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Abstract—The Internet is a complex system, consisting of
different economic players in terms of access/transit connection
and content distribution, which are typically selfish and try to
maximize their own profits. Due to this different perspective of
economic interest as well as dynamic changes of the Internet
market, a certain degree of techno-economic inefficiency has
naturally been observed, e.g., unstable peering and revenue
imbalance among content, eyeball, and transit ISPs (Internet
Service Providers). At the center of this issue is “good” revenue
sharing among them. Recently, revenue sharing based on the
notion of Shapley Value (SV) from cooperative game theory has
been applied to address the afore-mentioned issue, shedding light
upon many nice properties which have been used not only to
understand the current Internet eco-system but also to predict its
future. However, the positive features from the SV based revenue
sharing can be practically feasible only when the providers agree
to form a grand coalition, which may not hold in practice. In
this paper, we first investigate the conditions under which the
grand coalition is stable under SV by classifying the network
into two cases: under-demanded and over-demanded. We then
study the gap between the conditions of the grand coalition’s
stability and optimal coalition structures (i.e., coalition structures
that maximize the aggregate revenue of ISPs).

I. INTRODUCTION

The Internet is a system where the entities such as EUs
(End Users) and content/eyeball/transit ISPs (Internet Service
Providers)1, having different economic perspectives, compete
and cooperate in a highly complex manner. Eyeball/transit
ISPs connect EUs to the Internet, and content ISPs inject and
deliver content data into the Internet [1], e.g., videos, web
pages, and files. The major interest of the providers, which is
often selfish, is to maximize their profits, sometimes incurring
techno-econo inefficiency in the Internet. For example, ISPs’
selective peering with other ISPs may have negative impact
on Internet’s connectivity. Different ISPs express economic
complaints on revenue imbalance among them, which becomes
a major obstacle to evolvability of the Internet. One of the
central issues regarding such complaints is how to distribute
the revenue from the users among the providers in a fair
manner.

Motivated by the above, there have been recent research
efforts on fair and efficient revenue sharing among providers,

1ISP is sometimes called just ‘provider’ throughout this paper.

using the notion of Shapley value (SV) [2] from cooperative
game theory. The SV based revenue sharing enforces the
profit distribution at a multilateral, global level, rather than
a bilateral, local level, leading to nice features in terms of
fairness, efficiency, and interconnection incentives, see e.g.,
[3] and [4]. The major messages include (i) multi-lateral
settlements among ISPs are more preferable than bi-lateral
ones and (ii) even selfish behaviors of the ISPs may yield
globally optimal routing and interconnection decisions. In
addition to SV’s application to providers’ settlements, it has
also been applied to many other network-economic problems,
e.g., peer-assisted services [5], viral marketing [6], and virtual
infrastructure sharing [7].

The SV is a fair payoff distribution in cooperative game
theory based on the assumption that a grand coalition (i.e.,
coalition containing all players) is agreed by the players.
However, the question of whether the providers would form
the grand coalition is largely open. In [3], the grand coalition
seems to be formed under a simple model which is adopted
mainly for tractable analysis. When more realistic features are
added to the model, the grand coalition may not be agreed
upon by the providers, which in turn disproves the efficacy of
the SV based revenue sharing. This motivates us to perform
in-depth studies of grand coalition’s stability.

Of many important realistic features required to revive
in the modeling and analysis, we focus on the case when
user demands exceed network capacity. This over-demanded
network seems practically important due to the recent trends
in the Internet access, including wireless and wired parts,
where edge devices, e.g., smart TV and smart phones, are
becoming more traffic-aggressive and exponentially growing
number of contents are injected into the Internet by CPs and
consumed by EUs. As will be presented in this paper, SV’s
features in over-demanded networks are in stark contrast to
those in under-demand ones (which is the major premise of the
earlier work), especially as for the stability of grand coalition
under the SV based revenue sharing. In the over-demanded
networks, the users’ QoS is naturally degraded (see, e.g., [8]
for the correlation between the server delays and the number of
users), depending on so-called over-demand policy, and thus
the “actual” yields (a part of the demand that are provided)
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vary with the adopted over-demand policy, presumably leading
to the complicated economic interplay among the providers.

The impacts of user demands and over-demand policies are
not restricted to the stability of grand coalition under SV, but
are also closely connected to the social welfare of the grand
coalition (i.e., the aggregate value among the providers). While
the stability is related to coalitions’ sustainability which is a
social challenge posed by individual and selfish aspects of
providers, the social welfare reflects coalitions’ ultimate value
that is sustained by the cooperative aspects of providers. Thus,
mandating an over-demand policy which maximizes social
welfare could be a communal objective in the Internet.

Our research aims to address the following questions:
1) Stability. In each of under-demanded and over-demanded

networks, under what conditions is the grand coalition
stable with the SV based revenue sharing and what are
their engineering implications?

2) Optimal coalition structure. Which coalition structures are
the ones that maximize the social welfare and, particularly,
under what conditions (of network and demand configu-
rations) is the grand coalition such an optimal coalition
structure?

3) Impact of over-demand policy. What are the coupling rela-
tions between conditions for stability and optimal coalition
structure and over-demand policies adopted by the eyeball
ISPs?

In this invited paper, we present our partial answers to the
above questions by presenting our preliminary results. We end
this section by summarizing the related work additionally to
those mentioned earlier. The research on the revenue sharing
mechanisms based on proportional fairness and NBS (Nash
Bargaining Solution) has been made in [9]–[11]. In the view
of the stability of the coalition, the authors in [5] show that the
grand coalition could be unstable in peer-assisted services with
multi-providers even if stability is guaranteed under a single
provider. The authors in [12], [13] study optimal coalition
structures, and its applications to skill game [14] and vehicle
routing [15] have been presented.

II. MODEL

A. Network Model and Notations

Network and Transit ISPs. We consider a network consisting
of a set T of transit ISPs, a set C of content ISPs, and
a set B of eyeball (or access) ISPs, where we denote by
N = C ∪ T ∪ B the set of all “providers”. Transit ISPs

offer connectivity between eyeball ISPs and content ISPs.
For simplicity we assume that a content ISP (and also an
eyeball ISP) is connected to just one transit ISP and no direct
connection between any content ISP and eyeball ISP exists.
Note that a transit ISP may be connected to many eyeball
ISPs and/or content ISPs. Transit ISPs are assumed to be fully
connected, see Fig. 1 as an example.

Regions and Eyeball ISPs. Eyeball ISPs connect residential
users to a transit ISP. Denote R as the set of all regions served
by the set of eyeball ISPs B. We also denote by Br the eyeball
ISP which covers the region r ∈ R, where we assume that
there does not exist a region covered by multiple eyeball ISPs.
Let nr be the link capacity between Br and its connected
transit ISP. The set of transit ISPs delivering traffic to the
region r is denoted by Tr. The content could be delivered
from a content ISP to the region r via several transit ISPs, Tr.
We assume that the content takes the shortest path from its
source content ISP to the requesting destination eyeball ISP.
Then, in our model, since the transit ISPs form a full mesh
topology, any content is delivered via at most two transit ISPs,
i.e., |Tr| ≤ 2, ∀r ∈ R.

Contents and Content ISPs. Let Q be the set of all contents
in the network. Note that a content can be served by multiple
content ISPs. Each region may have a different set of contents
to download, for which we let Xr,q be the user population in
region r that has demand for content q ∈ Q. Note that we
assume that for a content q, users do not have preference for
a content ISP serving q. Let γr,q = Xr,q/Xr be the portion
of region r’s population that wants to access the content q.
We denote Cq as the set of content ISPs that serve the content
q and Tq as the set of transit ISPs that deliver the content q.
Let Qr ⊂ Q be the set of contents demanded by the users in
region r, and Cr be the set of content ISPs that serve at least
one content in Qr. In other words, the set Cr is the union of
the sets of content ISPs that serve the contents in Qr, thus
Cr = ∪q∈QrCq. Likewise, Tr = ∪q∈QrTq. We let sq be the
average traffic volume of the content q.

Notation. We use the lower-case characters i, r, and q to
index a content ISP, a region, and a content, respectively. To
avoid notational complexity, in all notations we use subscripts
for r and q and superscripts for i. Thus, we sometimes use Ci

and Qi to refer to the i-th content ISP and the set of contents
served by Ci. For any coalition S ⊂ N , we denote by R[S]
the set of regions restricted by the eyeball ISPs in S. Finally,
to abuse notation, we use i ∈ C to mean Ci ∈ C.

B. Charging, Revenue, and User Demand

Charging. Two main sources of revenue are the network
access charges that are paid by the end users and garnered
by the eyeball ISPs and the content access fee collected by
the content ISPs that own the accessed contents. Denote by
αr the monthly access fee of the region r (and thus the eyeball
ISP Br), and by βq the average per-content revenue earned by
those content ISPs who are serving q.



User demand and over-demand policy. Consider the total po-
tential traffic volume in region r, yr, (i.e., “original” demand):

yr =
∑
q∈Qr

sqXr,q =
∑
q∈Qr

sqγr,qXr.

Let yr,q = sqXr,q which corresponds to the traffic volume
from the region r to access the content q. Eyeball ISPs will
take some measures when the network is over-demanded,
largely depending on the adopted over-demand policy, which
technically consists of traffic engineering as well as QoS
provisioning. For example, eyeball ISPs can give preference
to the users that have longer subscription contracts or to the
users of a special institution. In this paper, we assume that no
such special cares are taken, and all the access traffic is treated
neutrally, implying the traffic-proportional over-demand policy
2; it reduces the traffic demand in proportion to the traffic
volume generated by each content q. Then, we will have
the actual user population X̄r,q meaning the reduced user
population after over-demand policy is applied, is given by:

X̄r,q = min

(
Xr,q

nr

yr
, Xr,q

)
.

Revenue. Let Rev(Br) and Rev(Ci) be the revenues of
the eyeball ISP Br and content ISP Ci, respectively. Then
the total revenue is

∑
r∈R Rev(Br) +

∑
i∈C Rev(Ci), where

Rev(Br) = αrXr. As opposed to the eyeball ISPs’ revenue,
the content ISPs’ revenue Rev(Ci) is rather complex due to
its dependence on demands, because in the over-demand case,
just a part of users’ content demand can be satisfied. Recall
that X̄r,q is the “actual” user population in region r demanding
the content q and let γ̄r,q = X̄r,q/Xr. Then, the revenue of a
content ISP Rev(Ci) is given by:∑

i∈C

Rev(Ci) =
∑
r∈R

∑
q∈Qr

βqX̄r,q =
∑
r∈R

∑
q∈Qr

βqγ̄r,qXr.

III. PRELIMINARIES: COALITION GAME, SHAPLEY
VALUE, AND STABILITY

A. Coalition Game

In coalition games, there is a notion of coalition comprised
of a set of players, in which the players act as a single group.
The coalition endogenously forms a coalition structure (i.e.,
a partition) with respect to a coalition structure value [16].
We denote a coalition game with a coalition structure, by
(N , v,P), where N is a set of players and the game has
a transferable utility characterized by a worth function v,
which is v : 2N → R and v(∅) = 0. The worth function
associates with all coalitions S ⊆ N , intuitively meaning for
a given coalition the value generated by cooperation among
the players in the coalition. A coalition structure P is a
finite partition P = {P1, P2, · · · , Pm} of N . A coalition
containing player i is denoted by P(i). In particular, the
coalition structure P = {N} is called grand coalition. A
coalition game (N , v,P) is simply denoted by (N, v) if the

2We will later consider a different over-demand policy in Section V.

coalition structure is the grand coalition. A coalition structure
value is an operator φ which assigns values (or payoffs) to
every player in game (N , v,P), then a coalition structure value
(or simply value) for a player i is denoted by φi(N , v,P).
We describe the concept of super-additivity stating that larger
coalition achieves larger total worth.

Definition 1 (Super-additivity) For a game (N , v,P), the
worth function v is super-additive if v(S∪T ) ≥ v(S)+v(T ),
for all S, T ⊂ N such that S ∩ T = ∅.

B. Shapley Value

Shapley provides an axiomatic approach [2] to determine
a coalition structure value φ, which reflects the following
desirable properties:

Axiom 1 (Efficiency)
∑

i∈S φi(N , v,P) = v(S), ∀S ∈ P .

Axiom 2 (Symmetry) If j ∈ P(i) and v(S ∪ {i}) = v(S ∪
{j}) for all S ⊆ N\{i, j}, then φi(N , v,P) = φj(N , v,P).

Axiom 3 (Additivity) For all worth functions v, v′ and i ∈ N ,
φi(N , v + v′,P) = φi(N , v,P) + φi(N , v′,P).

Axiom 4 (Dummy) If v(S∪{i}) = v(S) for all S ⊆ N , then
φi(N , v,P) = 0.

An intuitive explanation of the above axioms is as follows.
(i) In efficiency, the coalition’s worth is equal to the sum of
the values of all players in the coalition, meaning there is no
redundant worth on the profit distribution, (ii) in symmetry,
the players have the same values if they make the same
contribution to the coalition, (iii) in additivity, the value of
each player is equal to the sum of the values from the separate
worth functions, i.e., the value for a specific game does not
affect the values for other games, and finally (iv) in dummy,
the player who does not contribute to any coalition has no
value.

It has been proved that the coalition structure value satis-
fying the above four axioms is uniquely determined for every
coalitional game with the grand coalition (N , v), referred to
as Shapley value, characterized as: for any player i,

φi(N , v) =
1

|N |!
∑
π∈Π

∆i(v, S(π, i)), (1)

where Π is the set of |N |! orderings of N and S(π, i) is the set
of players preceding i in the ordering π, and ∆i(v, S) is the
marginal contribution ∆i(v, S) of player i for a coalition S ⊆
N\{i}, i.e., ∆i(v, S) = v(S∪{i})−v(S). Thus, the Shapley
value can be interpreted by the average marginal contribution
over all orderings of players3.

3Shapley value is only defined for the grand coalition. The axiomatic
coalition structure value for any coalition structure P is called the Aumann-
Drèze value (A-D value) [17]. Then, A-D value for a player i ∈ S ∈ P is also
denoted by φi(S) in this paper. There is no axiomatic difference between the
Shapley value and the A-D value, but the only difference lies in the coalition
structure in which the players are interested. Thus, for avoiding confusion,
we will use the term of “Shapley value” for both of the axiomatic coalition
structure values.



C. Stability

The stability of the coalition structure with respect to the
coalition structure values has been studied in [16] (see, e.g.,
[18] for a tutorial), where [19] simplified the definition of
stability in [16], presented in the following:
Definition 2 (Stability of Grand Coalition) The grand coali-
tion is said to be stable for a game (N , v) with respect to the
Shapley value φ, if and only if for all S ⊆ N there is a player
i ∈ S such that φi(N , v, {N}) ≥ φi(N , v, {S,N \ S}).

A different description of Definition 2 is that there does
not exist any coalition P that blocks {N}, where we say
that a coalition structure P blocks {N} (w.r.t. Shapley value
φ), if and only if there exists a coalition C ∈ P, such that
φi(N , v, {C,N \C}) > φi(N , v, {N}) for all players i ∈ C.
To put it simply, Definition 2 implies that the grand coalition
is not sustainable if there exists a more profitable coalition S
for every player in S.

IV. REVENUE SHARING GAME (RSG) AND STABILITY

A. RSG and Shapley Value

We now apply a coalition game summarized in Section III to
the problem of sharing the revenues among the providers in our
case, which we call revenue sharing game (RSG) throughout
this paper. In RSG, we first build the worth function v(·) for an
arbitrary coalition, using the revenue earned by the providers
in the coalition, followed by characterization of the Shapley
value.

The worth function of a coalition, say S, is the summation
of revenues from the eyeball and the content ISPs, i.e.,

v(S) =
∑

r∈R[S]

Rev(Br) +
∑

i∈C[S]

Rev(Ci)

=
∑

r∈R[S]

(
αrXr +

∑
q∈Qr[S]

βqX̄r,q

)
. (2)

As discussed in [4], the worth for a coalition can be
separately characterized by each revenue source for the net-
work and content access fee by the eyeball and content ISPs,
respectively. In such a case, we can appropriately decompose
the network topology in S into the ones from the perspective
of a region r and a tuple (region r, content q). Let Sr,q ⊂ S be
the coalition containing the transit and content ISPs in S that
is required to serve the content q requested by the region r and
the eyeball ISP in region r. Let Sr = ∪q∈QrSr,q. Then, the
coalition game for each decomposed Sr and Sr,q is canonical
(i.e., each player’s marginal contribution is 0 or the worth
of Sr and Sr,q). It can be easily shown that for a canonical
coalition game the Shapley value can be simply characterized
based on the notion of Shapley portion, as stated in the next.
Theorem 1 (Shapley value in RSG for a coalition) For any
coalition S ⊂ N , i ∈ S, the Shapley value φi(S) is:

φi(S) =
∑
r∈R

(
ϕi(Sr) · αrXr +

∑
q∈Qr

ϕi(Sr,q) · βqX̄r,q)

)
,

where ϕi(M) is the Shapley portion of the player i in the
given coalition M , defined by:

ϕi(M) ≜ 1

|M |!
∑
π∈Π

1[∆i(v,M(π,i))>0],

where 1[·] is the indicator function.
Clearly, for S, i /∈ S, φi(S) = 0. Intuitively, the Shapley

portion is the portion of orderings (out of all possible orderings
made by the players in the coalition M ) that has positive
marginal contribution of the player i with respect to the players
preceding i in each corresponding ordering. Of particular
interest is the Shapley value for the grand coalition, i.e.,
S = N .

B. Stability of Under-demanded Network

In this subsection, we explore the stability condition of the
grand coalition under the SV based revenue sharing. Recall
Definition 2 for the notion of stability, from which the grand
coalition is stable iff for any coalition S ⊆ N , there exists
an ISP i ∈ S which has the Shapley value under the grand
coalition that is larger than or equal to that in the coalition S.
We call such ISP in RSG Shapley-advocating ISP. Theorem 2
states that in under-demanded networks, the grand coalition is
provably stable under the SV based revenue sharing in RSG.

Theorem 2 (Stability of GC in under-demanded network)
In under-demanded networks of RSG, the grand coalition is
stable under the SV based revenue sharing.

We omit the proof for brevity and summarize the sketch of
the proof here. For two coalitions, the grand coalition N and
a sub-coalition S ⊂ N , we first choose a transit ISP directly
connected to any eyeball ISP in S. We prove that the chosen
transit ISP is a Shapley-advocating ISP. This becomes true
due to the fact that transit ISPs are responsible for connecting
eyeball and content ISPs, and thus as more ISPs are connected
(e.g., N has more ISPs than S), their Shapley portion as well
as the total worth tend to increase.

Note that in [3], [20], it has been conjectured that the grand
coalition is stable under SV, and the revenue sharing based on
SV is very close to the bilateral revenue exchange among ISPs.
Theorem 2 states that the grand coalition is always stable under
under-demanded networks. However, it is not clear about the
stability of grand coalition when user demands exceed network
capacity, which we will study in the next section.

C. Stability of Over-demanded Network

We now investigate the stability of the grand coalition when
the network is over-demanded. Note that to guarantee the
stability, it is necessary to find a Shapley-advocating ISP, for
which we need to compare the Shapley values in N and any
sub-coalition S ⊂ N . The distinctive feature of the over-
demanded case as compared with the under-demanded one
lies in the fact that the total worth of a given coalition S
depends on over-demand policies as well as configurations
(e.g., players and topology) of S. To be more specific, a region
that is over-demanded in N may not be over-demanded in S,
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and also, the amount of traffic reduction due to the adopted
over-demand policy can be significantly different in N and S.
Only after paying due respect to these issues, we can figure out
the conditions which ensure the stability of the grand coalition.

The above intuitions will be concretely exemplified by a
simple network shown in Figure 2. We will show that the
grand coalition can be stable or unstable, depending on the
parameter values. From this example, we draw some engi-
neering implications on the stability of the grand coalitions.

We consider the following parameters, where we omitted the
region index in all notations since there is only one region:

TABLE I
PARAMETER VALUES OF THE NETWORK IN FIGURE 2

X,Xq1 , Xq2 βq1 , βq2 , α sq1 , sq2
Case 1 100, 80, 60 1, 3, 1 3, 1
Case 2 100, 80, 120 1, 3, 1 3, 1

As observed, two cases are distinguished by the values of
Xq2 (underlined in the table), representing the user population
requesting access to the content q2. Applying Definition 2, it
is easy to see that Case 1 is stable, but Case 2 is unstable.

Case 1 becomes stable, since for the transit ISP T , we can
prove that for any coalition S ∈ N , T ’s SV is larger in N
than in S. However, in Case 2, for a coalition {B, T,C1(q2)},
all players there have larger SVs than in the grand coalition,
whose reason can be explained as follows: Note that in both
cases the network is over-demanded in the grand coalition,
where a certain portion of the demand of user population
must be reduced inevitably. In Case 1, first, the revenue per
unit traffic volume for q2 (i.e., βq2/sq2 ), in spite of its small
user population, is relatively large (compared to q1), which
incentivizes the transit ISP to serve q2, irrespective of q1.
Second, though the revenue per unit traffic volume for q1
(i.e., βq1/sq1 ) is relatively small (compared to q2), the user
population for q2 (i.e., Xq2 ) is not large enough, thereby
rendering the grand coalition more lucrative for the transit ISP.
Thus, the transit ISP tries to contain q1 as well in its coalition.
At the end of the day, the grand coalition is preferred by the
transit ISP. However, in Case 2, as the user population for
the access q2 increases and thus the network is more over-
demanded in the grand coalition, the population reduction
(therefore, the revenue reduction) happens, so that the coalition
{B, T,C1(q2)} that serves only q2 generates larger revenues
to all providers in the coalition than that in the grand coalition.
To summarize, when there exists a content that pays less “fee”
per unit traffic, the content is more likely to be excluded
from the grand coalition as the congestion becomes severe
(the aggregate demand increases).

V. SOCIAL WELFARE VS. STABILITY

In the earlier section, we studied when the grand coalition
is stable under the SV based revenue sharing. We now change
our attention to under which coalition structure the total sum
of the revenue distributed according to the SV is maximized.
The social welfare U(N ,P) in RSG of a coalition structure
P is defined by:

U(N ,P) ≜
∑
S∈P

v(S),

and our interest lies in finding the optimal coalition structure
P⋆ = argmaxP U(N ,P). We again study the optimal coali-
tion structure by dividing into two cases: under-demanded and
over-demanded.

Under-demanded networks
It is easy to check that when RSG is super-additive, an

optimal coalition structure is the grand coalition. Also, RSG is
super-additive in under-demanded networks, since connecting
more players increases the total worth without the reduction
of worth due to large demands. Thus, we conclude that under-
demanded networks will have the properties of the stability
as well as the social welfare maximization with the grand
coalition under the SV based revenue sharing.

Over-demanded networks
However, as implied in the stability, more complex scenar-

ios can occur due to demand reduction which changes the
individual as well as the total revenue. We also exemplify this
using the same example in Figure 2 and Table I as that in the
stability analysis for the over-demanded case. As opposed to
stability, in Case 1, the social welfare is not maximized by the
grand coalition, which is stable under SV. This is because in
Case 2, all the players in the coalition {B, T,C1(q2)} have
larger revenue than in the grand coalition (thus unstable), and
also in terms of the social welfare,v({B, T,C1(q2)}) exceeds
v(N ).

We consider another example in Figure 3 which has a
different configuration from Figure 2 in terms of the contents
served by the content ISPs as well as some parameter values.
However, quite differently, we have that in this case the grand
coalition is stable under SV and also is an optimal coalition
structure. First, as for stability, Case 1 has the feature that the
two contents’ values are not significantly different, such that
containing two contents together is beneficial to the transit ISP.
In terms of the grand coalition’s social-welfare maximization,
as opposed to Figure 2, there is no coalition ⊂ N that has
larger worth than the grand coalition.

B T

C1 {q1}

C2 {q2}

Fig. 3. Example topology 2: The grand coalition is stable and also
maximizing the social welfare.



TABLE II
PARAMETER VALUES OF THE NETWORK IN FIGURE 2

X,Xq1 , Xq2 βq1 , βq2 , α sq1 , sq2
Case 1 100, 75, 50 1, 1, 1 2, 1
Case 2 100, 75, 50 1, 3, 1 2, 1

Impact of over-demand policy
We have so far considered the traffic-proportional over-

demand policy where the user population is reduced in
proportion to the traffic volume in the original demand for
each content. We consider another over-demand policy, called
revenue-proportional policy, which reduces the user popula-
tion proportionally to the amount of the revenue from the
original demand for each content. The actual user population
X̃r,q is formally given by:

X̃r,q = min

(
Xr,q

βqnr

sq
∑

q∈Qr
βqXr,q

, Xr,q

)
.

The rationale behind this policy is: we choose X̃r,q, so that
the total traffic volume due to the content q in region r is
proportional to the q’s revenue portion, i.e.,

sqX̃r,q = nr
βqXr,q∑

q∈Qr
βqXr,q

.

To examine the impact of over-demand policies, we applied
the revenue-proportional policy to the example in Figure 2
where stability and social welfare’s optimality do not coincide
in the traffic-proportional policy based on the parameter values
in Table I. We can observe that under the revenue-proportional
policy, stability is guaranteed in both Cases 1 and 2, and
somewhat surprisingly the social welfare is maximized also
in both cases! The formal study on this new policy should be
interesting and is left for the future work.

VI. CONCLUDING REMARKS AND FUTURE WORK

Inspired by recent research efforts that have shown the
rosy prospects of (by far the most acclaimed) Shapley value
based revenue sharing schemes among the Internet service
providers, in this paper, we have furthered those research
efforts by extending previous models to a more general net-
work model which reflects traffic congestion, i.e., a network
over-demanded by end users. By giving selected examples,
we have addressed a few questions pertaining to the revenue
sharing issue: the stability of over-demanded networks, the
optimality of the grand coalition (in the sense of the social
welfare maximization), and lastly the impact of over-demand
policy.

Putting them together, we find that the prospects of Shap-
ley value based revenue sharing is rather limited as selfish
providers in over-demanded networks would break the grand
coalition to form a more lucrative coalition. On top of that,
the social welfare is not necessarily maximized in the grand
coalition. The situation is compounded by the fact that over-
demand policy may incur a drastic change to the revenue
sharing scheme. Lastly, our preliminary results are intended

only to arouse interests in this topic and to emphasize the
necessity of realistic network models, as compared with the
simpler ones espoused in previous work.
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