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Abstract— The multi-carrier interference channel where inter-
ference is treated as additive white Gaussian noise, is a very
active topic of research, particularly important in the area of
Dynamic Spectrum Management (DSM) for Digital Subscriber
Lines (DSL). Here, multiple users optimize their transmit power
spectra so as to maximize the total weighted sum of data rates.
The corresponding optimization problem is however nonconvex
and thus computationally intractable, i.e. a certificate of global
optimality requires exponential time complexity algorithms. This
paper shows that under certain channel conditions, this noncon-
vex problem can be solved in polynomial time with a certificate
of global optimality. The channel conditions are discussed con-
sisting of different interference models including synchronous
and asynchronous DSL transmission. Simulations demonstrate
its applicability to realistic DSL scenarios.

I. INTRODUCTION

Digital Subscriber Line (DSL) technology remains the num-
ber one choice of broadband access technology in the world
[1]. The corresponding increased demand for greater band-
width and faster connection has led to several technological
approaches to mitigate the channel impairments. This has
become one of the most important applications of the multi-
carrier interference channel model in today’s Internet.

One of the major limitations of DSL performance today is
crosstalk among different lines operating in the same cable
bundle. Dynamic Spectrum Management (DSM) refers to a
set of solutions to the crosstalk problem. Basically these
solutions consist of signal level coordination and/or spectrum
level coordination. For example, receiver and transmitter signal
level coordination correspond to a multiple access channel
and broadcast channel respectively. In this paper the focus
is on spectrum level coordination, which is also referred to as
spectrum management, spectrum balancing, or multi-carrier
power control.

Spectrum level coordination corresponds to a multi-carrier
interference channel where a number of different users try to
communicate their separate information over a coupled (wired)
channel. The capacity region of the interference channel is
still an open problem, but for practical systems where the
crosstalk channels are typically weaker than the direct channel,
treating interference as additive white Gaussian noise has
been the most practical communication strategy in operational
networks. In this case the transmit power spectrum of each
user is designed so as to minimize interference to other lines,
while maintaining a satisfactory data rate. Such a technique
reduces the impact of crosstalk and significantly improves the
overall data rate beyond those of the current approach of static

spectrum management where fixed over-conservative transmit
power spectra are used.

The problem of optimally choosing the transmit power
spectra in order to maximize the total weighted sum of data
rates of the users turns out to be a nonconvex optimization
problem. Several solutions have been proposed ranging from
centralized to distributed algorithms, e.g., [2] [3] [4] [5] [6].
However, there is an undesirable gap in the analysis of these
DSM algorithms: we either have algorithms with optimality
certificate but exponential running-time, or polynomial-time
solutions with only numerical verification of small subopti-
mality gap but no theoretical characterization of optimality
condition.

Indeed, on the one hand, polynomial-time algorithms like
IW [5], ISB [3] and ASB [4] have only sufficient conditions for
convergence but not for optimality. On the other hand, Optimal
Spectrum Balancing (OSB) [2], Branch and Bound Optimal
Spectrum Balancing (BB-OSB) [7] and a prismatic branch and
bound algorithm (PBB) [8], provide a certificate of finding the
globally optimal solution, up to a certain accuracy depending
on the used discretization of the search space. Unfortunately,
the complexity of these algorithms grows exponentially with
the number of users. Furthermore most of the aformentioned
algorithms assume that the number of frequency tones is
infinitely large so that the Lagrangian duality gap can be
viewed as zero [9].

In this paper, we give the conditions on the channel, noise,
and power constraints, under which this difficult nonconvex
problem of DSM can be solved in polynomial time with
an optimality certificate. To the best of our knowledge, our
results provide the first sufficient condition for optimality
for a finite number of carriers, and it is applicable for a
general model including synchronous as well as asynchronous
[10] DSL transmission. There are two key innovations in our
proofs: the use of geometric programming (GP) and M-matrix
theory. Furthermore, the optimality analysis further leads to
a new DSM algorithm, with simulations demonstrating the
applicability of this optimality certificate to realistic DSL
scenarios.

The following notations are used. Boldface uppercase letters
denote matrices, boldface lowercase letters denote column
vectors and italics denote scalars. Furthermore x � y denotes
componentwise inequality between vectors x and y and X �
Y denotes componentwise inequality between matrices X and
Y. We also let (x)l denote the lth element of x and [X]ij
denote the element of matrix X on row i and column j. We
denote the identity matrix by I and the spectral radius of T
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by ρ(T).

II. SYSTEM MODEL

Most current DSL systems use Discrete Multi-Tone (DMT)
modulation. The basic idea of DMT is to split the available
bandwidth into a large number of frequency bands, also called
tones. For each tone, a transmit power can be allocated
individually which corresponds to a number of transmitted
bits. The total data rate for each user is then obtained by adding
its transmitted bits over all tones.

In our model, no signal coordination is assumed between
the transmitting and/or receiving modem for each user. Each
user regards the signals from the other users as noise. The
only degree of freedom is choosing the transmit powers of the
different users over the different tones.

The transmit power is denoted as sn
k , where n is the user

index ranging from 1 to N and k is the tone index ranging
from 1 to K. The noise power is denoted as σn

k . The vector
containing the transmit powers of user n on all tones is
sn , [sn

1 , sn
2 , . . . , sn

K ]T . hn,m
k denotes the squared channel

gain magnitude from user m into user n on tone k, where it
refers to the squared channel gain magnitude of line n when
m = n. Furthermore intn

k is the interference caused to user n
on frequency tone k. The achievable bit loading for user n on
tone k can then be expressed as

bn
k , log2

(

1 +
hn,n

k sn
k

Γ(intn
k + σn

k )

)

bits/ s/ Hz, (1)

where Γ denotes the signal-to-noise ratio (SNR) gap to capac-
ity, which is a function of the desired bit error ratio (BER),
the coding gain and noise margin [11].

The DMT symbol rate is denoted as fs. The total data
rate for user n and the total power used by user n are then,
respectively, given by

Rn = fs

∑

k

bn
k and P n =

∑

k

sn
k . (2)

Such a model can be used to analyze the following special
cases.

A first case is synchronized DSL transmission. Here it is
assumed that all users are aligned in frequency so that each
tone is capable of transmitting data independently from the
other tones. The interference caused to user n on tone k can
then be expressed as intn

k =
∑

m6=n hn,m
k sm

k .
A second case is the asynchronous DSL transmission case

[10]. Here there is not only crosstalk within one tone but also
between different tones of different users. The interference
caused to user n on tone k can then be expressed as intn

k =
∑

m6=n(
∑K

p=1 hn,m
k,p sm

p ) where hn,m
k,p refers to the squared

channel gain magnitude from user m tone p into user n tone
k.

A third case is a general case that includes all the previous
cases and equals intn

k =
∑N

m=1(
∑K

p=1 hn,m
k,p sm

p )−hn,n
k,k , where

hn,m
k,p is the squared channel gain magnitude from user m tone

p into user n tone k.
All these cases can be summarized with the following bit

loading expression for user n on tone k

bn
k = log2

(

1 +
h

n,n

k,k
sn

k
P

N
m=1

P

K
p=1

h
n,m

k,p
sm

p −h
n,n

k,k
sn

k
+Γσn

k

)

. (3)

For each of the above cases the parameters hn,m
k,p have their

specific values. In the rest of this paper we will focus on this
general case (3) so that the results can be used for all three
cases. Note that for notational simplicity, we absorb Γ into the
definition of hn,m

k,p .

III. SPECTRUM MANAGEMENT PROBLEMS

The key goal in this text is to maximize the data rates of the
bundle of interfering DSL lines. To this end, the objective is to
find the optimal transmit power spectra maximizing a weighted
sum of data rates subject to power constraints. Assuming a
per-user total power constraint P n for each user n, this is
formulated as the following problem:

maxs1,...,sN

∑N

n=1 wnRn

s.t.
∑K

k=1 sn
k ≤ P n , ∀n,

s.t. 0 ≤ sn
k , ∀n, ∀k.

(4)

Instead of per-user total power constraints, we will consider
one total power constraint P on all users, where P =
∑N

n=1 P n. Using (2) this can be formulated as follows:

maxs1,...,sN

∑N

n=1 wnfs

∑K

k=1 bn
k

s.t.
∑K

k=1

∑N

n=1 sn
k ≤ P ,

s.t. 0 ≤ sn
k , ∀n, ∀k,

(5)

where bn
k is given by the general interference model (3).

Note that (4) and (5) are both nonconvex, and thus intractable.
Also note that in (5) the inequality total power constraint can
be replaced by an equality. This is justified by lemma 1.

Lemma 1: At optimality, we have
∑K

k=1

∑N

n=1 sn
k = P in

(5).
Proof: Suppose the optimal solution to (5) results in a

total power P t where P t < P . As this is the optimal solution it
means that no better solution can exist. This is not true because
by scaling all the powers sn

k by a factor P/P t, the objective
function in (5) increases. Thus, at optimality, P t = P in (5).

Note that Problem (5) can be seen as a relaxation of problem
(4). For symmetric crosstalk scenarios with not too large
crosstalk (cf. section IV) the optimal solution of (5) allocates
equal powers to all users and so solving (5) and (4) leads
to exactly the same solution, i.e. zero relaxation gap. For
asymmetric crosstalk scenarios, the users will not necessarily
be allocated the same amount of total transmit powers and
there may be a relaxation gap between the solution of (4) and
(5). The solution of (5) can however provide a useful upper
bound for problem (4).

Finally, we note that the nonconvex spectrum management
problem with one total power constraint on all users (5) has
also been considered in other work [12].

IV. OPTIMALITY CERTIFICATE FOR POLYNOMIAL TIME
SPECTRUM MANAGEMENT

A. Polynomial time spectrum management
Since (5) is nonconvex, it can have many locally optimal

solutions depending on the values of the channel and noise
coefficients. In order to solve this nonconvex problem with a
certificate of global optimality, i.e., the solution is globally
optimal, one has to resort to exponential time complexity
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algorithms such as [12] [2]. In Theorem 1, we provide
sufficient conditions on the channel and noise coefficients,
and the total power constraint for which (5) can be solved
in polynomial time with a certificate of global optimality. In
prior to describing Theorem 1, we first define the matrix B as
follows:

[B]d,l = (
h

n,m

k,p

h
n,n

k,k

+
Γσn

k

Ph
n,n

k,k

). (6)

where
l = n + (k − 1)N,
d = m + (p − 1)N.

Theorem 1: For the general interference system model (3),
(5) can be solved optimally in polynomial time when

B is nonsingular and C , I −B−1 � 0. (7)

Proof: We start from bn
k of (5) by incorporating the total

power equality constraint
∑K

k=1

∑N

n=1 sn
k = P (see Lemma

1) as follows:

bn
k = log2

(

1 +
h

n,n

k,k
sn

k

P

N
m=1

P

K
p=1

h
n,m

k,p
sm

p −h
n,n

k,k
sn

k
+Γσn

k

PN
m=1

PK
p=1

sm
p

P

)

(8)
This is reorganized as follows:

bn
k = log2







∑N

m=1

∑K

p=1(
h

n,m

k,p

h
n,n

k,k

+
Γσn

k

h
n,n

k,k
P

)sm
p

∑N

m=1

∑K

p=1(
h

n,m

k,p

h
n,n

k,k

+
Γσn

k

h
n,n

k,k
P

)sm
p − sn

k






. (9)

Using the symbol B̃n,m
k,p = (

h
n,m

k,p

h
n,n

k,k

+
Γσn

k

Ph
n,n

k,k

), this can be
simplified by

bn
k = log2

(

∑N

m=1

∑K

p=1 B̃n,m
k,p sm

p
∑N

m=1

∑K

p=1 B̃n,m
k,p sm

p − sn
k

)

. (10)

As it is not so easy to represent four-dimensional matrices, we
go to a two-dimensional matrix by a bijection map {l, k} ↔
{n, m, k, p} as follows:

l = n + (k − 1)N
d = m + (p − 1)N

[B]d,l = B̃n,m
k,p

(11)

N
∑

n=1

K
∑

k=1

B̃n,m
k,p sn

k =
L=KN
∑

l=1

[B]d,lsl, (12)

Now, (5) can be reformulated as follows:

maxs1...sL

∑L=KN

l=1 wl log2

(

PL
q=1

[B]l,qsq
P

L
q=1

[B]l,qsq−sl

)

s.t.
∑L

l=1 sl = P
s.t. sl ≥ 0 ∀l

(13)

where wl = wrem(l−1,N)+1 and rem(a, b) refers to the remain-
der after dividing a by b.

By using condition (7) we can make the following change
of variables:

y = Bs, s = B−1y = y −Cy. (14)

If (14) is substituted in (13) the cost function reduces to
L
∑

l=1

wl log(yl/(Cy)l) = log(

L
∏

l

(ywl

l /(Cy)wl

l )), (15)

and the last constraint to

yl ≥ (Cy)l, l = 1, . . . , n. (16)

We thus obtain the following optimization problem:

miny

∏

l((Cy)ly
−1
l )wl

s.t. (Cy)ly
−1
l ≤ 1, l = 1, . . . , n

∑

l(B
−1y)l = P.

(17)

Note that (15) and (16) are homogeneous in y (and so in
s). Thus the constraint

∑

l(B
−1y)l = P or, equivalently,

∑L

l sl = P acts as a normalization instead of a constraint.
As a consequence it can be replaced by another normalization
on y without changing the optimal value of (17), e.g.,

∏

l

yl = 1. (18)

This leads us to the following equivalent optimization prob-
lem:

miny

∏

l((Cy)ly
−1
l )wl

s.t. (Cy)ly
−1
l ≤ 1, l = 1, . . . , L

∏

l yl = 1.
(19)

This can be reformulated as the following standard GP [14]:
miny,t

∏

l(tl)
wl

s.t. (Cy)ly
−1
l t−1

l ≤ 1, l = 1, . . . , L
(Cy)ly

−1
l ≤ 1, l = 1, . . . , L

∏

l yl = 1.

(20)

For a particular obtained y for (20), we can recover the
optimizer s of (5) by first performing

s = (I −C)y (21)

and then normalize (scale) this s such that it satisfies 1T s = P .

So when condition (7) is satisfied, the solution of the non-
convex spectrum optimization problem (5) can be found by
solving a GP given by (20). A GP can be turned into a convex
optimization problem so that a local optimum is also a global
optimum. Furthermore the global optimum can be computed
very efficiently. Numerical efficiency holds both in theory and
in practice: interior point methods applied to GP have provably
polynomial time complexity [15]. This concludes the proof of
Theorem 1.

B. Optimality Analysis
In section IV-A, we provided condition (7) under which

nonconvex problem (5) can be solved in polynomial time
with a certificate of global optimality. In this section we will
further study this optimality condition. To this end, we will
first introduce some definitions from matrix theory.

Definition 1: Any matrix Q of the following form:

Q = tI −T, t > ρ(T), T � 0, (22)

is called an M-matrix [13].
Definition 2: A nonsingular nonnegative matrix Q is said

to be an inverse M-matrix if Q−1 is an M-matrix.

Using the above definitions, condition (7) can be reformu-
lated as follows: B is an inverse M-matrix with t = 1 where
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t is defined in Definition 1. Generally this means that the off-
diagonal elements of B−1 have to be negative and the diagonal
elements of B−1 have to be smaller than 1.

Characterizing all matrices whose inverses are M-matrices
is an active research field in the mathematical society, but
there are only limited results, even for symmetric matrices
[16]. In [16] one special type of matrix is introduced, called
generalized ultrametric matrix, which is an inverse M-matrix.
However this matrix does not necessarily satisfy the extra
condition that t = 1. Thus for an N -user case with K
frequency tones, it is difficult provide an exact meaning of
these conditions on the channel and noise coefficients.

However, for a 2-user case with a single frequency tone, we
can develop a sufficient condition on the channel and noise
coefficients, and the total power, in order for the condition (7)
to hold, i.e., B is an inverse M-matrix with t = 1. It also gives
us an intuitive understanding of condition (7) for the 2-user
case.

Theorem 2: For a 2-user DSL scenario with a single fre-
quency tone, if

Γh12
1 Γh21

1 +Γh21
1

Γσ1
1

P
+Γh12

1

Γσ2
1

P
≤ min

(

h11
1

Γσ2
1

P
, h22

1

Γσ1
1

P

)

,

(23)
then condition (7) is satisfied.

Proof: For a 2-user DSL scenario with a single frequency
tone, B is a 2× 2 matrix. Now, (7) can be expressed in terms
of the elements of B as

I−B−1 � 0 ⇔

b12
b11b22−b12b21

≥ 0,
b21

b11b22−b12b21
≥ 0,

1 − b11
b11b22−b12b21

≥ 0,

1 − b22
b11b22−b12b21

≥ 0.

(24)

Since the elements of B are all positive, (24) implies

max(b11, b22) ≤ b11b22 − b12b21, (25)

which can be rewritten in terms of the channel coefficients,
noise and total power P :

Γh12
1 Γh21

1 +Γh21
1

Γσ1
1

P
+Γh12

1

Γσ2
1

P
≤ min

(

h11
1

Γσ2
1

P
, h22

1

Γσ1
1

P

)

.

(26)

Intuitively, condition (7) is satisfied if both the crosstalk (i.e.
h21

1 , h12
1 ) and the total power constraint P are not exceedingly

large. The same intuition can be expected to hold for the case
where there are multiple users and frequency tones, where
developing mathematical conditions is left as a future work.

C. Algorithm DSM-GP
Next, we turn from the optimality analysis based on GP

and M-matrix theory to the design of our DSM algorithm,
Algorithm DSM-GP. Given the channel, noise and power
constraint parameters of the DSL scenario, (7) in Theorem
1 can be checked easily. If (7) in Theorem 1 is true, we
can solve (5) with global optimality by first solving (20) and
then transforming back to the transmit powers (21) after the
renormalization step.

Suppose that (7) in Theorem 1 is violated, but there are only
a small percentage of negative Cij elements. In this case, we

can set the negative elements to be zero, resulting in the matrix
C̃ij = max{Cij , 0}. Intuitively, solving (20) using C̃ should
still lead to a near-optimal performance when the percentage of
negative elements is reasonably small. This intuition is shown
to be very useful in the next section, although proving the
continuity of optimized objective function in the perturbation
of Cij remains an open issue. The obtained solution can then
projected back to the feasible domain of (5) by using pro-
portional adjustment of the transmit power to satisfy Lemma
1. However, the objective in (5) thus obtained using C̃ is no
longer globally optimal, and does not upper bound the global
optimal objective of (4). We propose the following algorithm
to solve (5):

Algorithm 1 DSM-GP Algorithm
Step 1 Calculate C = I −B−1.
Step 2 Force negative elements of C to zero leading to C̃.
Step 3 Solve (20) using a GP solver (e.g., [14]) with C̃.
Step 4 Transform solution y to transmit powers s using s =

(I − C̃)y where negative elements of s are forced to
zero.

Step 5 Scale s proportionally such that the total power of all
users is equal to P (cf. Lemma 1)

V. SIMULATION RESULTS

In this section simulation results will be shown for Algo-
rithm 1 proposed in section IV for synchronous as well as
asynchronous symmetric N-user ADSL downstream scenarios.

Central
Office

4000m

4000m

4000m

2

1

N

. . .

Fig. 1. Symmetric N -user ADSL downstream scenario

The ADSL downstream scenario is shown in Figure 1. The
simulations are performed for a two-user case (N = 2) up
to an eight-user case (N = 8). The four-user scenario, for
example, consists of active users 1,2,3,4 where users 5,6,7,8
are inactive. The twisted pair lines have a diameter of 0.5 mm
(24 AWG). The maximum transmit power is 20.4 dBm [17].
The SNR gap Γ is 12.9 dB, corresponding to a coding gain
of 3 dB, a noise margin of 6 dB and a target symbol error
probability of 10−7. The tone spacing ∆f is 4.3125 kHz. The
DMT symbol rate fs is 4 kHz. The simulations are performed
in Matlab on a TravelMate 4002WLMi with 768 MB of RAM
and an Intel Pentium M processor 1.60 GHz.

In Table I the simulation results are shown for the syn-
chronous DSL transmission case, i.e. no intercarrier interfer-
ence (ICI). The first column denotes the number of users.
The second column denotes the performance of Algorithm
1 with respect to the global optimal algorithm OSB with a
very fine granularity. The third and fourth column denote the
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number and percentage of negative Cij elements for condition
(7) respectively.

The simulation time of OSB requires exponential complex-
ity, i.e. 3 minutes, 3 hours and 5 days for 2,3 and 4 users
scenarios respectively. For more than four users it is infeasible
to execute within acceptable time. Therefore the performance
for more than 4 users can not be compared to OSB. The
simulation time of Algorithm 1 just requires a few seconds
even for the 8-user scenario.

Note that condition (7) is satisfied up to the 6-user scenario.
This means that Algorithm 1 succeeds in finding the optimal
transmit spectra with a certificate of global optimality for
up to the 6-user scenario in a few seconds. Although the
conditions are not satisfied for the 7- and 8-user scenarios,
it has been verified that Algorithm 1 leads to near-optimal
transmit spectra. That is because the percentage of negative
elements is extremely small and forcing these to zero does
not significantly change the problem. However there is no
guarantee of global optimality. As the percentage of negative
Cij elements increases one can expect suboptimal transmit
spectra.

In Table II the simulation results are shown for the asyn-
chronous DSL transmission case [10], i.e. with intercarrier
interference (ICI). Condition (7) is satisfied up to the 6-user
scenario. For the 7- and 8-user scenarios there is a small
percentage of negative Cij elements. This percentage is larger
than for the synchronous case because there is a larger amount
of crosstalk caused by ICI. As there exists no globally optimal
method for asynchronous DSL transmission, the performance
of Algorithm 1 cannot be compared to such a benchmark.
However for the 2- up to the 6-user case we still have a
certificate of global optimality for Algorithm 1. This shows
another powerful application of an optimality certificate in
DSM algorithm analysis. In fact, since the channel conditions
are symmetric, the optimal solution computed using Algorithm
1 for (5) is equal to (4).

TABLE I
ANALYSIS PERFORMANCE ALGORITHM 1: SYNCHRONOUS DSL

TRANSMISSION

Users Perf. wrt OSB Nb. neg. C elem. Perc. neg. C elem.
2 100.0% 0 0
3 100.0% 0 0
4 100.0% 0 0
5 / 0 0
6 / 0 0
7 / 140 0.0057%
8 / 352 0.011%

TABLE II
ANALYSIS PERFORMANCE ALGORITHM 1: ASYNCHRONOUS DSL

TRANSMISSION

Users Nb. neg. C elem. Perc. neg. C elem.
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 203 0.0083%
8 392 0.012%

VI. CONCLUSION

Maximizing the weighted date rate of all users for a multi-
carrier interference channel is an important problem that
finds application in DSL. DSL spectrum management has
attracted many researchers who produced a large variety of
algorithms. However, since the problem is nonconvex, all the
DSM algorithms that produce an optimality certificate require
exponential-time complexity. Also, most previous suboptimal
DSM heuristics give only sufficient conditions for convergence
to a suboptimal solution. This paper leverages on GP and
M-matrix theory to generate a polynomial-time optimality
certificate for a set of conditions on channel, noise and power
constraints. Our results shed new light on the structure of
power allocation across multiple carriers in DSL interference
channels. Furthermore, we propose Algorithm DSM-GP that
can compute the global optimal transmit power allocation. This
paper provides another step towards understanding the tradeoff
between DSM algorithm’s complexity and performance guar-
antee.
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