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Abstract—In the past few years, an exciting progress has been
made on CSMA (Carrier Sense Multiple Access) algorithms that
achieve throughput and utility optimality for wireless networks.
However, most of these algorithms are known to exhibit poor
delay performance making them impractical for implementation.
Recently, several papers have addressed the delay issue of
CSMA and yet, most of them are limited, in the sense that
they focus merely on specific network scenarios with certain
conditions rather than general network topology, achieve low
delay at the cost of throughput reduction, or lack rigorous
provable guarantees. In this paper, we focus on the recent idea
of exploiting multiple channels (actually or virtually) for delay
reduction in CSMA, and prove that it is per-link delay order-
optimal, i.e., O(1)-asymptotic-delay per link, if the number of
virtual channels is logarithmic with respect to mixing time of
the underlying CSMA Markov chain. The logarithmic number
is typically small, i.e., at most linear with respect to the network
size. In other words, our contribution provides not only a
provable framework for the multiple-channel based CSMA, but
also the required explicit number of virtual-multi-channels, which
is of great importance for actual implementation. The key step
of our analytic framework lies in using quadratic Lyapunov
functions in conjunction with (recursively applying) Lindley
equation and Azuma’s inequality for obtaining an exponential
decaying property in certain queueing dynamics. We believe
that our technique is of broad interest in analyzing the delay
performances of other general queueing systems.

I. INTRODUCTION

A. Motivation and Contribution

In wireless and computer networks, multiple nodes share a
communication medium for transmitting their data packets. In
order to achieve an efficient channel utilization to resolve any
potential conflicts or interferences between competing nodes,
designing a good scheduling algorithm, or medium access con-
trol (MAC) protocol is of crucial importance. In their seminal
work, Tassiulas and Ephremides [1] proposed a scheduling
algorithm known as ‘Max-Weight’ (MW) that achieves the
throughput optimality. However, the MW algorithm requires to
solve a NP-hard optimization problem in a centralized manner
at each time slot, which is its main drawback for applying it
to a large-scale network. Much efforts for designing simpler
or distributed implementations of MW have been made since
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then, e.g., [2]–[4], but these algorithms, though distributed,
require heavy message passing.

In the past few years or so, there has been a breakthrough,
where the throughput/utility optimality can be achieved by
just locally controlling the CSMA (Carrier Sense Multiple
Access) parameters without explicit knowledge of neighboring
information [5]–[9] hence providing a simple and distributed
MAC with optimal performance guarantee. These algorithms
are all based on one of the Markov Chain Monte Carlo
(MCMC) methods called Glauber dynamics which can be
used to sample the independent sets of a graph according to
a product-form stationary distribution. However, it has been
reported that the CSMA algorithms in general are known to
suffer from poor delay performance [11]. Thus, it remains to
develop or even verify the existence of such fully-distributed,
yet highly delay-efficient MAC algorithms without message
passing (possibly based on CSMA).

In this paper, we show the existence of a throughput-
optimal, CSMA-based (thus fully-distributed) MAC with a
provable per-link order-optimal delay performance for general
wireless network topologies. To the best of our knowledge,
this is the first such work in the literature, where even the
network-wide order-optimal CSMA delay (which is weaker
than our per-link optimality) is not known (see Section I-B
for more details). In particular, this paper employs a virtual
multi-channel CSMA, referred to as the delayed CSMA [17],
and proves that it has the O(1)-asymptotic-delay per link, if
the number of virtual channels is in the logarithmic order of
the mixing time of the underlying CSMA Markov chain. The
important implication of our result is that a small number of
channels suffices to achieve the optimal delay performance of
the CSMA algorithm since the logarithmic number is typically
small, i.e., at most linear with respect to the network size
[24]. The algorithm is easy to implement and fully-distributed,
i.e., no message passing is necessary. The key part of our
analytic framework is the use of quadratic Lyapunov functions
in conjunction with (recursively applying) Lindley equation
and Azuma’s inequality for obtaining an exponential decaying
property in certain queueing dynamics (see Section IV-A for
more details). We believe that our technique is of broad interest
in analyzing the delay performance of more general queueing
systems.

B. Related Work

In the literature, several papers proposed different CSMA-
based MACs, all of which are provably (close to be) delay-
optimal under certain restrictions. Shah and Shin [10] proposed978-1-4799-3360-0/14/$31.00 c© 2014 IEEE
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a modified queue-based CSMA algorithm where at each time
instance a very small fraction of frozen nodes do not execute
CSMA operations. By appropriately selecting such frozen
nodes, the proposed algorithm leads to the network-wide O(n)
queue length, where n is the number of links. Lotfinezhad and
Marbach [11] prove that by periodically resetting all links to
become silent and then immediately restarting the classical
CSMA protocol, the algorithm leads to the O(1) per-packet
delay for grid or torus interference graphs. Jiang et al. [12]
study CSMA algorithms based on parallel Glauber dynamics.
The authors prove that the algorithms can achieve the network-
wide O(n log n) queue length, and Subramanian and Alanyali
[13] further tightened the bound. The limitations in the above
papers are (i) [10], [11] are only applicable to a specific
type of topologies, i.e., geometric or torus (inference) network
topologies, and (ii) [12], [13] require reduced offered loads and
a tradeoff between throughput and delay occurs (i.e., in both
papers, a certain amount of throughput should be sacrificed
for low delay). We overcome these limitations in the current
paper, and more importantly, we obtain the per-link O(1)
queue length, which is much stronger than the network-wide
(or mean) queue length bound.

Another direction of designing CSMA algorithms for better
delay performance is to use (actual or virtual) ‘multi-channels,’
which is in essence motivated by resolving the temporal
link starvation of CSMA via ‘de-correlating’ the temporal
accessibility to the wireless medium. Lam et al. [15] considers
a CSMA algorithm with multiple frequency agility, such that
more than one frequency channel is available yet a link can
transmit on at most one of the channels. They associate tempo-
ral starvation to the mixing time and then show that the region
of fast mixing time implies that of low temporal starvation
through simulations. Huang and Lin [16] proposed an algo-
rithm called VMC-CSMA in which multiple virtual channels
(defined by dividing the time line) are used to emulate a
multi-channel system and address the starvation problem. The
algorithm randomly selects a virtual channel, and the schedule
corresponding to this chosen channel is used at each time slot.
The authors show that the expected packet delay for each
link equals to the inverse of its long-term average rate, and
the distribution of its head-of-line (HOL) waiting time can
be asymptotically bounded. The multi-channel idea is also
used in [17], where the authors propose the so-called delayed
CSMA inducing multiple independent CSMA dynamics in a
round robin manner. They showed that its asymptotic-delay
performance can be improved by exploiting more channels
(i.e., more rounds in the delayed CSMA). However, an explicit
delay bound has yet to be studied, where especially a precise
relation between the CSMA delay and the number of channels
is practically important for implementation.

The question of designing MAC scheduling algorithms with
low delay, not restricted to CSMA, in wireless networks has
been also studied from a while ago. To name just a few,
the MW algorithm empirically has a good delay performance,
but its (network-wide or per-link) delay-optimality for general
topology is not analytically known. Neely et al. [18] proved

that maximal scheduling, which is suboptimal in terms of
throughput, achieves O(1) delay. Yi and Chiang [19] studied
the 3-D tradeoff among delay, throughput, and complexity
for a large class of queue-based scheduling schemes. A
‘batching’ policy, first considered by Neely et al. [20], is
known to be almost delay-optimal for input-queued switch
networks (a special topology of wireless networks), where
its per-link delay is O(log n). Recently, Shah et al. [21]
developed a centralized delay-optimal scheduling algorithm
for wireless networks including input-queued switch networks.
On the negative side, Shah et al. [22] showed that there
exists no polynomial-time scheduler (including CSMA) with
a polynomial delay for arbitrary network topologies unless
NP ⊆ BPP. However, the authors consider the supremum
of temporal delays over time, which does not imply that the
asymptotic time-averaged delay performance is necessarily
bad. Somewhat surprisingly, in the current paper we show that
even a simple fully-distributed CSMA algorithm can achieve
the asymptotic time-averaged O(1) delay per link.

II. SYSTEM MODEL

A. Model
We consider a network model where the interference rela-

tionship among the wireless links can be represented by the
so-called interference graph G = (N , E) where N is the set
of links, and E is the set of edges representing (symmetric)
interference relationship between links. An edge (i, j) ∈ E
exists between two links i and j if the corresponding wireless
links interfere with each other. We denote Nv = {w ∈
N : (v, w) ∈ E} as the set of neighbors of node v. Time
is divided into discrete slots, indexed by t = 0, 1, . . . . Let
σ(t) = (σv(t))v∈N ∈ {0, 1}|N | be a schedule that represents
the set of transmitting links at time t. A link v (or node v
in the interference graph G) is active if it is included in the
schedule, i.e., σv(t) = 1, and is inactive otherwise. We denote
by Ω ⊆ {0, 1}|N | the set of all feasible schedules on G, where
a feasible schedule σ(t) should satisfy the independent set
constraint i.e.,
σ(t) ∈ I(G) , {χ ∈ {0, 1}|N | : χv + χw ≤ 1,∀(v, w) ∈ E}.

Each link is associated with a queue that has a dedicated
exogenous arrival process. Let Av(t) denote the number of
packet (of unit-size) arrival of link v at time t. We assume
Bernoulli arrivals, i.e., Av(t) ∈ {0, 1} with P[Av(t) = 1] =
λv . Let Q(t) = (Qv(t))v∈N denote the vector of queue sizes
at time t. Then it has the following dynamics:

Qv(t) = max{Qv(t− 1) +Av(t)− σv(t), 0}, t ≥ 1.

where it is called the Lindley equation. We denote by Av[t, t′]
and Dv[t, t

′] the number of arrivals and (potential) departures
in the interval [t, t′], respectively, i.e.,

Av[t, t
′] =

t′∑
s=t

Av(s) and Dv[t, t
′] =

t′∑
s=t

σv(s).

In addition, we let ∆v[t, t
′] = Av[t, t

′] − Dv[t, t
′]. Then,

by recursively applying the Lindley equations, we obtain the
following:
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Qv(t) = max{Qv(t− 1) +Av[t, t]−Dv[t, t], 0}
= max{max{Qv(t− 2) +Av[t− 1, t− 1]−
Dv[t− 1, t− 1], 0}+Av[t, t]−Dv[t, t], 0}

· · ·

= max
{
Qv(0) +Av[1, t]−Dv[1, t], max

2≤s≤t

{Av[s, t]−Dv[s, t]}, 0
}
. (1)

The above equation will play a crucial role in our analysis.
We define the capacity region C ⊂ [0, 1]|N | of a network as

the convex hull of the feasible scheduling set I(G), i.e.,

C =

 ∑
χ∈I(G)

αχχ :
∑

χ∈I(G)

αχ = 1, αχ ≥ 0,∀χ ∈ I(G)

 .

Let λ = [λv] and it is called admissible if λ ∈ Λ, where

Λ =
{
λ ∈ R|N |+ : λv ≤ γv, ∀v, for some γ = [γv] ∈ C

}
.

The intuition behind this notion of Λ comes from the fact
that any scheduling algorithm has to choose a schedule from
I(G) at each time and hence the arrival rate must belong to
Λ (otherwise, queues should grow over time). In addition, for
given ε > 0, λ is called ε-admissible if λ ∈ Λε, where

Λε =
{
λ ∈ R|N |+ : λv + ε < γv, ∀v, for some γ = [γv] ∈ C

}
.

Finally, λ is called strictly admissible if λ ∈ Λ◦ where Λ◦ =⋃
ε>0 Λε.

B. Performance Metric

A scheduling algorithm decides a sequence of σ(t) ∈ I(G)
over t = 0, 1, . . .. In this section, we introduce the main
performance metrics, which are the throughput and delay
of scheduling algorithms. First, we define the throughput-
optimality:

Definition 2.1 (Throughput-Optimality): A scheduling al-
gorithm is called throughput-optimal if for any strictly admis-
sible arrival rate λ ∈ Λ◦, queues remain finite with probability
1 under the algorithm, i.e.,

lim sup
t→∞

∑
v

Qv(t) <∞, with probability 1. (2)

A popular approach for showing the throughput-optimality is
(a) defining the underlying network Markov chain induced by
a scheduling algorithm and (b) proving its positive recurrence.
We now introduce the delay optimality studied in this paper.

Definition 2.2 (Delay-Optimality): A scheduling algorithm
is called per-link delay-optimal (or simply delay-optimal) 1, if
for any ε-admissible arrival rate λ ∈ Λε with ε = ω(1),

lim sup
t→∞

E [Qv(t)] = O(1), for all v ∈ N .

In the above definition, the orders ω(1) and O(1) are with
respect to the network size |N |, i.e., delay-optimality means
that the per-link queue-size remains ‘constant’ as the network
size grows.

1This per-link optimality is much stronger than the ‘network-wide’ opti-
mality defined by the averaged delay over all links.

C. Delayed CSMA

Our interest is in fully-distributed CSMA scheduling al-
gorithms, where in particular, we study the delayed CSMA
proposed in [17]. The main idea is to use multiple schedulers
in a round-robin manner in order to effectively reduce the
correlations between the link state process, in an attempt to
alleviate the so-called starvation problem, i.e., once a schedule
is chosen, it keeps being scheduled without any change for a
large number of slots. This algorithm is formally stated in
Algorithm 1.

Algorithm 1 Delayed CSMA [17]
1: Initialize: for all links v ∈ N , σv(t) = 0, t = 0, ..., T − 1.
2: At each time t ≥ T : links find a decision schedule,
3: D(t) ∈ I(G) through a randomized procedure, and
4: for all links v ∈ D(t) do
5: if

∑
w∈Nv

σw(t− T ) = 0 then
6: σv(t) = 1 with probability rv

1+rv

7: σv(t) = 0 with probability 1
1+rv

8: else
9: σv(t) = 0

10: end if
11: end for
12: for all links w /∈ D(t) do
13: σv(t) = σv(t− T )
14: end for

In the delayed CSMA, at each time slot, a decision schedule
is chosen D(t) ∈ I(G), which corresponds to a selection of
an independent set of I(G). The active links in the decision
schedule become the candidate links which may change their
state. There are various ways to choose a decision schedule
D(t) ∈ I(G) at each time slot. For example, each link simply
attempts to access the medium with a fixed access probability
av and then v ∈ D(t) with probability av

∏
u∈Nv

(1− au), or
a randomized scheme with light control message exchanges
can be used, as in [25]. In general, we assume that {D(t)}
is a set of independent identical random variables such that
P[v ∈ D(t)] > 0 for all v. Under the assumption, given the
‘fugacity’ [rv], the schedule {σ(t) : t ≡ k (mod T )} forms
a (discrete-time) irreducible and aperiodic Markov chain for
k = 0, 1, . . . , T − 1, e.g., the k-th Markov chain is {σ(uT +
k) : u = 0, 1, 2, . . . }. The common stationary distribution
π = [πσ] is given by

πσ =
1

Z

∏
v∈N

rσv
v , (3)

where Z =
∑
σ∈Ω

∏
v∈N r

σv
v is a normalizing constant.

Hence, one can think that the algorithm utilizes multiple
T independent Markov chains (or schedulers). From their
ergodicities, we know that for all v ∈ N ,

lim
t→∞

1

t

t−1∑
s=0

σv(s) = Pπ[σv = 1].

The essence of recently developed throughput-optimal
CSMA algorithms [7], [9] is finding an appropriate
fugacity [rv] such that the long-term link throughput
limt→∞

1
t

∑t−1
s=0 σv(s) is (strictly) greater than the arrival rate

λv (whenever λ is strictly admissible). Given such a fugacity,
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it is not hard to prove the desired positive recurrence of
the underlying network Markov chain [7]. Several authors
proposed different adaptive updating rules on fugacities, which
converge to the appropriate fugacity [7]–[9], [23]. Since the
main focus of this paper is to analyze the delay performance
of the delayed CSMA, we assume that links initially start with
the desired fugacity. Formally speaking, for given ε-admissible
arrival rate λ, we assume that

lim
t→∞

1

t

t−1∑
s=0

σv(s) = Pπ[σv = 1] ≥ λv+ε, for all v ∈ N . (4)

This is merely for simple presentation of our proof, and one
can easily extend it without the assumption, i.e., under the
known adaptive fugacity updating rules in [7]. This is because
our delay metric is defined in an asymptotic manner (i.e., uses
‘limsup’) and the exact convergence in the fugacity updating
rules is not crucial in our proof strategy.2

III. MAIN RESULT

This section presents the main result of this paper, namely
the delay-optimality of the delayed CSMA algorithm. We
first summarize the main contribution of our paper beyond
[17]. The authors have shown that under delayed CSMA, the
probability that a queue length is larger than some value x, is
approximated by a function that is exponentially decreasing in
x and T . However, the result is quite asymptotic and does not
imply delay-optimality, i.e., it is not clear whether the expected
queue length becomes O(1) as T grows. Furthermore, a
more precise relation between the queue length and T is of
significant importance for its actual implementation, which
we characterize in this paper using the mixing time of the
underlying CSMA Markov chain {σ(t) : t ≡ k (mod T )}.

A. Preliminaries: Mixing Time

To describe our result formally, we first introduce the
necessary definitions of the total variation distance and the
corresponding mixing time of the CSMA Markov chain. The
total variation distance between two probability distributions
η = [ηi] and ν = [νi] on state space Ω is

‖η − ν‖TV =
1

2

∑
i∈Ω

|ηi − νi|.

Using this distance metric, the mixing time of the k-th CSMA
Markov chain {σ(uT + k) : u = 0, 1, 2, . . . } is defined as
follows:

M (k)(δ) = inf
{
s : max

µ(k)

wwµ(uT+k)−π
ww
TV
≤ δ, ∀u ≥ s

}
,

where δ > 0 is some constant (which we will choose later) and
µ(t) denotes the probability distribution of random variable
σ(t). The mixing time measures how long it takes for the k-th
CSMA Markov chain to converge to the stationary distribution
for arbitrary initial distribution µ(k). Since we assume the
fixed common fugacity across the Markov chains, the mixing
time M (k)(δ) is identical for k = 0, 1, . . . , T − 1. Hence, we
use M(δ) = M (k)(δ).

2The ‘fixed’ fugacity assumptions have also been taken in other papers
dealing with CSMA delay, e.g., [12].

B. Main Result: Delay-Optimality

Now we are ready to state the main result of this paper, i.e.,
the delay-optimality of the delayed CSMA algorithm.

Theorem 3.1: For any ε-admissible arrival rate λ ∈ Λε,
there exists T ∗ = O

(
1
ε3 logM(ε/4)

)
such that for all T >

T ∗, the corresponding delayed CSMA algorithm is delay-
optimal, more formally,

lim
t→∞

E[Qv(t)] = O

(
1

ε5

)
, for all v ∈ N .

The above theorem states that the per-link average queue-
size is bounded by a constant for sufficiently large T , the
number of independent CSMA schedulers. The purpose of
choosing large T is to effectively reduce the dependency
among consecutive link states, which promotes much faster
link state changes and hence alleviates the starvation problem.

We further remark that Theorem 3.1 is optimal with respect
to the network size, but not with respect to ε, e.g., the best
order of delay in both parameters is O(1/ε). In this paper,
we do not make much efforts to optimize our analysis for the
better delay dependency in ε and the tighter bound of T ∗. For
example, in our simulation results (see Section V), we observe
that T = 2 is enough for the order-optimal delay for grid-like
graphs. We provide the proof of Theorem 3.1 in the following
section.

IV. PROOFS: THEOREM 3.1 AND NECESSARY LEMMAS

A. Proof Strategy

We first describe our proof strategy at a high level, followed
by the detailed proof in Section IV-B. We use the popular
approach using a quadratic Lyapunov function to prove the
desired delay bound in Theorem 3.1. In this approach, one
has to define an appropriate network Markov chain and show
a certain negative drift property for the Lyapunov function (see
Lemma 4.1) . In particular, the network Markov chain {X(t)}
under the delayed CSMA algorithm is

X(t) =
(
Q(t),σ(t),σ(t− 1), . . . ,σ(t− T + 1)

)
.

Two major technical challenges for deriving the desired neg-
ative drift property are:
• It is necessary that the CSMA Markov chains mix, which

takes the mixing time M = M(ε/4). Otherwise, the
scheduling dynamics is hard to analyze.

• Even after the CSMA Markov chains mix, schedules
{σ(·)} are correlated (i.e., they are not i.i.d random
variables), but one has to show that they still satisfy some
version of law of large numbers.

For the first issue, we design a stopping time obtaining the
negative drift property to be much later than the mixing time
so that the negative drift in the mixing period dominates the
(potential) positive drift in the initial non-mixing one. For the
second issue, we first observe that schedules {σ(·)} in each
time interval of length T are almost i.i.d random variables
(after the CSMA Markov chains mix) due to the design of
the delayed CSMA algorithm. Hence, we choose T large
enough so that (a) the ‘variance’ of the sum of schedules
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in each time interval of length T is small enough (b) the
possible correlation across the time intervals is compensated.
Specifically, for (a) we use Azuma’s inequality for obtaining an
exponential decaying property of queueing dynamics in each
time interval of length T , and for (b) the union bound is used
under Lindley recursions.

B. Proof of Theorem 3.1
We now start toward proving Theorem 3.1. First observe that

the network Markov chain {X(t)} is aperiodic and irreducible.
Its ergodicity (i.e., positive recurrence) can be derived using
the following key lemma whose proof is presented in Section
IV-C.

Lemma 4.1: For any ε-admissible arrival rate λ ∈ Λε,
there exist positive numbers T ∗ = O

(
1
ε3 logM

)
such that

for all T > T ∗ and v ∈ N ,

E
[
Qv(t+ 7MT/ε)2 |X(t)

]
≤ Qv(t)2 − Qv(t)

2
+O

(
1

ε5

)
.

The positive recurrence of {X(t)} follows easily via the
Lyapunov-Foster criteria with Lemma 4.1 and quadratic Lya-
punov function L(X(t)) =

∑
v Qv(t)

2. Furthermore, taking
expectations with respect to the distribution of X(t) in both
sides of the conclusion of Lemma 4.1, we have

E[Qv(t+ 7MT/ε)2] ≤ E[Qv(t)
2]− E[Qv(t)]

2
+O

(
1

ε5

)
.

Due to the fact that limt→∞ E[Qv(t + 7MT/ε)2] =
limt→∞ E[Qv(t)

2] from the ergodicity of {X(t)}, we obtain
the conclusion of Theorem 3.1: limt→∞ E[Qv(t)] = O

(
1
ε5

)
.

C. Proof of Lemma 4.1
We first present the following lemma which plays a crucial

role for proving Lemma 4.1.
Lemma 4.2: For any Q ≥ 0 satisfying ϕ ≥ Q−MT/2, it

follows that

P
[
Qv
(
t+ 7MT/ε

)
≥ ϕ

∣∣L] ≤ g(T, ϕ),

where g(T, ϕ) = 140M
ε3 exp

(
− ε

2T
80

)
+ 18

ε2 exp
(
−ϕε9

)
and

L = {Qv(t) = Q,σ(t), . . . ,σ(t− T + 1)}.
The proof of the above lemma is provided in Section IV-D.

Lemma 4.2 implies that given a network state at time t, the
distribution of the (per-link) queue length at time t+ 7MT/ε
has an exponential decaying property (i.e., light tail). We will
use this property to bound the expected quadratic queue length
at time t+ 7MT/ε for completing the proof of Lemma 4.1.

We proceed the proof by studying two disjoint cases: Case
(i): Qv(t) = Q ≤ C and Case (ii): Qv(t) = Q > C, where
ε2C = O(1) is some large constant.

Case (i): Qv(t) = Q ≤ C.
In this case, we obtain

E
[
Qv(t+ 7MT/ε)2 −Qv(t)2 | L

]
≤ E

[
Qv(t+ 7MT/ε)2 | L

]
−Qv(t)

(a)

≤
(C+7MT/ε)2∑

i=1

P
[
Qv(t+ 7MT/ε)2 ≥ i

∣∣L]−Qv(t)

=

(C+7MT/ε)2∑
i=1

P
[
Qv(t+ 7MT/ε) ≥

√
i
∣∣L]−Qv(t)

(b)

≤
(C+7MT/ε)2∑

i=1

g
(
T,
√
i
)
−Qv(t),

where (a) is because

Qv(t+ 7MT/ε) ≤ Qv(t) + 7MT/ε ≤ C + 7MT/ε,

and we apply Lemma 4.2 for (b) since Q−MT/2 < 0, i.e.,
Q ≤ C = O(1/ε2) and T > T ∗ = Ω

(
1
ε2

)
. Hence, we have

E
[
Qv(t+ 7MT/ε)2 −Qv(t)2 | L

]
≤

(C+7MT/ε)2∑
i=1

g
(
T,
√
i
)
−Qv(t)

=

(C+7MT/ε)2∑
i=1

[
O(M)

ε3
exp

(
−ε

2T

80

)

+
O(1)

ε2
exp

(
−ε
√
i

9

)]
−Qv(t)

≤ O

(
M3T 2

ε5
+
CM2T

ε4
+
C2M

ε3

)
exp

(
−ε

2T

80

)
+

∞∑
i=1

O(1)

ε2
exp

(
−ε
√
i

9

)
−Qv(t)

(c)
= O (1) +

O(1)

ε2

∞∑
i=1

exp

(
−ε
√
i

9

)
︸ ︷︷ ︸

(∗)

−Qv(t), (5)

where (c) is due to large enough T with T > T ∗ =
Ω
(

1
ε3 logM

)
and C = O(1/ε2). Therefore, it suffices to

bound the term (∗) for the proof of Lemma 4.1. To this
end, consider large enough i∗ with i∗ = O(1/ε3) so that√
i > 18

ε log i for all i ≥ i∗. Then, it follows that

∞∑
i=1

exp

(
−ε
√
i

9

)
=

i∗∑
i=1

exp

(
−ε
√
i

9

)
+

∞∑
i=i∗+1

exp

(
−ε
√
i

9

)
≤ i∗ +

∞∑
q=1

1

i2
= O

(
1

ε3

)
. (6)

Combining (5) and (6) completes the proof of Lemma 4.1 for
Case (i).

Case (ii): Q(t) = Q > C. In this case, we define the follow-
ing (sub-)event of L:

L− = {Qv(t+ 7MT/ε)−Qv(t) ≤ −1} ∩ L.
Using this notation, we have

E
[
Qv(t+ 7MT/ε)2 −Qv(t)2 | L

]
= E [(Q(t+ 7MT/ε)−Q(t))(Q(t+ 7MT/ε) +Q(t)) | L]

= P[L− | L] · E [−Q(t+ 7MT/ε)−Q(t) | L−]

+

7MT/ε∑
i=0

P[Q(t+ 7MT/ε)−Q(t) = i | L] ·
(
i2 + 2iQ(t)

)
≤ −Q(t) · P[L− | L]
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+ 3Q(t)

7MT/ε∑
i=0

i2P[Q(t+ 7MT/ε)−Q(t) = i | L]

≤ −Q(t) ·
(

1− g(T,Q(t)− 1)
)

+ 3Q(t)

49M2T 2/ε2∑
i=1

P[Q(t+ 7MT/ε)−Q(t) ≥
√
i | L]

≤
(
g(T,Q(t)− 1) + 3

49M2T 2/ε2∑
i=1

g
(
T,Q(t) +

√
i
)

︸ ︷︷ ︸
(∗∗)

−1

)
Q(t),

(7)
where we apply Lemma 4.2 and one can show that the term
(∗∗) is smaller than 1/2 if Q(t) > C and ε2C = O(1) is a
large enough constant, similarly as we bound the term (∗) in
Case (i):

g(T,Q(t)− 1) + 3

49M2T 2/ε2∑
i=1

g
(
T,Q(t) +

√
i
)
≤ 1

2
. (8)

The complete proof of the above inequality is given in the
Appendix. This completes the proof of Lemma 4.1 for Case
(ii).

D. Proof of Lemma 4.2

From the Lindley recursion (1) and the union bound, we
have

P[Qv(t+ 7MT/ε) ≥ ϕ | L]

≤ P[Q(t+MT ) + ∆v[t+MT + 1, t+ 7MT/ε] ≥ ϕ | L]︸ ︷︷ ︸
(†)

+ P
[

max
MT+2≤s≤7MT/ε

∆v[t+ s, t+ 7MT/ε] ≥ ϕ | L
]

︸ ︷︷ ︸
(‡)

.

Hence, it suffices to bound both terms (†) and (‡) for the proof
of Lemma 4.2, which we present in what follows.

Bound for (†). We will use Azuma’s inequality and the union
bound for obtaining the bound of (†). To this end, we define
the appropriate martingale: for s ∈ (t+ (i− 1)T, t+ iT ] and
i = M + 1,M + 2, . . . ,

Y vs =

s∑
u=t+(i−1)T+1

(∆v[u, u] + ε/2),

and initially Y vt+(i−1)T = 0. Then, using the definition of the
mixing time M = M(ε/4), the conditional independence of
{∆v[s, s] : s ∈ [t + (i − 1)T, t + iT ]}, and the fact that
E[∆v[s, s] + ε/2] ≤ 2 · (ε/4) − ε + ε/2 = 0, it is not
hard to check that the following random variables form a
supermartingale:

{Y vs : s ∈ [t+ (i− 1)T, t+ iT ]}.
Using this notation, we have

P[Q(t+MT ) + ∆v[t+MT + 1, t+ 7MT/ε] ≥ ϕ | L ]

≤ P[Q(t) +MT + ∆v[t+MT + 1, t+ 7MT/ε] ≥ ϕ | L ]

= P[∆v[t+MT + 1, t+ 7MT/ε] ≥ ϕ−Q(t)−MT | L ]

= P
[ 7M/ε∑
i=M+1

(
Y vt+iT − Y vt+(i−1)T −

εT

2

)
≥ ϕ−Q−MT

∣∣L ]

≤ P
[ 7M/ε⋃
i=M+1

{Y vt+iT − Y vt+(i−1)T −
εT

2
≥ ϕ−Q−MT

M(7/ε− 1)
}
∣∣L ]

(a)

≤
7M/ε∑
i=M+1

P[Y vt+iT − Y vt+(i−1)T ≥
εT

2
− εT

4

∣∣∣L ]

(b)

≤
7M/ε∑
i=M+1

exp

(
−( εT4 )2

2
∑T
r=1(1 + ε/2)2

)

≤ 7M

ε
exp

(
−( εT4 )2

5T

)
=

7M

ε
exp

(
−ε

2T

80

)
,

(9)
where (a) is due the the union bound and
ϕ−Q(t)−MT

M(7/ε− 1)
≥ −3MT/2

M(7/ε− 1)
≥ −3MT/2

6M/ε
= −εT

4
,

and (b) is due to Azuma’s inequality on the submartingale
{Y vs : s ∈ [t + (i − 1)T, t + iT ]}. Note that the bound (9) is
identical for all i = M + 1,M + 2, . . . .

Bound for (‡). One can bound (‡) similarly as we did for (†).
In particular, we obtain

P
[

max
MT+2≤s≤7MT/ε

∆v[t+ s, t+ 7MT/ε] ≥ ϕ | L
]

≤ 133M

ε3
exp

(
−ε

2T

80

)
+

18

ε2
exp

(
−ϕε

9

)
.(10)

We provide the complete proof of (10) in the Appendix.
Combining (9) and (10) leads to the desired conclusion of
Lemma 4.2.

V. SIMULATION RESULTS

A. Setup

Interference graphs. In this section, we provide simulation
results to verify our analytical findings. For the simulated
network topology, as depicted in Fig. 1, we use grid-like
graphs, which have been popularly used as representative
interference graphs. We consider n × n torus interference
graphs composed of total number of n2 links (n ≥ 2), where
every link has exactly four interfering neighbors.

Fig. 1. 5× 5 torus interference graph

Loads and fugacity. We vary the scale size n of the torus
graph to see how the delay performance (measured by the
queue lengths) behaves. For a given arrival rate, we apply
the appropriate fugacity that leads to the service rates over
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Fig. 2. Simulation results for the torus interference graphs.

link that guarantees stability, by running one of the adaptive
algorithms, e.g., [7] that searches for the target fugacity. In all
plots except for Fig. 2(d) (which shows the delay performance
for varying loads), we use a reasonably high load ρ = 80% i.e.
λv = 0.5×0.8 = 0.4 for every link v, where note that λv = 0.5
for all v corresponds to the boundary of the capacity region.
We run 106 slots for all simulations. In the delayed CSMA,
we use access probability av = 0.25 in choosing decision
schedules, but we remark that other values of av show similar
trends to what is presented here.

Compared algorithm: U-CSMA [11]. We also compare the
delayed CSMA for various T with U-CSMA [11] that is
provably delay-optimal in torus graphs. We comment that the
original U-CSMA has been developed under a continuous
time framework, which means that a procedure of determining
decision schedules is not required. Recall that the key idea
of U-CSMA lies in resetting the underlying CSMA Markov
chain with a given period, say P. A naive candidate discrete-
time version of U-CSMA is just the delayed CSMA with
T = 1, that restarts itself every P time slots. However, our
simulation experience of such a version of U-CSMA showed
that it performs significantly poorly, because the step of finding
decision schedules makes U-CSMA start with a very small
number of active links at each reset period, which leads to
scheduling only a small number of links during each period.

This problem can be relaxed by enlarging P , but then it
weakens the effect of resetting. Thus, for a fair comparison,
we employ an almost “ideal” version of U-CSMA which
magically has a good decision schedule, i.e., its number of
links in a decision schedule is close to that of a maximum
independent set.

B. Results

We first verify the delay optimality proved in Theorem 3.1.
Fig. 2(a) shows the average queue-size vs. the scale size n
in the torus. Indeed, we observe that while queue size of the
“classical CSMA” (i.e., T = 1 in the delayed CSMA) linearly
increases with n, that of the delayed CSMA for T = 2 does
not increase with n, i.e., O(1) delay. We comment that at least
in the tested torus topology, just T = 2 suffices to achieve
very low delays, even for highly large scales, e.g., n = 20
(thus 400 links). This is highly valuable in practice, because
a small T significantly simplifies practical implementation.
Fig. 2(b) shows the average queue size traces over time for
various values of T = 1, 2, 4, 6, where we observe significant
difference between T = 1 and other values of T ’s, whereas
marginal difference among T > 2 is observed.

We now compare the delayed CSMA with U-CSMA in
Fig. 2(c), where we have plotted the queue size traces for
T = 1, 2. For U-CSMA, as indicated in [11], we use
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(d) Time t = 2000 for T = 2

Fig. 3. Snapshots of the schedules of the delayed CSMA with T = 1 ((a) and (b)) and T = 2 ((c) and (d)) for 80× 80 torus. (A magenta star represents
an even active link and an indigo diamond represents an odd active link.)

P = 100 for the reset period. First, we observe that U-
CSMA outperforms the delayed CSMA with T = 1, which
is because resetting reduces the correlations among schedules
over time. However, we also see that the delayed CSMA with
T = 2 is significantly better than U-CSMA (recall that y-
axis is log-scaled). This demonstrates that an approach of
weakening temporal correlations by running multiple Markov
chains leads to much higher delay performance gain than that
of re-starting new Markov chains periodically. The simulation
result for different values of loads in Fig. 2(d) also shows
a significant decrease of delay by the delayed CSMA with
T = 2. We further report ‘snapshots’ of active ‘even’ and
‘odd’ links under the delayed CSMA with T = 1, 2 in Fig. 3,
where the torus graph is bipartite with edges between even and
odd nodes (or links). They also explain why T = 2 is better
than T = 1 for the delay performance of the delayed CSMA:
when T = 1 and T = 2, the sets of active links change little
and much, respectively, between two consecutive times.

VI. CONCLUSION

In this paper, we have addressed the open question for
designing a CSMA algorithm that is both throughput and delay
optimal for general wireless network topology. We proved that
one of the throughput-optimal CSMA algorithms based on the
notion of virtual channels proposed in the literature has the
per-link O(1)-asymptotic-delay for general wireless network
topology if the number of virtual channels has the logarithmic
order of the mixing time of the underlying CSMA Markov
chain. The significance of our result lies in the proof of the
existence of a scheduling policy that achieves optimality in
both throughput and delay, operating in a fully distributed
manner.

APPENDIX

Proof of (8). The first term in (8) is bounded by:

g(T,Q(t)− 1) =
140M

ε3
exp

(
−ε

2T

80

)
+

18

ε2
exp

(
− (Q(t)− 1)ε

9

)
≤ 1/4 (11)

where the last inequality is because T ∗, Q(t) are large enough
so that T > T ∗ = Ω

(
1
ε3 logM

)
and Q(t) > C = Ω(1/ε2).

On the other hand, for the second term in (8), we observe that

3

49M2T 2/ε2∑
i=1

g
(
T,Q(t) +

√
i
)

≤ 3

49M2T 2/ε2∑
i=1

140M

ε3
exp

(
−ε

2T

80

)

+ 3

∞∑
i=1

18

ε2
exp

(
− (Q(t) +

√
i)ε

9

)
where one can check that the first and second summations in
the above inequality can be made arbitrarily small by choosing
large T ∗, Q(t) with T > T ∗ = Ω

(
1
ε3 logM

)
and Q(t) > C =

Ω(1/ε2), respectively, i.e.,
∑49M2T 2/ε2

i=1 g
(
T,Q(t) +

√
i
)
≤

1
4 . Combining the above inequality with (11) leads to the proof
of (8).
Proof of (10). We first characterize two inequalities that are
used to prove (10). For ζ > −εT/2 and i = M+1,M+2, . . . ,
it follows that

P
[

∆v[t+ (i− 1)T + 1, t+ iT ] > ζ | L
]

≤ P
[
Y vt+iT − Y vt+(i−1)T ≥

εT

2
+ ζ | L

]
≤ exp

(
−(εT/2 + ζ)2

2
∑T
i=1(1 + ε/2)2

)

≤ exp

(
−(εT/2 + ζ)2

5T

)
, (12)

where we use Azuma’s inequality on the supermartingale
{Y vt+(i−1)T+1, ...Y

v
t+iT }. Similarly, for ζ > 0, we have that

P
[

max
(i−1)T+1
<s≤iT

∆v[t+ s, t+ iT ] ≥ ζ | L
]

≤
t+iT∑

s=t+(i−1)T+1

P
[

∆v[t+ s, t+ iT ] ≥ ζ | L
]

=

t+iT∑
s=t+
(i−1)T+1

P
[
Y vt+iT − Y vs−1 ≥

(t+ iT − s+ 1)ε

2
+ ζ | L

]

≤
t+iT∑

s=t+(i−1)T+1

exp

(
−{(t+ iT − s+ 1)ε/2 + ζ}2

2(1 + ε/2)2(t+ iT − s+ 1)

)
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=

T∑
k=1

exp

(
−{ εk2 + ζ}2

2(1 + ε
2 )2k

)
≤
∞∑
k=1

exp

(
−{ εk2 + ζ}2

4(1+ ε
2 )2

ε { εk2 + ζ}

)

=

∞∑
k=1

exp

(
− ε

2k
2 − ζε

4(1 + ε
2 )2

)
≤
∞∑
k=1

exp

(
− ε

2k
2 − ζε

9

)

= exp

(
−ζε

9

)
· 1

e
ε2

18 − 1
≤ 18

ε2
exp

(
−ζε

9

)
(13)

Using (12) and (13), we have:

P
[

max
MT+2≤s≤7MT/ε

∆v[t+ s, t+ 7MT/ε] ≥ ϕ | L
]

= 1− P
[

max
MT+2≤s≤7MT/ε

∆v[t+ s, t+ 7MT/ε] < ϕ︸ ︷︷ ︸
(?)

| L
]

(a)

≤ 1− P
[

max
(i−1)T<s≤iT

∆v[t+ s, t+ iT ] < ϕ+
ε

4
T︸ ︷︷ ︸

(??)

for i = M + 1, . . . , 7M/ε− 1

and max
(7M/ε−1)T<s≤7MT/ε

∆v[t+ s, t+ 7MT/ε] < ϕ︸ ︷︷ ︸
(???)

and ∆v[t+ (i− 1)T + 1, t+ iT ] ≤ −ε
4
T︸ ︷︷ ︸

(????)

for i = M + 1, . . . , 7M/ε | L
]

≤
7M/ε−1∑
i=M+1

P
[

max
(i−1)T<s≤iT

∆v[t+ s, t+ iT ] ≥ ϕ+
ε

4
T | L

]
+ P

[
max

(7M/ε−1)T<s≤7MT/ε
∆v[t+ s, t+ 7MT/ε] ≥ ϕ | L

]
+

7M/ε∑
i=M+1

P
[
∆v[t+ (i− 1)T + 1, t+ iT ] > −ε

4
T | L

]
≤
(

7

ε
M −M − 1

)
18

ε2
exp

(−(ϕ+ ε
4T )ε

9

)
+

18

ε2
exp

(
−ϕε

9

)
+M

(
7

ε
− 1

)
exp

(
−( εT2 −

ε
4T )2

5T

)

≤ 126M

ε3
exp

(
−ε2T

36

)
+

18

ε2
exp

(
−ϕε

9

)
+

7

ε
M exp

(
−ε2T

80

)
≤ 133M

ε3
exp

(
−ε

2T

80

)
+

18

ε2
exp

(
−ϕε

9

)
.

In (a), we consider a time interval [t+MT, t+ 7MT/ε] that
are partitioned into two disjoint sub-intervals I1 = [t+MT, t+
(7M/ε−1)T ] and I2 = [t+(7M/ε−1)T+1, t+7MT/ε], and
we let s∗ be the maximization point in (?). Then, if s∗ ∈ I1,
(??) and (????) imply (?), and if s∗ ∈ I2, (???) is equivalent
to (?). This completes the proof of (10).
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