
Parameterized Slot Scheduling for Adaptive and
Autonomous TSCH Networks

(Invited Paper)

Jinhwan Jung†, Daewoo Kim†, Joonki Hong†, Joohyun Kang‡, and Yung Yi†
†Department of Electrical Engineering, KAIST, Korea

‡Department of Electrical and Electronic Engineering, Yonsei University, Korea
Email:{jhjung,dwkim,joonki}@lanada.kaist.ac.kr, jkcoin@yonsei.ac.kr, yiyung@kaist.edu

Abstract—Internet of things (IoT) technologies have been
widely used in various applications, especially in industrial
field, which often require energy efficiency, high reliability, and
low delay. Recently, Time Slotted Channel Hopping (TSCH)
that operates based on TDMA with channel hopping has been
standardized to achieve such multiple goals. Based on TSCH
protocol, the nodes are scheduled at slots by scheduling al-
gorithm, where there is a trade-off between energy efficiency
and contention among the senders. In this paper, we propose a
novel slot scheduling mechanism that works on TSCH, called
PAAS (Parameterized Adaptive and Autonomous Scheduling),
which minimizes the energy consumption with the reasonably
low latency while guaranteeing the reliability. PAAS is an
autonomous and distributed algorithm and it works adaptively to
traffic intensity, Slotframe length, and reliability requirements. To
evaluate PAAS, we implement PAAS in Contiki OS and perform
extensive simulations using Cooja simulator where we confirm
that energy consumption is reduced by up to 63 % comparing
to existing scheduling algorithms with 99.997 % reliability.

I. INTRODUCTION

A. Motivation

As the Internet of Things (IoT) comes into the spotlight, a
variety of applications emerge, such as environmental monitor-
ing, surveillance, intrusion detection and industrial automation
systems, each of which has diverse traffic intensity/patterns,
and target performance metrics. Since IoT sensors are typically
powered by battery, energy efficiency is clearly one of the
key design goals, yet other important performance metrics,
e.g., high reliability and stringent delay, are becoming more
important, especially in the industrial IoT applications.

In this paper, we focus on the MAC layer for IoT data de-
livery, where contention-based 802.15.4 standard protocols [1]
(also called ZigBee) have been popularly considered. However,
such contention-based protocols have limitation in providing
the guarantee of the afore-mentioned multiple performance
goals [2]. To tackle this challenge, more scheduling-based
MAC protocols have recently considered, where Time Slotted
Channel Hopping (TSCH) [3] is gaining significant attentions,
standardized and proposed by IEEE 802.15.4e. The main
design direction of TSCH is to use slotted medium access with
channel hopping based on a given slot schedule (or simply
a schedule). Thus, once a “good” schedule is constructed,
hopefully in a distributed manner, depending on the pattern

0This work was supported by Institute for Information & communications
Technology Promotion(IITP) grant funded by the Korea government(MSIT)
(No. B0717-18-0034, Versatile Network System Architecture for Multi-
dimensional Diversity)

1

32

1

2

3

N
od

es

Slotframe

1 2 1 2 1 2 1 2

RX RX RX RX

TX TX

TX TX

RX RX

TX TX

TX

Slotframe

(a) Topology (b) Reliability & latency (c) Energy efficiency

Slot # Slot #

TX TX

Collision

Fig. 1: Two scheduling examples in TSCH. A schedule for high
reliability/latency in (b), and for high energy efficiency in (c).

and the intensity of offered traffic, it is expected to achieve
such multiple goals simultaneously with high possibility.

An array of slot scheduling algorithms for TSCH have been
proposed [2], [4]–[6] ranging from centralized to autonomous
ones. The centralized scheduler in [4] is designed to provide
optimality in terms of minimizing energy consumption while
satisfying given reliability and delay bound, if the scheduler is
aware of the traffic pattern that is assumed to be deterministic.
However, it is not practical, because traffic is inherently
random in many applications and also a centralized scheduling
is not scalable, often requiring a lot of message passing. A
decentralized and autonomous scheduler has been proposed
in e.g., [6], determining a schedule in a distributed manner.
However, the protocol in [6] does not explicitly consider
offered traffic intensity and its pattern, which clearly need to be
considered for better guarantee of energy efficiency, reliability,
and latency. We refer the readers to Section I-C for more list
of related work.

B. Main Contribution

In TSCH, a slot schedule refers how we place each trans-
mitter and receiver in which slot, where a scheduling pattern is
repeated over a sequence of slots, called Slotframe. Note that
since TSCH is designed for IoT applications, it is designed on
the basis of the assumption that the offered traffic is reasonably
low. Thus, it is often allowed for multiple transmitters to be
scheduled at the same slot, with expectation that they do not
contend each other severely. The key idea of this paper is
to construct a slot schedule adapting to offered traffic load,
in order to choose a good trade-off point between different
performance metrics, where our proposed protocol behaves in
a parameterized manner.

We present the main contribution of this paper using a
simple example, shown in Fig. 1. We consider a simple 3-



2

node network, where we have one receiver (node 1) and two
transmitters (nodes 2 and 3) with two slots in one Slotframe.
Assume that two transmitters generate packets with some
probability, say p, during every Slotframe, and with such
probability p, two packets are generated at node 2 over two
consecutive Slotframes, but only one packet is generated at
node 3 at the second Slotframe. Then, we compare two
slot schedules in (b) and (c), respectively, where in (b), two
transmitters are placed for different slots, but in (c), they are
scheduled in one common slot. Then, in (b), two transmissions
from nodes 2 and 3 are all collision-free, whereas in (c),
on the second Slotframe, we have a collision between two
transmissions 2 → 1 and 3 → 1. A collision in TSCH
launches a backoff mechanism, delaying such a collided
transmission, thus having negative impact on reliability and
latency. However, in (c), since node 1, which is a receiver,
has only to wake up once per Slotframe, the schedule is
more energy efficient comparing to one in (b) where node
1 needs to be awake all the slots inside a Slotframe. Deciding
which schedule is a good one actually depends on how high
the traffic intensity (p in our example) is. When p is high,
one naturally chooses the schedule in (b), but for small p,
assigning the same slot to multiple transmitters just like in (c)
may not generate serious concerns on collision, but with high
energy efficiency of receivers. The main contribution of this
paper lies in developing a new scheduling algorithm, called
PAAS (Parameterized Adaptive and Autonomous Scheduling)
in TSCH, which realizes the idea introduced in our example,
so as for PAAS to adapt to offered traffic conditions and
autonomously determine a schedule that jointly considers
energy efficiency, reliability and latency.

C. Related Work

Prior to TSCH, various TDMA based standards such as
WirelessHART [7], ISA100.11a [8] and other scheduling algo-
rithms for low-power wireless networks have been proposed,
e.g., [9]–[13], just to name a few. With focus on TSCH,
a centralized scheduler, called TASA, and a decentralized
scheduler, called DeTAS, for TSCH, have been proposed in
[4], [5]. When all traffic information is available (e.g., the
central coordinator knows when and how data packets are
generated), TASA and DeTAS propose optimal scheduling
solutions in terms of energy consumption with high reliability
and low latency. However, due to the centralized aspects of
TASA and DeTAS (which collects the traffic information at a
centralized coordinator), they suffer from the lack of flexibility
and scalability. Wave [2] is another distributed scheduler for
TSCH but it also requires repeated control packet exchanges,
which may not be desirable for high energy efficiency.

The authors in [6] propose an autonomous scheduling
protocol, called Orchestra for TSCH, which is designed for
flexible and scalable scheduler as much as CSMA based ones
with reliable communication. Different from afore-mentioned
schedulers requiring the knowledge of traffic patterns, Orches-
tra is traffic-agnostic, where each node builds its own schedule
autonomously without any negotiation and control packet

4 -> 2

2 -> 1 2 -> 1

3 -> 2
4 -> 2

3 -> 2
4 -> 2

1

2

3 4

1

4

2

3

5

1 2 3 4 5 6 7 8

Slotframe L=5

C
ha

nn
el

s

Slot #

Fig. 2: Slot scheduling with channel hopping in TSCH.

exchange. While Orchestra is designed to flexible and scalable,
it is not fully optimized in achieving energy-efficiency, latency,
and reliability, since it does not adaptively utilize the traffic
information in constructing a schedule, as exemplified in the
previous subsection. This paper improves Orchestra by apply-
ing a measurement-based traffic intensity (which is possible
in many IoT applications) when we construct a schedule, so
that we inherit the autonomous and distributed feature of slot
scheduling from Orchestra, and further add adaptivity so as to
achieve better energy efficiency with almost no extra cost.

II. BACKGROUND: TSCH AND ORCHESTRA

This section presents a primer of TSCH [3] and Orchestra
[6], which helps in understanding our proposed PAAS. The
IEEE 802.15.4e [3] has been proposed, defining Time Slot-
ted Channel Hopping (TSCH) as a new MAC protocol for
highly reliable communication with low latency. In TSCH, by
transmitting Enhanced Beacon (EB) periodically, every node
in the network advertises its network information. TSCH has
the feature of Time Division Multiple Access (TDMA) with
channel hopping. All nodes in a TSCH network should be
synchronized globally by transmitting and receiving packets
and ACKs with its time sources as defined in the standard [3].
Time is divided into slots, at each of which one of transmitting,
receiving or sleeping in terms of a node’s action which is as-
signed. A transmitter and a receiver perform channel hopping
slot by slot as defined in [3], so that they can encounter at the
same channel in given slot (Fig. 2). Slotframe is the sequence
of slots and during the network lifetime Slotframe is repeated,
with its corresponding slot schedule being possibly changed.
Each slot can be indexed by time offset and channel offset, i.e.,
the location within a Slotframe and the frequency to which it is
assigned. In TSCH, a scheduling algorithm determines which
link that is a pair of a transmitter and a receiver is assigned
to which slot. The scheduler can assign a link or links to a
slot, so that if only a single link is assigned, then such a slot is
contention-free, otherwise a slot may have collisions, in which
case a backoff mechanism runs, i.e., a node with a collided
transmission re-attempts transmission with a same packet a
few Slotframes after the previous attempted Slotframe. The
TSCH standard does not specify a particular slot scheduling
mechanism for which an algorithm such as Orchestra [6] has
been proposed in literature.

Orchestra [6] is an autonomous scheduling protocol for
TSCH. Each node builds its local schedule without any signal-



3

ing overhead, but only based on routing information (e.g., RPL
[14]). In Orchestra, they propose two types of slots to deliver
application packets1: (i) Receiver-based Shared Orchestra Slot
(RBS) and (ii) Sender-based Shared Orchestra Slot (SBS) (see
[6] for more details).

III. PAAS

We now present our slot scheduling algorithm, PAAS
(Parametrized Adaptive and Autonomous Scheduling) in Al-
gorithm 1. Prior to the detailed description, we first provide
its overall framework.

A. Framework

PAAS consists of the following three phases: (i) Initializa-
tion, (ii) Adaptation, and (iii) Recovery. For ease of exposition
of this section, we comment that we will use n-PBS as a slot
scheduling mechanism whose details will be explained after
this subsection, where n is the parameter which trades off
multiple performance metrics.

(i) Initialization phase: We assume that a routing tree is built
by the RPL protocol and each node periodically broadcasts
DIO messages to update and maintain the routing tree. As a
node, say v, joins a TSCH-running network in response to
the existing nodes’ enhanced beacons, it schedules a TX slot
as 1-PBS to its parent that transmits enhanced beacon and
schedules a RX slot per child only when a new node joins
the TSCH network as a child of v. As time advances, node
v is aware of the stable information on the volume of traffic
(relayed from its children) from measurements and the number
of its children, say K. Then, it moves on to Adaptation phase.

(ii) Adaptation phase: Using the knowledge of the traffic
intensity, each node v except for leaf nodes determines the
value of n in n-PBS following our design philosophy, where
we will elaborate how to choose n in the next subsection.
The parameter n is properly chosen so as to minimize energy
consumption with some reliability guarantee, as exemplified
in Section I. In n-PBS, each node v adaptively schedules its
TX and RX slots depending on the chosen n by transmitting
or receiving DIO packets which include the information about
slot schedule (see Section III-B for details), so that at most n
transmitters are assigned to a single slot in fully distributed
manner. They keep staying in Adaptation phase, until the
changes of topology or average traffic intensity are made. If
v detects the change of topology or traffic intensity, it goes to
Recovery phase.

(iii) Recovery phase: Node mobility or significant link
quality change leads the routing topology to be reconstructed.
If the routing tree or the traffic intensity is changed, nodes
run recovery mechanism, where they start from running 1-PBS
scheduling. During that time, nodes measure traffic intensity
and the number of their child K again, as in Initialization
phase, then moving to Adaptation phase for finding a more
efficient schedule.

1In [6], two more slot types are proposed, but we exclude them in our
discussion, because it is designed for broadcast and is a special case of SBS.

Algorithm 1: PAAS algorithm for each node v

Input: traffic intensity p and child list C of node v,
length of Slotframe: L

Output: Scheduled TX and RX slots

1. Choosing the value of n
Given reliability requirement δ, chooses n as:

n =

⌈
min

{
f−1(δ),

1

p

}⌉
. (1)

2. Schedule RX slot(s)
Set LIST to be the empty list of node IDs.
2-1. Puts IDs of every n-th node in C into LIST
2-2. Transmits DIO including LIST
2-3. Builds its RX slot as:

for i: 1 to
⌈
K
n

⌉
do

Builds its RX at the slot of Hash(LIST [i]) % L
with channelOffset = Hash(LIST [i]) % Nc,
where Nc is the number of available channels

3. Schedule a TX slot
3-1. Upon receiving DIO from its parent, obtains LIST
3-2. for j: ID(v) until find j in LIST do

if j is in the received LIST then
Builds its TX slot at Hash(j) % L
with channelOffset = Hash(j) % Nc and break

else j = (j + 1) % nmax,
where nmax is the maximum node ID.

B. Algorithm Description

We now describe our scheduling algorithm PAAS which
finds a slot schedule in Adaptation phase in response to the
measured traffic intensity and the constructed routing tree,
presented in Algorithm1. We present the description from the
perspective of an arbitrary node v. Given the traffic intensity p
and the child list C of v, PAAS outputs each node v’s schedule
for TX and RX in a fully distributed manner. By node v’s
schedule, we mean that the offsets of slot and channel for
transmission and reception, where note that there can be a
multiple of RX slots. We now elaborate on how PAAS works.
S1. In Step 1, once a traffic intensity p is measured, node

v chooses the parameter n, which corresponds to the
maximum number of transmitters that can be scheduled in
the same slot, such that n is as large as possible while sat-
isfying given reliability requirement δ (see Section III-C
for details).

S2. In Step 2, using the chosen n and the child list C, node v
schedules its RX slot(s). To assign at most n transmitters
into a RX slot, node v makes a list LIST that contains
IDs of the subset of nodes in C such that it chooses
every n-th node in C (Step 2-1)2. Then, node v embeds
the information of LIST into DIO messages (Step 2-2)
and builds its RX slots at Hash(ID) % L based on IDs in
LIST with channelOffset, where Hash can be any hashing
function (Step 2-3), so that v has

⌈
K
n

⌉
RX slots in the

Slotframe and informs its children of its RX schedules.

2In our implementation, using the sorted list of node IDs, v chooses every
n-th node sequentially



4

1

32 4 5

TX RX RX RX RX TX

TX

TX

TX

TX

1

4

2

3

5

1 2 3 4 5 6

N
od

es

Slot #

Slotframe L=5

TX RX RX TX

TX

TX

TX

TX

1

4

2

3

5

1 2 3 4 5 6

N
od

es

Slot #

Slotframe L=5

(b) ∞-PBS (c) 1-PBS (d) 2-PBS(a) Topology

TX RX TX

TX

TX

TX

TX

1

4

2

3

5

1 2 3 4 5 6

N
od

es

Slot #

Slotframe L=5

Fig. 3: Scheduling example of ∞-PBS, 1-PBS and 2-PBS.

1

2 3

4 5

1

4

2

3

5
1 2 3 4 5 1

Slotframe L= 5

N
od

es

Slot #

RX RX 4 -> 
2

RXRX2 -> 
1 TX

TX

TX

TX

RX RX

2 -> 
1

TX

TX 3 -> 
2

4 -> 
2TX

TX

2 3 4 5

Initially works in 1-PBS

TX

2 -> 
1

TX

RX

…

1-PBS

2-PBS

After transmitting & receiving 
DIO with LIST

Slot #

2-PBS

Fig. 4: An example of PAAS slot scheduling with a simple tree having
height 2 and two child nodes for nodes 1 and 2. Initially all nodes
are scheduled as 1-PBS. After transmitting and receiving the DIO
includes LIST , the node 2 reschedules its RX slot and node 4 and
5 reschedule its TX slots as 2-PBS.

S3. In Step 3-1, upon receiving a DIO packet that includes
LIST from its parent, node v can reschedule its TX slot
by choosing one of RX slots of its parent included in
LIST . To this end, node v tries to find ID(v) in LIST ,
where ID(v) is the unique ID of node v. If ID(v) is in
LIST , v schedules its TX slot at Hash(ID(v)) % L with
channelOffset, otherwise v finds another ID in LIST by
running the loop (Step 3-2). For example, when LIST
includes IDs: 1, 3 and 5, among nodes from 1 to 6, nodes
1 and 2 are scheduled at slot #1 and nodes 3 and 4, and
nodes 5 and 6 are scheduled at slot #3 and #5, respectively.

Example. Fig. 4 shows an example of a slot schedule with a
tree with five nodes with IDs: 1,2,3,4 and 5. Once the network
is initialized, all nodes work in 1-PBS. By the above rules,
if node 2 chooses n = 2, it transmits a DIO that includes
LIST with ID: 4, so that the receiver (i.e., node 2) and senders
(i.e., nodes 4 and 5) are scheduled at slot #4 to communicate.
Assuming that node 1 chooses n = 1, they do not need to
change schedules.

Algorithm 1 produces a slot schedule that may vary depend-
ing on the traffic intensity p, e.g.,∞-PBS, 1-PBS, or 2-PBS, as
exemplified in Fig. 3 of one parent and 4 children. As we see,
in ∞-PBS, many nodes are scheduled as transmitters in the
same slot which have higher contention degree among nodes 2,
3, 4, and 5, yet with small energy consumption of the receiver
node 1, whereas in 1-PBS, all transmitters are scheduled at
different slots with less contention degree at the cost of higher
energy consumption of node 1. 2-PBS is a choice between

those two extremes. We comment that when a multiple of
transmitters are scheduled in the same slot with their intended
receiver, they are all scheduled in the same channel, as directed
by the TSCH specification. Thus, in the example of Fig. 3, 2
channels for ∞-PBS, 5 channels for 1-PBS, and 3 channels
for 2-PBS can be used.

Note that we allocate only one slot for node v’s TX (to its
parent). This is based on the assumption that the offered traffic
is sufficiently low or data fusion is made, such that even relay
nodes that is close to a base station, i.e., the nodes in small
depth in the routing tree, can process and relay the data from
their children without blowing up their queues. This is not
always possible as the offered load increases with data fusion,
in which case it is necessary to schedule multiple TX slots,
which is left as a future work.

C. Rationale of PAAS

The key step of PAAS is how to choose the parameter n in
(1) of Algorithm 1. We now present the rationale behind it.
Our choice of n in (1) is motivated by a simple model and its
analysis, as elaborated in what follows: Let L denote the length
of Slotframe which is the number of slots in one Slotframe.
Since the entire routing tree is a collection of subtrees, each
of which consists of one parent and multiple children, say K
children indexed by {1, 2, ...,K}, we focus on one subtree
only with uplink traffic (i.e., from children to the parent) for
simplicity, which, however, provides enough implication on
how to choose n. In each slot, the parent wakes up and waits
for an incoming packet only when the slot is scheduled as
RX slot and at most n transmitters can wake up to transmit a
packet only if they have some packets at scheduled slot. Define
the traffic intensity (p) by the probability that a node generates
a packet in one Slotframe. Assume that each child possess
homogeneous traffic intensity, and the number of children is
smaller than the length of Slotframe, i.e., K < L.

The underlying goal of PAAS lies in minimizing energy
consumption while satisfying the reliability requirement which
are quantified by collision probability in a single slot. The
number n of TX slots of transmitters which are scheduled at
the same time is an important parameter that trades off energy
efficiency and collision probability. As n grows, a receiver
consumes less energy but more collision occurs due to high
contention and this results in low reliability and high delay.
Thus, we suitably choose n under the given collision constraint



5

∞-PBS
3-PBS

2-PBS
1-PBS

PR
R

 (%
)

50

60

70

80

90

100

Period T (s)
1 2 3 5

(a) Packet Reception Ratio (PRR)

∞-PBS
3-PBS

2-PBS
1-PBS

D
el

ay
 (s

)

0.1

1

10

Period T (s)
1 2 3 5

(b) Delay

∞-PBS
3-PBS

2-PBS
1-PBS

D
ut

y 
cy

cl
e 

(%
)

0

1

2

3

4

Period T (s)
1 2 3 5

(c) Duty cycle

∞-PBS
7-PBS
6-PBS

5-PBS
4-PBS
3-PBS

2-PBS
1-PBS

PR
R

 (%
)

40

60

80

100

Arrival mean 1/λ (s)
1 3 5

(d) Packet Reception Ratio (PRR)

∞-PBS
7-PBS
6-PBS
5-PBS

4-PBS
3-PBS
2-PBS
1-PBS

D
el

ay
 (s

)
0.1

1

10

Arrival mean 1/λ (s)
1 3 5

(e) Delay

∞-PBS
7-PBS
6-PBS

5-PBS
4-PBS
3-PBS

2-PBS
1-PBS

D
ut

y 
cy

cl
e 

(%
)

1

2

5

Arrival mean 1/λ (s)
1 3 5

(f) Duty cycle

Fig. 5: Micro benchmark for Periodic and Poisson traffic with 1 receiver and 4 or 8 senders. It shows PRR, delay and duty cycle performances
of n-PBS from 1-PBS to ∞-PBS.

δ by considering the number of children K and the traffic
intensity p. In our design, we choose n to be:

n =

⌈
min

{
f−1(δ),

1

p

}⌉
, (2)

where f(n) is a mapping from our parameter n to the collision
probability for a given traffic intensity p. To derive f(n), we
consider the probability that more than one transmitters, which
are scheduled at the same slot, try to transmit a packet in the
same slotframe. Then, we have the following f(n):

f(n) = 1− (np+ 1− p)(1− p)n−1 (3)

In (2), choosing n comes from two requirements in relation
to collision probability and stability. The energy consumption
mainly comes from the receiver’s idle listening. Since the
receiver’s energy consumption is a decreasing function of n,
we can minimize the energy consumption by setting n as large
as possible. However, there is an upper limit due to reliability
constrains f(n) < δ. Thus, we set n as a maximum number
which is less than f−1(δ) for given δ. Secondly, in terms
of stability, the condition n < 1

p is necessary, as it ensures
that the traffic arrival rate does not exceed the packet service
rate. Due to space limitation, we focus on slot scheduling and
omit other engineering tasks that makes our idea a working
protocol. We refer the readers to our technical report for more
details [15].

IV. IMPLEMENTATION AND EVALUATION

A. Implementation

We implement our scheduler PAAS on Contiki OS [16],
which is an open source operating system for IoT devices.
We add and modify our scheduler based on the implementation
of TSCH + Orchestra [17]. We choose the objective function

of RPL as MRHOF [18] that uses the hop count and ETX
metrics with hysteresis property, so that the network topology
changes infrequently. Using the same settings for the enhanced
beacon and RPL control packets in [17], we implement a new
type of unicast slot n-PBS and PAAS. Since we embed the
information of slot schedules to a reserved space in the DIO,
there is no extra overhead for our implementation. We also
evaluate PAAS using Cooja simulator in Contiki OS to test
various scenarios under a controlled environment.

B. Evaluation
We evaluate the performance of n-PBS slot type and our

proposed scheduler PAAS. In this evaluation, two representa-
tive application scenarios of data collection are considered: (i)
Periodic monitoring, which generates data packets periodically
with period T , and (ii) event notification, which follows a Pois-
son process with arrival rate λ. To evaluate the performance
of PAAS scheduler, we consider three metrics; (i) Packet
Reception Ratio (PRR) for reliability, (ii) end-to-end delay for
latency, and (iii) average duty cycle (i.e., fraction of one period
in which node is active) over all nodes to quantify energy
efficiency. We first show the performance of n-PBS as varying
n from 1 to∞ (i.e., the maximum number of senders assigned
to the same slot) to see the impact of parameter selection in
a simple subtree with one parent and four or eight children.
Second, we evaluate PAAS in a full 4-ary tree with height 2
(see Fig.6(a)), by comparing with asynchronous MAC (i.e.,
CX-MAC, which is variation of [19]), Minimal configuration
[20] and Orchestra [6] with RBS or SBS. We run simulations
for each environment with multiple random seeds until each
sender generates at least 1,000 packets.
Impact of parameter selection. Fig. 5 shows the reliability,
the delay and the duty cycle of n-PBS. In both subtrees with
four and eight children, Figs. 5(a) and 5(d) show the packet



6

S

(a) 4-ary TREE: 21
nodes

Async
Minimal
RBS-Orchestra
SBS-Orchestra
PAAS

PR
R

 (%
)

50

60

70

80

90

100

Arrival mean 1/λ (s)
5 25

Period T (s)
10 30

(b) Packet Reception Ratio (PRR)

Async
Minimal
RBS

SBS
PAAS

D
ut

y 
cy

cl
e 

(%
)

0

5

10

Arrival mean 1/λ (s)
5 25

Period T (s)
10 30

(c) Duty cycle

Async
Minimal
RBS

SBS
PAAS

D
el

ay
 (s

)

0.1

1

Arrival mean 1/λ (s)
5 25

Period T (s)
10 30

(d) End-to-End Delay

Fig. 6: Evaluation result of PAAS for Poisson and Periodic traffic.

reception ratio in T =1, 2, 3 and 5 sec and 1/λ =1, 3 and 5
sec, where the Slotframe length is 17 (the black error bars
correspond to the standard deviation). As the parameter n
in n-PBS grows, the energy consumption decreases, however,
reliability and delay performances degrade. For example, when
the traffic is generated periodically with the period of 1 sec-
ond, 1-PBS achieves 99.485% of reliability, however, ∞-PBS
achieves 66.52% with consuming only 78% energy, compared
to 1-PBS case. However, 2-PBS achieves comparable reliabil-
ity (i.e., 99.145%) to that in 1-PBS with relatively small energy
consumption (91% of 1-PBS). From the result of PAAS, a
proper parameter to guarantee 1% collision probability is 2
in this setting. Thus, if we choose the parameter n as 2,
we achieve minimizing energy consumption with 99% of
reliability. The delay performance has similar pattern with
reliability performance, where the delay performance improves
as n decreases. This trend does not change for different
traffic patterns of Periodic monitoring and event notification,
as shown in Fig. 5.

Performance comparison. Under topology of the 4-ary
TREE (Fig. 6(a)), we show the performance of PAAS com-
pared to tested protocols, see Figs. 6(b), 6(c) and 6(d), where
the Slotframe length is 11. Asynchronous algorithm shows
poor reliability with very high energy consumption. Even
though Minimal shows high reliability with reasonably low
delay, it consumes a large amount of energy. Comparing
Orchestra and PAAS, since PAAS finds a good trade-off
between RBS and SBS of Orchestra, PAAS shows similar
reliability and delay performances (i.e., up to 99.997% and
0.139 ms) to SBS and lower energy consumption (i.e., up
to 26% lower than SBS). In other words, PAAS is much
better than RBS in terms of the reliability and the delay
performances, while the only energy consumption is slightly
more than RBS (i.e., up to 28% higher than RBS).

V. CONCLUSION

We proposed a Parameterized Adaptive and Autonomous
Scheduling (PAAS) in TSCH for IoT data delivery in Low
power and Lossy Networks. We parameterized n, which is
the number of simultaneous transmission under the same re-
ception, and defined a new type of unicast slot: n-PBS, which
allows at most n transmitters to contend within the single slot.
We implemented PAAS in Contiki OS, which schedules n-PBS
slots by measuring traffic intensity in adaptive and autonomous

manner, and evaluated the superior performance of PAAS to
other competitive algorithms.

REFERENCES

[1] LAN/MAN Standards Committee and others, “IEEE Standard for Local
and metropolitan area networks-Part 15.4: Low-Rate Wireless Personal
Area Networks (LR-WPANs),” IEEE Computer Society Approved, 2011.

[2] R. Soua, P. Minet, and E. Livolant, “Wave: a distributed scheduling
algorithm for convergecast in IEEE 802.15.4e TSCH networks,” Trans-
actions on Emerging Telecommunications Technologies, vol. 27, no. 4,
pp. 557–575, 2016.

[3] 802.15.4e Task Group, “IEEE Standard for Local and metropolitan area
networks–Part 15.4: Low-Rate Wireless Personal Area Networks (LR-
WPANs) Amendment 1: MAC sublayer,” IEEE Std 802.15.4e, 2012.

[4] M. R. Palattella, N. Accettura, M. Dohler, L. A. Grieco, and G. Boggia,
“Traffic aware scheduling algorithm for reliable low-power multi-hop
IEEE 802.15. 4e networks,” in Proc. of IEEE PIMRC, 2012.

[5] N. Accettura, M. R. Palattella, G. Boggia, L. A. Grieco, and M. Dohler,
“Decentralized traffic aware scheduling for multi-hop low power lossy
networks in the internet of things,” in Proc. of IEEE WoWMoM, 2013.

[6] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, “Orchestra:
Robust mesh networks through autonomously scheduled TSCH,” in
Proc. of ACM SenSys, 2015.

[7] J. Song, S. Han, A. Mok, D. Chen, M. Lucas, M. Nixon, and W. Pratt,
“WirelessHART: Applying wireless technology in real-time industrial
process control,” in Proc. of IEEE RTAS, 2008.

[8] ISA, “Wireless system for industrial automation: process control and
related applications,” ANSI/ISA-100.11a-2011.

[9] Y. Wu, J. A. Stankovic, T. He, and S. Lin, “Realistic and efficient multi-
channel communications in wireless sensor networks,” in Proc. of IEEE
INFOCOM, 2008.

[10] S. C. Ergen and P. Varaiya, “TDMA scheduling algorithms for wireless
sensor networks,” Wireless Networks, vol. 16, no. 4, pp. 985–997, 2010.

[11] O. D. Incel, A. Ghosh, B. Krishnamachari, and K. Chintalapudi, “Fast
data collection in tree-based wireless sensor networks,” IEEE Transac-
tions on Mobile computing, vol. 11, no. 1, pp. 86–99, 2012.

[12] R. Soua, P. Minet, and E. Livolant, “MODESA: an optimized multi-
channel slot assignment for raw data convergecast in wireless sensor
networks,” in Proc. of IEEE IPCCC, 2012.

[13] M. Nobre, I. Silva, and L. A. Guedes, “Routing and scheduling algo-
rithms for WirelessHARTNetworks: a survey,” Sensors, vol. 15, no. 5,
pp. 9703–9740, 2015.

[14] T. Winter and P. Thubert, “RPL: IPv6 routing protocol for low-power
and lossy networks,” IETF RFC6550, 2012.

[15] “Technical report,” https://lanada.kaist.ac.kr/pub/paas.
[16] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki-a lightweight and

flexible operating system for tiny networked sensors,” in Proc. of IEEE
LCN, 2004.

[17] S. Duquennoy, A. Elsts, A. Nahas, and G. Oikonomou, “TSCH and
6TiSCH for Contiki: Challenges, Design and Evaluation,” in Proc. of
IEEE DCOSS, 2017.

[18] O. Gnawali, “The minimum rank with hysteresis objective function,”
IETF RFC6719, 2012.

[19] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-mac: a short
preamble mac protocol for duty-cycled wireless sensor networks,” in
Proc. of ACM SenSys, 2006.

[20] X. Vilajosana, K. Pister, and T. Watteyne, “Minimal IPv6 over the TSCH
Mode of IEEE 802.15. 4e (6TiSCH) configuration,” IETF RFC8180,
2017.


