1, ..., 9}) are much larger than a simple matrix game. In MGS, each of the ten agents has its own amount
of unit-level resource si ∈ [0, 0.2] given by the environment a priori. This task covers a fully observable case where all
agents can see the entire state. We assume that there exist K domains, where the above resource allocation takes place. The
joint action u determines the overall resource usage x(u) =

∑
i si × ui. Reward is given as a function of resource usage

as follows: G(u) =
∑K
k=1 xe

−(x−µk)
2/σk

2

. We test with two different settings: (i) K = 1, µ1 = 8, σ1 = 1 as shown in
Figure 6a, and (ii) K = 2, µ1 = 8, σ1 = 0.5, µ2 = 5, σ2 = 1 as shown in Figure 6b. In the second setting, there are two
local maxima for resource x. The maximum on the left is relatively easy to find through exploration – as manifested in the
greater variance of the Gaussian distribution, but the maximum reward — as represented by the lower peak — is relatively
low. On the other hand, the maximum on the right is more difficult to find through exploration, but it offers higher reward.
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(a) Gaussian Squeeze
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(b) Multi-domain Gaussian Squeeze

Figure 6. Gaussian Squeeze and Multi-domain Gaussian Squeeze

Modified predator-prey Predator-prey involves a grid world, in which multiple predators attempt to capture randomly
moving prey. Agents have a 5× 5 view and select one of five actions ∈ {Left, Right, Up, Down, Stop} at each time step.
Prey move according to selecting a uniformly random action at each time step. We define the “catching” of a prey as when
the prey is within the cardinal direction of at least one predator. Each agent’s observation includes its own coordinates, agent
ID, and the coordinates of the prey relative to itself, if observed. The agents can separate roles even if the parameters of the
neural networks are shared by agent ID. We test with two different grid worlds: (i) a 5× 5 grid world with two predators
and one prey, and (ii) a 7× 7 grid world with four predators and two prey. We modify the general predator-prey, such that a
positive reward is given only if multiple predators catch a prey simultaneously, requiring a higher degree of cooperation. The
predators get a team reward of 1 if two or more catch a prey at the same time, but they are given negative reward −P , if only
one predator catches the prey as shown in Figure 7. We experimented with three varying P vales, where P = 0.5, 1.0, 1.5.
The terminating condition of this task is when a prey is caught with more than one predator. The prey that has been caught is
regenerated at random positions whenever the task terminates, and the game proceeds over fixed 100 steps.

AP

A

A P

A

A

P

: Agent (Predator)

: Prey

Reward = +1 Reward = -P

Figure 7. Predator-prey environment
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C.2. Experiment details

Matrix game Table 3 shows the values of the hyperparameters for the training in the matrix game environment. Individual
action-value networks, which are common in all VDN, QMIX, and QTRAN, each consist of two hidden layers. In addition
to the individual Q-networks, QMIX incorporates a monotone network with one hidden layer, and the weights and biases
of this network are produced by separate hypernetworks. QTRAN has an additional joint action-value network with two
hidden layers. All hidden layer widths are 32, and all activation functions are ReLU. All neural networks are trained using
the Adam optimizer. We use ε-greedy action selection with ε = 1 independently for exploration.

Hyperparameter Value Description

training step 20000 Maximum time steps until the end of training
learning rate 0.0005 Learning rate used by Adam optimizer
replay buffer size 20000 Maximum number of samples to store in memory
minibatch size 32 Number of samples to use for each update
λopt, λnopt 1,1 Weight constants for loss functions Lopt, Lnopt and Lnopt−min

Table 3. Hyperparameters for matrix game training

Multi-domain Gaussian Squeeze Table 4 shows the values of the hyperparameters for the training in the MGS environ-
ment. Each individual action-value network consists of three hidden layers. In addition to the individual Q-networks, QMIX
incorporates a monotone network with one hidden layer, and the weights and biases of this network are produced by separate
hypernetworks. QTRAN has an additional joint action-value network with two hidden layers. All hidden layer widths are
64, and all activation functions are ReLU. All neural networks are trained using the Adam optimizer. We use ε-greedy action
selection with decreasing ε from 1 to 0.1 for exploration.

Hyperparameter Value Description

training step 1000000 Maximum time steps until the end of training
learning rate 0.0005 Learning rate used by Adam optimizer
replay buffer size 200000 Maximum number of samples to store in memory
final exploration step 500000 Number of steps over which ε is annealed to the final value
minibatch size 32 Number of samples to use for each update
λopt, λnopt 1,1 Weight constants for loss functions Lopt, Lnopt and Lnopt−min

Table 4. Hyperparameters for Multi-domain Gaussian Squeeze

Modified predator-prey Table 5 shows the values of the hyperparameters for the training in the modified predator-prey
environment. Each individual action-value network consists of three hidden layers. In addition to the individual Q-networks,
QMIX incorporates a monotone network with one hidden layer, and the weights and biases of this network are produced
by separate hypernetworks. QTRAN has additional joint action-value network with two hidden layers. All hidden layer
widths are 64, and all activation functions are ReLU. All neural networks are trained using the Adam optimizer. We use
ε-greedy action selection with decreasing ε from 1 to 0.1 for exploration. Since history is not very important in this task, our
experiments use feed-forward policies, but our method is also applicable with recurrent policies.

Hyperparameter Value Description

training step 10000000 Maximum time steps until the end of training
discount factor 0.99 Importance of future rewards
learning rate 0.0005 Learning rate used by Adam optimizer
target update period 10000 Target network update period to track learned network
replay buffer size 1000000 Maximum number of samples to store in memory
final exploration step 3000000 Number of steps over which ε is annealed to the final value
minibatch size 32 Number of samples to use for each update
λopt, λnopt 1,1 Weight constants for loss functions Lopt, Lnopt and Lnopt−min

Table 5. Hyperparameters for predator-prey training



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning

D. Additional results for matrix games
Table 6 shows the comparison between the final performance levels of VDN, QMIX, and QTRAN-base for 310 3 × 3
random matrix games, where each value of the payoff matrix is given as a random parameter from 0 to 1. Experimental
settings are the same as in the previous matrix game. Since matrix games always satisfy IGM conditions, QTRAN-base
always trains the optimal action for all 310 cases. On the other hand, VDN and QMIX were shown to be unable to learn an
optimal policy for more than half of non-monotonic matrix games.

We briefly analyze the nature of the structural constraints assumed by VDN and QMIX, namely, additivity and monotonicity
of the joint action-value functions. There have been only 19 cases in which the results of VDN and QMIX differ from each
other. Interestingly, for a total of five cases, the performance of VDN is better than QMIX. QMIX was shown to outperform
VDN in more cases (14) than the converse case (5). This supports the idea that the additivity assumption imposed by VDN
on the joint action-value functions is indeed stronger than the monotonicity assumption imposed by QMIX.

QTRAN=VDN=QMIX QTRAN>VDN=QMIX VDN>QMIX QMIX>VDN
114 177 5 14

Table 6. Final performance comparison with 310 random matrices

Figures 8-9 show the joint action-value function of VDN and QMIX, and Figures 10-11 show the transformed joint
action-value function of QTRAN-base and QTRAN-alt for a matrix game where two agents each have 20 actions. In the
result, VDN and QMIX can not recover joint action-value, and these algorithms learn sub-optimal policy u1, u2 = (15, 5).
In the other hand, the result shows that QTRAN-base and QTRAN-alt successfully learn the optimal action, but QTRAN-alt
has the ability to more accurately distinguish action from non-optimal action as shown in Figure 11.
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Figure 8. x-axis and y-axis: agents 1 and 2’s actions. Colored values represent the values of Qjt for VDN
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Figure 9. x-axis and y-axis: agents 1 and 2’s actions. Colored values represent the values of Qjt for QMIX
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Figure 10. x-axis and y-axis: agents 1 and 2’s actions. Colored values represent the values of Q′
jt for QTRAN-base

0 5 10 15 200

5

10

15

20

(a) 1000 step

0 5 10 15 200

5

10

15

20

(b) 2000 step

0 5 10 15 200

5

10

15

20

(c) 3000 step

0 5 10 15 200

5

10

15

20

(d) 4000 step

0 5 10 15 200

5

10

15

20

(e) 5000 step

0 5 10 15 200

5

10

15

20

(f) 6000 step

0 5 10 15 200

5

10

15

20

(g) 7000 step

0 5 10 15 200

5

10

15

20

(h) 8000 step

Figure 11. x-axis and y-axis: agents 1 and 2’s actions. Colored values represent the values of Q′
jt for QTRAN-alt


