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Abstract—Carrier Sense Multiple Access (CSMA) has been
widely used as a medium access control (MAC) scheme in
wireless networks mainly due to its simple and totally distributed
operations. Recently, it has been reported in the community that
even such simple CSMA-type algorithms can achieve optimality
in terms of throughput and utility, by smartly controlling its
operational parameters such as backoff and holding times. In
this survey paper, we summarize the recent research efforts in
this area with main focus on the key intuitions and rationales,
and conclude by presenting some open problems.

I. INTRODUCTION

Carrier Sense Multiple Access (CSMA) is one of most
popular random access protocols in practice, which we see
in most of wireless textbooks. The key features of CSMA is
that each link with a pair of transmitter and receiver senses
the medium and transmits a packet only if the medium is
sensed idle. Due to its simple and distributed nature, it has
been regarded as one of the most practical MAC protocols
in wireless networks, e.g., CSMA is a basic medium access
algorithm in IEEE 802.11. Thus, there exists a vast array
of research results on CSMA in terms of its analysis under
various settings and its applications to practical systems.

CSMA is referred to as the class of algorithms to schedule
links over time in wireless networks. There are also numerous
other types of algorithms in the area of wireless link schedul-
ing, where their performances are often measured by various
metrics, e.g. throughput, delay, fairness, etc. It’s the year
1992 that a seminal paper by Tassiulas and Ephremides [1]
was published, in which the so-called throughput optimality
was defined, and a scheduling algorithm achieving throughput
optimality, referred to as Max-Weight, was presented. De-
spite its provable optimality, Max-Weight requires to solve a
computationally intractable problem, called Maximum Weight
Independent Set problem, over each time, which has been a
major obstacle to implement it in practice.

Since the work on Max-Weight, a surge of papers on MAC
scheduling, which essentially follows the philosophy of Max-
Weight, have been published. They partially or fully guarantee
the performance, typically in terms of throughput and utility,
where the efforts have been classified into (i) ones which trade
off between complexity and efficiency, (ii) ones which achieve
optimality at the cost of increasing delay, and (iii) random
access style algorithms with suboptimality but worst-case
performance (e.g., lower bound of the performance) guarantee,
see e.g., [2] for a survey. A single sentence summary of
the key ideas of all the above-mentioned research would
be: Balancing the supply-demand differential by prioritizing
links with larger differentials in scheduling algorithms, where
differentials are quantified by the link queue lengths.

However, many aforementioned algorithms still require
heavy message passing or computations, thus remain just

”theoretical” rather than being made ”practical”. Therefore, it
has been a long-standing open problem to find simple random
access (hopefully, without message passing) achieving full
optimality in the research community. About 15 years after
Max-Weight, it’s the year 2008 that a simple CSMA with
no message passing was shown to be provably optimal in
terms of throughput and utility. Since then more and more
research interests in this so-called optimal CSMA area have
been taken in the community, whose survey is the major
content of this paper. For convenience, we survey the research
results on optimal CSMA based on the following criteria
reflecting different models, proof techniques, and research
methodologies (e.g., theory or implementation).

C1. Saturate vs. Unsaturated. In unsaturated cases, there is
arrival of traffic with finite workload to each link, and
stability is a key metric, whereas in saturated cases,
there is infinite backlog behind each link, and utility
value of the equilibrium rate is often the objective to
be maximized.

C2. Synchronous vs. Asynchronous. Synchronous systems
have a notion of frames, each of which typically consists
of a control phase and a data phase, where frames are
synchronized, whereas in asynchronous systems, each
link independently accesses the medium after sensing
other links’ transmissions.

C3. Continuous vs. Discrete. This criterion can also be called
with vs. without collisions. For mathematical tractability,
continuous models are often used, where backoff and
holding times can be arbitrary real numbers. In practice,
the systems are actually discrete, where the systems
evolve over discretized time slots (e.g., 20 µsec in IEEE
802.11b) and collisions will inevitably occur, when two
links contend at a same time slot.

C4. Time-varying channels vs. static channels. Static chan-
nels are often assumed mainly for analytical simplicity,
where every link capacity is set fixed. Wireless channels,
however, are time-varying in practice, where the results
on optimal CSMA may significantly change, depending
on the time-scale difference between the speed of channel
variations and CSMA parameter controls.

C5. Time-scale separation vs. not. As will be discussed
later in more detail, the behavior of optimal CSMA is
modeled by a Markov chain, and this time-scale sep-
aration assumption corresponds to whether the Markov
chain reaches a stationary distribution immediately or
not. Results based on this “fake” assumption have been
accepted in the community without much criticism, espe-
cially when analyzing the CSMA Markov chain becomes
mathematically intractable.



TABLE I
TAXONOMY OF OPTIMAL CSMA. TSS: TIME-SCALE SEPARATION

Work Sat/Unsat Cont/Disc Sync/Async w/w.o. TSS Summary and Comments
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[3] Unsat Cont Async With A CSMA that is conjectured to be optimal
[4] Unsat Cont Async Without Complete proof of [3]
[5] Unsat Disc Async Without Throughput optimal with collision
[6] Unsat Cont Async Without Queue based approach with full optimality proof

without TSS
[7] Unsat Disc Async Without Connecting Max-weight and CSMA with maximum

queue size estimation
[8] Unsat Cont Async Without Continuous time version of [7]
[9] Sat Cont Async Without Utility optimal CSMA based on stochastic approxi-

mation with Markovian noise
[10] Sat Cont Async Without Utility optimal CSMA under multiple channels
[11] Unsat Disc Sync With Queue based approach under synchronous system
[12] Unsat Disc Sync Without Bounding delay based on parallel update of trans-

mission aggressiveness
[13] Unsat Disc Async With Throughput optimal for imperfect carrier sensing
[14] Unsat Cont Async Without Delay of optimal CSMA algorithms based on asymp-

totic variance
[15] Unsat Cont Async With MIMO and SINR-based interference model

[16], [17] Unsat Cont Async Without CSMA over time-varying channel

Im
pl

. [18], [19] Disc Async Evaluation of optimal CSMA
[20], [21] Disc Async Study of interaction between CSMA and TCP

[22] Disc Async A new MAC and experimental validation on 802.11
hardware

C6. Theory vs. implementation. Most of works in the liter-
ature have produced theoretical results with emphasis
on discovering CSMA’s ability toward optimality. There
are also some of recent researches which implement
and evaluate optimal CSMA, in conjunction with several
redesign proposals to bridge the gap between theory and
practice.

Following these six criteria, we summarize the key features
of the research papers on optimal CSMA in Table I. The rest
of the paper is devoted to explaining their key concepts and
brief summaries.

II. CSMA: MODEL AND OBJECTIVES

A. Model

In wireless networks, each link shares the wireless medium
with other neighbor links that interfere with the link. To
model this, a wireless network topology is represented as
an interference graph, where links are vertices and undi-
rected edges are generated between two interfering links. Let
G = (L, E) denote the interference graph, where L and E
are the set of links and the set of edges between interfering
links, respectively. We define by σ , [σi : i ∈ L] 1 a
scheduling vector for links in G. Since interfering links cannot
successfully transmit a packet simultaneously, σ is called
feasible (i.e., there is no collision) if σi+σj ≤ 1, ∀(i, j) ∈ E,
where (i, j) denotes the edge between link i and j. Thus, the
set of all feasible schedules is defined as

I(G) , {σ ∈ {0, 1}n : σi + σj ≤ 1,∀(i, j) ∈ E}.

1Let [xi : i ∈ L] denote the vector whose i-th element is xi. For notational
convenience, instead of [xi : i ∈ L], we use [xi] in the remaining of this
paper.

The feasible rate region (or capacity) C = C(G) is convex
hull of I(G), namely,

C(G) ,

 ∑
σ∈I(G)

ασσ :
∑

σ∈I(G)

ασ = 1, ασ ≥ 0,∀σ ∈ I(G)

 .

Under CSMA, prior to trying to transmit a packet, links
check whether the medium is busy or idle, and transmit the
packet only when the medium is sensed idle. To control the
aggressiveness of medium access, a notion of backoff timer is
used, which is reset to a random value when it expires. The
timer ticks only when the medium is idle. With the backoff
timer, links try to avoid collisions by the following procedure:
each link does not start transmission immediately when the
medium is sensed idle, but keeps silent until its backoff timer
expires. After a link grabs the channel, the link holds the
channel for some duration, called holding time. Intuitively, the
probability that link i is scheduled is decided by the average
backoff time and the average holding time. Let the backoff
and holding times be denoted by 1/bi and hi, respectively.

For tractability, if we assume that backoff and holding
times follow memoryless (i.e., exponential) distributions, the
scheduling process {σ(t)} of CSMA protocols becomes a
time reversible Markov process. Then, the stationary distri-
bution of a schedule σ is defined by b = [bi] and h = [hi]:

πb,hσ =

∏
i∈L(bihi)

σi∑
σ′∈I(G)

∏
i∈L(bihi)σ

′
i

, (1)

which is a function of the product bi × hi, for all i ∈ L.
Let ri = log(bihi) and r = [ri], where r implicitly denotes
transmission aggressiveness of links. From (1), the probability
si(r) that link i is scheduled for r, which is the link i’s



throughput, is computed as follows:

si(r) =
∑

σ∈I(G):σi=1

πb,hσ =

∑
σ∈I(G):σi=1 exp(

∑
i∈L σiri)∑

σ′∈I(G) exp(
∑
i∈L σ

′
iri)

.

In the discrete time model, where geometric distributions
are used for backoff and holding time instead of exponential,
due to collisions, the stationary distribution is slightly different
from (1). However, the stationary distribution becomes close
to (1) when the holding time h is large enough so that the
collision time become ignorable, since the time fraction of
collision period declines as the holding time increases for the
same transmission aggressiveness r.

B. Objectives

Unsaturated system. When a CSMA-based algorithm can
stabilize any feasible arrival rate λ ∈ C(G), the algorithm
is called throughput optimal. Intuitively, when si(r

∗) > λi
for all link i, the arrival λ can be stabilized with transmission
aggressiveness r∗. A question to address is:

QT: For any λ ∈ C(G), is there any transmission aggres-
siveness r such that si(r) ≥ λi for all link i? If there
exists such r, what are the CSMA algorithms that provide
the transmission aggressiveness r over long-term without any
message passing and explicit knowledge of the given arrival
rate λ?

Saturated system. In this case, each link is assumed to be
infinitely backlogged. Thus, CSMA algorithms are exploited
to control the service rate of each link so as to make the
long-term service rate close to some point of the boundary
of C(G), formally, a solution of the following optimization
problem:

max
γ

∑
i∈L

U(γi) subject to γ ∈ C(G) (2)

where U(·) denotes an utility function with the nice proper-
ties such as concavity and differentiability. The questions to
address in this case is:

QU: Let the solution of (2) be γ∗. How can we make each link
have transmission aggressiveness to r∗i so that si(r∗) = γ∗i ?

III. CSMA: RESEARCH SURVEY

The research papers on optimal CSMA to date directly or
indirectly address the questions QT and QU. In this section,
we summarize them, starting the first two subsections by sum-
marizing the results which can be arguably representative in
terms of models and algorithms, followed by more extensions
according to the criteria mentioned in Section I. Note that our
presentation in terms of positioning and sequencing the papers
cited here may be biased by the authors to some degree, and
there may also be some missing references.

A. Basic Results: Unsaturated

In [3], it is shown that, for any feasible arrival rate λ,
there exists a finite transmission aggressiveness r∗ such that
si(r

∗) ≥ λi, ∀i ∈ N. From this, the authors conjectured
that throughput optimality can be achieved by CSMA. We
summarize the results on throughput-optimal CSMAs by
classifying them into rate-based and queue-based approaches.

Rate-based approach: The authors in [3] propose a simple
rate-based approach which allows transmission aggressiveness
r to converge to the r∗ with a time-scale assumption that
the schedules from CSMA immediately follow a stationary
distribution at each time slot. Later, Jiang et al. [4] shows that
without the time-scale separation assumption, the proposed
rate-based approach converges to r∗ for any strictly feasible
arrival. The algorithm operates as follows:
Step (1): Each link i investigates packet arrival and schedule
duration for a sufficient long time interval. Let link i adjusts
its transmission aggressiveness ri(j) at time T (j) for j ∈ Z+.
2 Let {Ai(t)} and {Si(t)} be arrival and scheduling process
of link i, respectively. Then, the emperical arrival and service
rates at T (j + 1), denoted by λ̂i(j) and ŝi(j), respectively,
are calculated by:

λ̂i(j) =
1

T (j + 1)− T (j)

∫ T (j+1)

T (j)

Ai(t)dt

ŝi(j) =
1

T (j + 1)− T (j)

∫ T (j+1)

T (j)

Si(t)dt.

Step (2): Link i adjusts its transmission aggressiveness ri
according to the empirical packet arrival and service rates as
follows:

ri(j + 1) = ri(j) + β(j)(λ̂i(j)− ŝi(j)), (3)

where β(j) is a decreasing step size.
Queue-based approach: The rate-based approach is summa-
rized as the scheme which directly estimates the demand and
then provides the service rates to balance the demand and
supply. A different approach can be developed by implicitly
quantifying the supply-demand differential using a queue-
length information, which we call queue-based approach. This
queue-based CSMA can be regarded as an algorithm which
emulates Max-Weight in a sluggish manner. By sluggish, we
mean that the Markov chain induced by CSMA requires a time
to reach a stationary distribution (close to what Max-Weight
achieves).

In [11], the authors propose a scheme called Q-CSMA
where ri = f(Qi), where Qi is the queue length of link i and
f is a weight function. They prove that Q-CSMA is (through-
put) optimal for any increasing function f under the time-
scale separation assumption. Although they use a discrete time
model, no collision exists due to synchronous operations (see
Section III-D). Thus, the probability that a schedule is selected
at each time slot, follows the stationary distribution (1). In
other words, due to the choice of ri = f(Qi), the probability
to schedule σ is proportional to exp(

∑
i∈I(G) σif(Qi)), and

it is negligible if the weight W (σ) =
∑
i∈I(G) σif(Qi) is

far from its maximum value (Max-Weight always chooses a
schedule maximizing the weight).

The queue-based approach without time-scale separation
has been first proposed and justified in [6] for special choices
of weight function f , e.g., f(x) = log log(x). The key
challenge in the work is to analyze a non-trivial correlation
between queueing and scheduling dynamics (operating in the
same time-scale) induced by a queue-based algorithm such
as Q-CSMA. The authors in [6] resolve the correlation by (i)
sufficiently slowing down the speed of the queueing dynamics

2We use j to index the state updates, and T (j) is the time of j-th update.



using a slowly increasing weight function f , such as f(x) =
log log(x) and (ii) showing that scheduling dynamics run in
a much faster time-scale than queueing dynamics in a certain
sense. Due to some technical issues, we note that the CSMA
in [6] requires a slight message passing to broadcast certain
global information (e.g. the number of queues, the maximum
queue-size) over the network. In the following work [8], the
authors refine their approach toward removing the message
passing. However, the maximum queue-size information still
remains to be broadcasted, which was conjectured to be not
necessary. The conjecture has been recently resolved in [7]
using a certain distributed ‘learning’ mechanism: each node
runs it to infer the maximum queue-size information without
explicit message passing (and only using sensing information).

Comparison. The common goal of rate- and queue-based
approaches is to control the CSMA parameters for the desired
high performance, where they use the arrival rate or queue-
size information for the control, respectively. The performance
guarantees of rate-based algorithms are inherently sensitive to
the assumption that the arrival rate is fixed (or very slowly
changing), while queue-based ones are more robust against
this issue, i.e., the queue-based results [6], [7], [8] hold even
under time-varying arrival rates. However, analyzing queue-
based algorithms are technically much harder, and hence the
time-scale separation assumption or the information of the
maximum queue length has been often used for technical
convenience.

B. Basic Results: Saturated

If each link has infinity backlog, the object of CSMA
algorithms is to maximize network utility rather than stabilize
the queues of links. In [5], utility optimality is considered
for flows under the time-scale separation assumption. The
algorithm in [5] considers a joint scheduling (via CSMA) and
congestion control problem as follows:

max
µ∈Ω,λ∈[0,1]n

−
∑

σ∈I(G)

µσ logµσ + V

(∑
i∈L

Ui(λi)

)
s.t. E{σi} ≥ λi, ∀iL, (4)

where V is some constant and Ω is set of all probability
measure on I(G). Then, the optimal solution turns out to
be close to the utility optimal within log |I(G)|

V bound.
The formal proofs for saturated case without time-scale

separation assumption are proposed in [9] and [4]. In [9],
the authors provide an algorithm motivated by stochastic
approximation controlled by Markov noise. At the starting
time instance of each frame, similarly with (3), transmission
aggressiveness is updated as follows: Each link i maintains
its own virtual queue qi, updated by:

qi(j + 1) = qi(j) + α(j)

(
U ′−1

(qi(j)
V

)
− ŝi(j)

)
, (5)

where V is some constant and α(j) is a decreasing step
size. Then, based on qi(j), CSMA runs with the backoff and
holding times satisfying bi(j+ 1)hi(j+ 1) = exp(qi(j+ 1)).
Similarly to (4), V controls the distance from optimality. The
virtual queue length is a Lagrange multiplier that appears
from the dual decomposition of the original objective (2),
quantifying the demand-supply differential.

In [4], they also show that without time-scale separation,
the optimal solution of the problem (4) can be achieved by
primal-dual relationship as follows:

ri(j + 1) = max{0, ri(j) + α(j)(λi(j)− ŝi(j))}
λi(j + 1) = arg max

y∈[0,1]
V · U(y)− ri(j + 1)y. (6)

Note that the algorithms in [4] and [9] are essentially the
same, because from the definition of ri = log(bi × hi), but
there exists minor difference in their proof details.

The key rationale for the saturated case lies in the fact
that the transmission aggressiveness is updated by quantifying
the supply-demand differential, and the new aggressiveness
is applied to the system with more modest updates with
the belief that the system approaches to what is desired.
The extension of utility optimal to multi-channel networks
is provided in [10] without time-scale separation based on a
much more simpler optimality proof. For faster convergence,
a steepest coordinate ascent algorithm is proposed in [23].
Under this algorithm, at each time slot j, the transmission
aggressiveness of link i is set to be proportional to the first
derivative of utility function at empirical service rate, such
that ri = k · U ′(γi(j)) where γi(j) = 1

j+1

∑j
t=0 ŝi(t).

C. Time-scale Separation Assumption

In a Markov chain, it takes some time for a state to be
close to a stationary regime. This time is called mixing time.
In optimal CSMA algorithms, the transmission aggressiveness
r(t), which determines the transition rates (in continuous
cases) and probabilities (in discrete cases), is time-varying,
Thus, the main challenge in performance analysis of the
optimal CSMA algorithms lies in the fact that such the mixing
time can be much shorter than the change of transmission
aggressiveness. In some papers, e.g., [3], [11], [13], [15],
time-scale separation assumption, i.e., the assumption that a
Markov chain can immediately reach a stationary distribution,
has been made, which removes all the dirts in the proof.

As briefly mentioned in Sections III-A and III-B, two op-
timality proof techniques exist when no time-scale separation
is assumed. First, the change of transmission aggressiveness
is slowed down by taking a function of the parameter that
affects the aggressiveness. For example, in [6], [7], [8], the
queue length is such a parameter, where to represent the link
weight, log log(Qi) is used to make the regime that the speed
of weight changes (thus, the speed of aggressiveness changes)
becomes much slower than that of the mixing time. Another
approach is to have an explicit device such as a step-size,
which decreases with time. Examples include the work by [9]
and [4] for the saturated case, where the step-size α(j) plays
such a role.

D. Continuous/Discrete and Synchronous/Asynchronous

The assumption of continuous distributions of backoff and
holding times, where most of work based on the continu-
ous setting assumes exponential distributions, conveniently
removes the need to consider collisions, leading to simple
analysis. However, a real system is not continuous. For
example, 802.11 operates based on the notion of a slot whose
duration is 20 µsec. In this discrete system, collisions naturally
occur when two links content at a same slot. Then, a link
i’s throughput becomes characterized in more complex way



by considering the transmission loss due to collisions. Note
that in the discrete case, geometrically distributed backoff
and holding times are used in the modeling because of its
memoryless property.

Two directions are taken for discrete time systems in the
papers. First, since the stationary distribution for the given
backoff and holding times is decided by their product, not their
individual values, the holding time can be arbitrarily large as
long as the product is chosen as planned. This implies that
the throughput loss by collisions can be sufficiently reduced
by enlarging the holding times, so that their performance is
almost close to what has been obtained in the continuous case.
However, this may not be practical, because long holding
times are very bad for short-term fairness. In [24], [9],
the tradeoff between throughput and short-term fairness is
asymptotically analyzed, where it is indeed required that a
high cost of short-term fairness should be paid to increase
throughput; where short-term fairness is defined as the inverse
of the average delay between two successive successful trans-
missions. In [5], [7], for a desired transmission aggressiveness
ri for each link i, the authors propose throughput optimal
algorithms with collisions, where the holding time of link i is
proportional to exp(ri) with a fixed backoff time, so that the
holding time consequently increases if a larger aggressiveness
is needed. This approach shares the idea, mentioned earlier,
that the enlarged holding time can reduce the throughput loss
due to collisions. Second, as in [11], a synchronous system
with frames, consisting of separate control and data phases, is
designed so that, through slight message passing in the control
phase, collisions is resolved.

When links operate under a common clock, the control
actions can be time-synchronized, and thus, more efficient
design is possible. Continuous systems, where continuity is
assumed for theoretical purpose, is by nature asynchronous.
More serious issues on synchronization are raised in discrete
systems, for example, slots can be skewed, where guard time
needs to be allocated, and loss of efficiency due to guard time
overhead etc. requires more study. However, so far all discrete
time based papers assume perfect synchronization.

E. Time-Varying vs. Fixed Channel

In modeling channels, most of the work assume that channel
capacity is fixed. However, the channels are often time-varying
in practice. Optimal CSMA over time-varying channels have
recently investigated [16], [17]. In [16], CSMA under time-
varying channels has been studied only for complete interfer-
ence graphs, when the arbitrary backoff rate is allowed. The
proof is based on the time-scale separation assumption, which
does not often hold in practice and extremely simplifies the
analysis (no mixing time related details are needed). In [17],
the authors consider a channel model that the link capacity
is randomly varied between 0 and 1 and the channel varying
process is independent across links. Under this model, two
canonical CSMA algorithms are considered: (i) A-CSMA
which transmits a packet only if the capacity is 1 and (ii) U-
CSMA which operates independently of the channel variation.
Despite the intuition that A-CSMA may outperform U-CSMA
due to its channel tracking ability, it is proved that U-CSMA
can guarantee more throughput than A-CSMA, depending
on the speed of channel variations, in particular, when the

speed of channel variation is fast. However, for slowly varying
channel, A-CSMA achieves throughput optimality, whereas
U-CSMA is suboptimal. Such performance difference comes
from the mixing time of Markov chain, i.e., when the channels
change faster than mixing time, A-CSMA may behave in an
undesirable manner.

F. Delay

In addition to the “first-order” metric such as throughput
or utility, the delay performance of optimal CSMA has been
studied recently. Delay in optimal CSMA has been largely
under-explored, where only a small set of work has been
published with emphasis on the asymptotic results. Shah et al.
[25] show that it is unlikely to expect a simple MAC protocol
such as CSMA to have high throughput and low delay.
Thus, to achieve O(1) delay, in [26], [27], modified CSMA
algorithms are proposed. In [26], a modified CSMA requiring
coloring operation achieves O(1) delay for networks with
geometry (or polynomial growth). A reshuffling approach,
which periodically reshuffles all on-going schedules under
time synchronized CSMA, leads to both throughput-optimality
and O(1) delay for torus (inference) topologies [27].

Without any modification, the algorithms that split the
holding and backoff times for a desired transmission aggres-
siveness determine the delay. In this approach, mixing time
has been a popular toolkit for delay analysis [26], [12]. Jiang
et al. [12] proved that a discrete-time parallelized update
algorithm achieves O(log n) delay for a limited set of arrival
rates. However, it was shown very recently [28] that mixing
time based approach may not be the right way to capture delay
dynamics even in the asymptotic sense. In [14], asymptotic
variance is used for the other metric that measures delay. In
this work, they arrange the CSMA algorithms by asymptotic
variance and show that the algorithm reducing asymptotic
variance enhances delay performance.

G. Toward Practice: Imperfect Sensing and Implementation

More practical situations start to be considered for optimal
CSMA. First, in [13], the authors consider the case when
sensing is imperfect. An example of imperfect sensing is the
famous hidden terminal nodes. Other examples include false
alarm (resp. miss detection), where a link can sense the idle
(busy) medium as busy (idle) with a positive probability. False
alarm is not highly critical to throughput optimality, but miss
detection could reduce throughput since it generates collisions.
In [13], the protocol, which overcomes miss detection, is
proposed, which is provably throughput optimal, by letting
each link operate with small backoff rate and long holding
time.

In most of the aforementioned research, the physical layer is
abstracted. For example, for interference model, the protocol
model is used, assuming that packet transmission of a link
depends on neighbor links only. In practice, success of a
transmission is decided by whether its SINR is above a
threshold or not, called SINR model. In [15], SINR model
is considered with MIMO transmission. Under this model,
each link can select a data rate and the transmission is
successful when total interference is less than the marginal
interference for the transmission rate. Even for the MIMO and
SINR model, the authors propose an algorithm that achieve



throughput optimality with an assumption where each link has
to have topological information.

A limited number of work on the implementation of optimal
CSMA exists, mainly with focus on evaluation [18], [29].
They show that multiple adverse factors of practical occur-
rence not captured by the assumptions behind the theory can
hinder the operation of optimal CSMA, introducing severe
performance degradation in some cases [29]. In [20], [21],
the interaction between TCP and optimal CSMA has been
investigated due to the window based congestion control of
TCP. Two algorithms each based on multiple sessions [20]
or virtual queue mechanism [21], respectively was proposed.
Very recently, a protocol, called O-DCF [22], reflecting the
rationale of optimal CSMA, has been designed and imple-
mented on the legacy 802.11 hardware, and shows significant
performance improvement over the 802.11 DCF.

H. Open problems

In [7], [8], the throughput optimality of a queue-based
CSMA algorithm is shown. However, to guarantee the
throughput optimality, the choice of transmission aggressive-
ness ri is not just ri = f(Qi) for some function f ; but
ri(t) = max{f(Qi(t)),

√
f(Qmax)} for f(x) = log log(x);

where Qmax denotes the maximum queue length over all
links. Thus, every link has to know [8] or infer [7] Qmax

to calculate transmission aggressiveness. Showing throughput
optimality of queue-base CSMA with ri = f(Qi) is still an
open problem. In addition, it is not known yet whether the
queue-based CSMA algorithm using other functions such as
f(x) = log(x) or f(x) = x, is throughput optimal or not.

Beyond the throughput optimality, designing a CSMA
algorithm which is optimal in both throughput and delay
remains quite open. In [25], the authors show that the task
is impossible (unless RP=NP) for arbitrary interference topol-
ogy. However, the interference topology arising in practice
is not arbitrary, but has certain geometric properties [27]
or bounded degrees [12]. Hence, designing (and analyzing)
CSMA algorithms toward delay optimality still remains a
quite important promising challenge to be investigated in the
future.

IV. CONCLUSION

An extensive array of analysis and protocols are proposed
on what are efficient MAC schemes. Efficiency can be mea-
sured by control overhead, throughput, and fairness etc. This
survey demonstrates that a simple, fully distributed MAC
with no or little message passing, such as CSMA, can be
designed to achieve optimality, where various findings have
been explored, and people are starting to looking at their
practical values by evaluation and implementation in real
hardwares. Despite a long history of MAC research, there still
exists under-explored areas toward simple, yet highly efficient
MAC. We hope that this survey paper helps the readers with
summarizing the current research progress on optimal CSMA.
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