
On the Asymptotic Content Routing Stretch in Network
of Caches: Impact of Popularity Learning

Boram Jin, Jiin Woo, and Yung Yi

School of Electrical Engineering, KAIST, South Korea
{boramjin,jiwoo,yiyung}@kaist.ac.kr

Abstract. In this paper, we study the asymptotic average routing stretch for ran-
dom content requests in a general network of caches. The key factor considered
in our study is the need of learning content popularity in an on-line manner to
consider time-varying changes of content popularity, where there exists a com-
plex inter-play among (a) how long we should learn popularity, (b) how often
we should change cached contents, (c) how we use learnt popularity in caching
contents over the network. We model this inter-play in a broad class of caching
policies, called RLP (Repeated Learning and Placement), and aim at quantifying
the asymptotic routing stretch of content requests under various external con-
ditions. Our derivation of this scaling law in the routing stretch is made under
different dependence of the speed of popularity change, average routing stretch
in the network of caches, the shape of the popularity distribution, and heteroge-
neous cache budget allocation based on nodes’ geometric importance. We believe
that our analytical results, even if they are asymptotic, provide additional ways
and implications on understanding the delay performance of large-scale CDN
(Content Distribution Network) and ICN (Information-Centric Network).

Keywords: Cache Networks · Popularity · Learning.

1 Introduction

Internet has increasingly become content-oriented and experienced the exponential traf-
fic growth, where applications’ QoS requirement becomes more and more stringent and
diverse. People constantly seek for ways of adapting the Internet to such a trend. In ad-
dition to the simple effort of providing wider network pipes, it is of significant impor-
tance to build a network more content-friendly, e.g., enhancing existing CDN (Content
Distribution Networks) technologies as an evolutionary approach, or proposing revolu-
tionary architectures such as ICN (Information Centric Networking) and CCN (Content
Centric Networking), see e.g., [13, 16]. In a content-oriented architecture (whether it
is evolutionary or revolutionary), content caching seems to be a crucial component to
reduce delay of fetching contents (from users’ perspective) and/or to cut down overall
traffic transport cost (from providers’ perspective), often forming a group of large-scale
caches (e.g. servers, access points or devices), namely a cache network.

In this paper, we aim at analytically understanding a sort of funamental limit on
how long it takes for a content requester to fetch the content when caches are con-
nected as a network. Analyzing a network of caches is known to be a daunting task in

2 Boram Jin, Jiin Woo, and Yung Yi

general, since there exists a complex inter-play among the underlying (i) time-varying
content popularity, (ii) content request routing, and (iii) dynamic content replacement
policy. In particular, a dynamic content replacement policy is the key mechanism that
plays a role of learning the popularity of contents and adaptively reconfiguring the con-
tents in caches to the changes of active contents, where popular examples include LFU,
LRU, and their variants (e.g., k-LRU and LRFU). However, analytically studying such
policies even just for a single cache is known to be challenging [9, 10, 14], and thus a
network of caches with the replacement policies is significantly challenging to analyze.
To achieve our goal, despite a large degree of theoretical challenges of a network of
caches, we model a network of caches under the random dynamics of content arrivals
and asymptotically study the routing stretch that refers to the number of hops until a
requested content is served to its requester when the size of networked caches and the
number of contents scales. The metric of routing stretch in the network of caches can be
used as a good approximation of the average delay in accessing the contents, provided
the network load is stable so that queueing delay at a cache is regarded as an averaged
constant.

Contributions. First, to provide a wide spectrum of caching strategies to the central-
ized planner, we first propose a highly broad class of policies, called RLP (Repeated
Learning and content Placement), that can contain a variety of options on popularity
learning and content placement strategies. Then, we compute a lower-bound on the
routing stretch by studying an ideal policy—Oracle—that is assumed to (i) magically
obtain the knowledge on the content popularity distribution for free and (ii) (unrealis-
tically) place contents from a requester to its original server in the decreasing order of
popularity. We prove that Oracle is always better than any other policy P in the RLP
class in the sense of the routing stretch, and characterize the asymptotic routing stretch
performance of Oracle for different types of popularity distributions. Second, we de-
velop a policy in the RLP class, called RLP-TC (RLP with Tilting and Cutting), that is
near-optimal, i.e., its routing stretch is very close to that of Oracle, where by “very
close” we mean that RLP-TC achieves the same scaling of routing stretch as Oracle

except for a very restricted case. The smartness of RLP-TC lies in the idea of tilting and
cutting, where tilting refers to the mechanism that modifies the learnt empirical pop-
ularity distribution into a less biased, tilted form and use this modified distribution to
place contents in the caches, but we render unpopular contents uncached, i.e., cutting.
We asymptotically analyze the routing stretch of RLP-TC.

Related work. Analyzing cache performance started from a single-cache case in the area
of computer architecture and operating system [7,14], where the main focus was on de-
riving asymptotic or approximate closed-form of cache hit probabilities for well-known
cache policies such as LRU, LFU, and FIFO, often on the assumption of IRM (Inde-
pendence Reference Model). Recently, a technique called Che’s approximation [5, 9]
has been applied to a simple setup, being extended to a network of caches [10,19]. Due
to analytic hardness of general topology for a network of caches, there exist work with
topological restriction. Examples include the cascade [3,18] and tree topologies [3,20].
A few recent works started to consider general topologies [23, 24], where in [23] an
algorithm called a-NET is proposed to approximate the behavior of multi-cache net-
works, and in [24], when a steady-state characterization of cache networks is possible.

Title Suppressed Due to Excessive Length 3

There exist related work on asymptotic analysis of cache networks with the emphasis on
throughput [2, 17] and capacity [21, 22]. In [2, 17], a dynamic content change at caches
was modeled by abstracting the cache dynamics with a limited lifetime of cached con-
tent. Our work is partially inspired by [17], but we consider a more general network of
caches with popularity learning.

2 Model and Problem Statement

Network. We consider a sequence of graph G(n) = (V(n), E(n)), where V(n) is the set
of nodes or caches with |V(n)| = n, where n is the system scale size in our asymptotic
study, and E(n) ⊂ V(n) × V(n) describes direct connectivity between caches. Let
dmax(n) be the maximum distance between two nodes. We let C(n) be the set of entire
contents, and for each content c ∈ C(n), there exists its associated repository (or simply
called server) that originally and permanently contains c and thus are finally accessed
if a content is not fetched from an intermediate cache. Denote sc be the content c’s
repository. We assume that contents are of equal size and each content c ∈ C is stored
in a single server1, say sc, and each server sc ∈ S is attached to a node vc := vsc ∈ V.
Let S(n) be the set of such original content servers. Each content server is located
uniformly at random in V . Each node v ∈ V can cache a set of contents (thus node
and cache can be interchangeably used throughout this paper), having the cache size
bv(n) ≥ 0 with the network-wide cache budget B(n). We assume that each cache size
is equivalent across nodes, i.e., b(n) = bv(n) =

B(n)
n for all v ∈ V.

Content requests, routing and popularity. Exogenous content requests are generated at
each node, which are homogeneous and independent across nodes, following a simple
counting process that satisfies: the average request rate of content ci ∈ C = {c1, c2, . . .}
is proportional to a Zipf-like distribution with parameter α > 0:

pi = K/iα, (1)

where the normalizing constant K is such that 1
K =

∑|C|
i=1 1/i

α, i.e., large values of
α imply higher content popularity bias. We use the notation rank(c) to refer to the
popularity ranking of content c. We abuse the notation pc := prank(c) to refer to the
popularity distribution of content c. When a request for a content c ∈ C is generated at
node v, it is forwarded along the path given by some routing algorithm [11,12], e.g., the
shortest path routing in G, from v to the server vc. Let dA be the average distance to from
each node generating a request of content c and c’s repository, which we call average
to-server-distance, where the average is taken over all pairs of request-generating node
and the request’s repository. In the nodes consisting of the routing path from v to vc,
the request generates HIT at w in the path if c is cached at w, and w is the first cache
containing c in the path, and the content c is fetched to v via the reverse path from w to
v. If no cache in the routing path has the requested content, it is MISS, in which case
the content c is fetched from the original server vc to v.

1 This assumption does not restrict our results, because even when per-content multiple reposi-
tories exist, our asymptotic results hold as long as the number of repositories is Θ(1).

4 Boram Jin, Jiin Woo, and Yung Yi

Popularity: Distribution and change. In terms of time-varying population changes,
we consider the so-called block change model, as in [17]. In this model, during each
time block, content popularity remains constant over a given T (n) content requests
in the entire network of size n, and then changes to some other arbitrary distribution
still following Zipf-like distribution in (1), but with possibly different α, so a new time
block is assume to start. Due to our intention of asymptotic approaches, our interest
lies in the order of T (n). In this block change model, it suffices to study our target
performance metric only within the time window [0, T (n)] in a single block, where the
performance will be determined by a caching policy, i.e., how and how long we learn
content popularity and where we place the cached contents.
Cache vs. content size. We focus on the large content with small cache size regime that
for any given content request, the number of contents are significantly larger than the
entire cache size budgetB(n), formally b(n)×dmax(n) = o(|C(n)|) and b(n) = Θ(1),
where b(n) × dmax(n) corresponds to an upper bound of the total possible amount
of cache storage for an individual content in the entire network. Studying this regime
seems quite valuable, considering the recent trend of a highly growing number of con-
tents with the aim of reducing the content access delay at small cost of operating caches.
For notational simplicity, we will drop the subscript n for all quantities that depend on
n, unless confusion arises.
Performance metric: Average routing stretch. Our primary performance metric is the
response delay till a content request is fetched and served. As a useful approximation
of the delay, we use the (content) routing stretch, defined as the number of (expected)
hops until it finds the desired content, i.e., HIT occurs. Formally, let random variable
Xi be the routing stretch of the i-th content request (in the entire system). Then, the
average routing stretch ∆ of the cache network is defined as follows:

∆ , E [D] , D :=
1

T (n)

T (n)∑
i=1

Xi (2)

which depends on the given system setups G, α, and a routing policy, as well as our
controlled caching policy. Our interest is on the asymptotic characterization of ∆ for
large n.

3 Centralized Popularity Learning and Content Replacement
Policies

3.1 Oracle Policy

This policy is the one that is assumed to obtain the true popularity statistics [pc : c ∈ C]
for free, and its algorithm is described in what follows:

Oracle policy

S1. Whenever any new request for a content c arrives at a node, say v, a routing path
from v to c’s original server vc is ready from a given routing algorithm. Let such a
routing path be a sequence of cache nodes Pv,c = (v1, v2, . . . , vc).

Title Suppressed Due to Excessive Length 5

𝒄𝟐
𝒄𝟏

𝒄𝟒
𝒄𝟑

𝒄𝟔
𝒄𝟓

𝒄𝟐
𝒄𝟏

𝒄𝟔
𝒄𝟓

𝒄𝟖
𝒄𝟕

𝒄𝟒
𝒄𝟑

Request
Request𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒗𝟓

𝒗𝟔

Fig. 1: Example of content placement in
Oracle: ci is the i-th popular content in its
ranking.

𝑎0 𝑎1 𝑎𝑘−1 𝑎𝑘 𝑎𝑚… …

Number of requests 𝑇(𝑛)

Partition

Content placement strategy 𝒫 applied at all caches
based on the learnt popularity distribution [𝑙𝑐(𝑘)]

𝐿1 𝐿𝑘 𝐿𝑚

Fig. 2: Framework of online caching policy
RLP(a,m,P).

S2. Then, the contents are magically placed in the sequence of nodes from v1 to vc,
with the decreasing order of content popularity (which is given for free), where
each node w in the routing path can cache the b = B/n number of contents for the
corresponding request.

To illustrate, we consider the example in Fig. 1, where suppose that b = 2, i.e., each
node can cache 2 contents. Assume that we have a new content request generated at v1,
the content’s original server is at v4, and its priori given routing path is (v1, v2, v3, v4).
Then, we cache the contents from v1 to v4 in the decreasing order of popularity, two
contents at each node in the routing path, thus total 8 contents in the path. Note that
Oracle is unrealistic due to the following reasons: In addition to magically-given
knowledge on the true popularity statistics, there may be the case when a cache should
store the contents beyond its given cache size. For example, as illustrated in Fig. 1,
for a request generated at v5 whose routing path to the original sever is (v5, v3, v6), v3
should store the contents c3, c4, whereas v3 is supposed to store the contents c5, c6 for
the request by v1. We allow this violation of cache size limit in Oracle, because we
plan to use Oracle as a policy providing a lower bound of the routing stretch.

3.2 RLP Class and RLP-TC (Tilting and Cutting)

We now consider a class of polices, called RLP (Repeated Learning and Placement),
where a policy in the RLP class has repeated steps for popularity learning and content
placement. We claim that the RLP class is highly general so as to include any possible
policies that mix popularity learning and configuring cache contents in a centralized
manner.

We now elaborate on the class of RLP policies. An RLP policy, RLP(a,m,P), is pa-
rameterized by (i) the number of repetition steps m, (ii) m-dimensional vector a(m) =
[ai : i = 0, 1, . . . ,m], where [ai : i = 0, 1, . . . ,m] defines the m+1 sequential tempo-
ral partitions from the first to T (n) requests, and (iii) content placement strategy P. See
Fig. 2 for a pictorial description of an RLP(a,m,P). Note that

∑m
i=0 ai = T (n). Let

Lk =
∑k−1
i=0 ai, i.e., the aggregate number of requests until the partition ak−1. Then,

the partition ak turns out to be the number of requests from when the system receives
(Lk+1)-th request toLk+1-th request. The basic idea of the RLP(a,m,P) is that at each
partition ak we first learn and estimate the content popularity distribution using the Lk
requests, and use the learnt popularity in the content placement strategy P. Examples

6 Boram Jin, Jiin Woo, and Yung Yi

of content placement strategy P include a random strategy of simply placing contents
uniformly at random and a popularity-proportional strategy where the probability that
a content is placed in a cache is proportional to the (learnt) popularity.

RLP(a,m,P) is formally described by the following recursive procedures, that
specify what have to be done at the start of each partition ak, k = 0, 1, . . .:

RLP(a,m,P)

At partition a0: Contents are placed uniformly at random at each cache of size b =
B/n.

At partition ak:
◦ Popularity learning phase: The system learns the popularity distribution [lc(k) : c ∈
C] by computing the following empirical distribution:

lc(k) =

∑Lk
j=1 Y

j
c

Lk
,

where Y jc = 1 if jth request is for content c, and 0 otherwise.
◦ Content placement phase: Then, the content placement strategy P is applied at all

caches based on the learnt popularity distribution [lc(k) : c ∈ C], and new requests
over the partition ak are served.

Note that at partition a0 it is natural to employ a uniformly random policy because
there is no knowledge about popularity obtained in the past. One of trivial policies be-
longing to the RLP class is RLP(a, 0, RANDOM) corresponding to the policy that caches
the contents uniformly at random in the network without any learning of content pop-
ularity. Our goal is to achieve short routing stretch by intelligently choosing m, a(m),
and P.

We now propose a policy in the RLP class, called RLP-TC (RLP with tilted popularity
distribution with cutting. Since RLP-TC is a policy in the RLP class, its unique feature is
characterized by (i) content placement strategy P and (ii) a construction of a(m) (see
Section 3.2). As a content placement strategy P,we re-manufacture the learnt empirical
distribution into a “tilted distribution” and use it for content placement, which we call
TC (Tilted learnt popularity with Cutting).

Regimes: Speed of popularity change. Prior to describing RLP-TC, we first describe
three different regimes with respect to how fast content popularity changes: Fast, Nor-
mal, and Slow, which, in practice, may differ depending on the content categories [25].
This classification is used to describe the caching policies, present our analytical results
and their interpretations. We define three regimes of T (n) as follows:

FAST if Θ(log dA) ≤ T (n) ≤ Θ(dA log dA),

NORMAL if Θ(dA log dA) < T (n) < Θ(d2A log dA ·M2),

SLOW if Θ(d2A log dA ·M2) ≤ T (n),
(3)

Title Suppressed Due to Excessive Length 7

where recall dA is the average to-server-distance, and M =M(α) is such that:

1

M
=

dA∑
i=1

1

iα/2
=

Θ(1) if α > 2,

Θ(log dA) if α = 2,

Θ(d
1−α/2
A) if 2 > α > 1.

(4)

Note that our classification differs in NORMAL and SLOW regimes depending on M ,
which also relies on the popularity bias parameter α.

Policy description. We first describe and explain RLP-TC policy, followed by its ratio-
nale.

RLP-TC = RLP(a,m, TC) policy

INPUT: T (n) and α.

◦ Construction of m and a: We first choose a0 with its dependence on T (n) as follows:

a0 =

{
T (n) if FAST,

Θ(log dA) if NORMAL and SLOW,
(5)

Then, for Θ(dA log dA) < T (n), choose a1 = max{o(a0), Θ(1)}, and select m:

m = logr

(
1− (1− r)(T (n)− a0)

a1

)
, (6)

where

r = 1− a1
T (n)

(< 1). (7)

Then, the remaining sequence (a2, a3, . . . , am) is constructed by the geometric series,
starting from a1, with the common ratio r, i.e., ak = a1r

k−1, k = 1, . . . ,m.

◦ TC strategy: In the general RLP policy description, at each step ak, we apply the fol-
lowing procedures to the content placement phase:
S1. Construction of tilted popularity distribution. Using the empirical distribution [lc(k) :

c ∈ C], we compute the following tilted distribution [l̂c(k) : c ∈ C]:

l̂c =

{ √
lc∑î

c=1

√
lc

if rank(c) ≤ î,

0 otherwise,
(8)

where î = b · dA and recall that rank(c) is the popularity ranking of content c.
S2. At each cache, b (= B/n) contents are randomly selected according to the distri-

bution [l̂c(k) : c ∈ C] without duplication of contents.

8 Boram Jin, Jiin Woo, and Yung Yi

Policy explanation. We present the rationale of RLP-TC. First, the constructed a and
m depend on a given T (n) and the popularity bias α, where a0’s dependence is of
significant importance. As observed in (5), the length of a0 decreases in NORMAL and
SLOW rather than FAST, because for larger T (n), more chances to learn the popularity
are allowed, whereas for smaller T (n), the initial learning becomes more crucial. In
NORMAL and SLOW, the remaining steps (a1, a2, . . . , am) as well as the total number
of iterations m are chosen as a geometric series such that their sum equals to T (n), as
seen in (6) and (7). Second, as a content placement strategy, the proposed TC strategy
first re-manufactures the learnt popularity distribution into a tilted form with cutting, as
in (8) at each step k. It means that we nullify the distribution of unpopular contents,
where we maintain the popularity only up to the ranking index î = b · dA, and re-
normalize the distribution (more specifically taking the square root, i.e.,

√
lc, as seen in

(8)). Then, we randomly place the contents according to the computed tilted distribution
(S2). To intuitively understand, take an example of three contents, where the originally
learnt distribution in step k is (lc(k)) = (0.7, 0.2, 0.1) with î = 2. Then, in our tilted
distribution with cutting, we have (l̂c(k)) = (0.65, 0.35, 0). We will explain how this
helps in achieving short routing stretch next.
Rationale of tilting with cutting. A natural way is to directly use the empirically learnt
popularity distribution with which contents are randomly placed at each cache. How-
ever, what we do is to use a tilted distribution [l̂c(k)], such that [l̂c(k) ∝

√
lc(k) :

c ∈ C]. The key effects of tilting with cutting are summarized in what follows: (i) tilt-
ing: making the popularity distribution less biased and (ii) cutting: making unpopular
contents uncached. If we consider only a single, stand-alone cache, just the empirical
distribution-based placement might be enough. However, in the network of caches, the
performance of our interest, which is a routing stretch, is a non-trivial complex function
of coupled behaviors among the caches in a given routing path. This non-trivial rela-
tionship requires us to re-consider the obtained empirical popularity distribution and
also effectively use the available rooms for caching whose size is strictly smaller than
the number of contents. This motivation leads us to tilt the empirical distribution with
unpopular contents excluded from caches.
Why square root in tilting? The remaining question in tilting, is why the choice of√
lc(k) is made for the obtained empirical distribution lc(k)? Just for simplicity of

exposition, assume b = 1, i.e., each node can cache only one content, and also the to-
server-distance dA is large. We now consider a cache placement strategy under which
content ci (whose popularity distribution is pi) is cached in each cache with probability
qi. For large T (n), the expected routing stretch ∆ for dA roughly becomes:

∆ =

|C|∑
i=1

pi ·
1

qi
=
(|C|∑
i=1

pi
1

qi

)(|C|∑
i=1

qi
)
≥
(|C|∑
i=1

pi
1
2

)2
,

where 1/qi is the average stretch from a requester to the cached node of content ci,
and the last inequality comes from the Cauchy-Schwarz inequality. In Cauchy-Schwarz
inequality, it is widely known that the equality holds if and only if there is some constant
k such that pi 1

qi
= k · qi for all i. Therefore, ∆ is minimized when qi ∝ i−

α
2 , and the

minimum value is
(∑|C|

i=1 pi
1
2

)2
. This is why

√
li is selected for TC where li goes to

Title Suppressed Due to Excessive Length 9

pi for sufficiently large T (n). Note that a special case when qi = pi corresponds to
the case utilizing content popularity distribution directly for the cache placement, and
∆ = |C|.

4 Analysis: Routing Stretch

We now present our main results on the average routing stretch ∆, as addressed in (2),
for Oracle and RLP-TC, where all the proofs are presented in our technical report [15].
To make our analysis of∆ tractable, we first rewrite∆ as the average over a random to-
server-distance dtsd from a content requester to the corresponding content server (where
the randomness comes from the location of content requesters and the corresponding
content servers) as follows:

∆ = E[∆(dtsd)] =
∑
d

ftsd(d)∆(d) (9)

where, to abuse the notation, ∆(d) be the “expected” routing stretch when to-server-
distance is d, where the expectation is taken with respect to the randomness in the con-
tents and content caching policy, and ftsd(d) is the distribution of d.2 Note that having
a closed form ftsd(d) is challenging and thus makes the routing-stretch analysis hard,
because ftsd(d) depends on the given topology G and the underlying routing algorithm.
For example, even for a Erdös−Rényi (ER) random graph, which is one of the sim-
plest random graphs, when the shortest path routing algorithm is used, ftsd(d) is still
unknown. Thus, to purely focus on our interest, we use Jensen’s inequality and obtain:

∆ = E
[
∆(dtsd)

]
≤ ∆

(
E[dtsd]

)
= ∆(dA), (10)

where recall that dA is the average to-server-distance, and we now consider ∆(dA) as
our major metric to analyze. To differentiate from ∆(d) for any given d, we often call
∆(dA) average stretch upper-bound, or simply stretch upper-bound.

4.1 Oracle

This is formally presented in Theorems 1 which states that it is optimal in the sense
that Oracle has shorter routing stretch than any other policy in the RLP class, and in
Theorem 2 which presents the asymptotic average routing stretch of Oracle.

Theorem 1. Let DO and DA be the random routing stretches (as defined in (2)) of
Oracle and an arbitrary policy A in the RLP class, respectively. Then, the following
stochastic dominance of Oracle holds: DO ≤st DA, which means P

[
DO > x

]
≤

P
[
DA > x

]
, for any x ≥ 0.

Theorem 2. For a given to-server-distance d between a pair of a content requester
and its server, the average routing stretch ∆(d) and the stretch upper-bound ∆(dA) of
Oracle scale as those in Table 1.

2 d is also a random variable since a chosen content is also random.

10 Boram Jin, Jiin Woo, and Yung Yi

Table 1: Routing stretch: Oracle

Popularity ∆(d) ∆(dA)

2 < α Θ(1) Θ(1)

α = 2 Θ(log d) Θ(log dA)

1 < α < 2 Θ(d2−α) Θ(d2−αA)

0 < α ≤ 1 Θ(d) Θ(dA)

Table 2: Stretch UBs of RLP-TC-OL and RLP-TC

Regime RLP-TC-OL RLP-TC

FAST Θ(dA) Θ(dA)

NORMAL Θ
(√

d3A
log dA
T (n)

)
Θ
(
d2A

log dA
T (n)

)
SLOW

T (n) < Θ(d3A log dA) Θ
(√

d3A
log dA
T (n)

)
Θ(1

M2)

T (n) ≥ Θ(d3A log dA) Θ(1
M2) Θ(1

M2)

Thanks to Theorem 1, the result of asymptotic routing stretches in Table 1 provides
lower bounds of ∆(d) of any policy in the RLP class. As expected, as α decreases, we
lose the power of caching, thus leading to the increase of routing stretch. When α > 2,
the stretch is order-wise optimal (i.e., a constant order), and only up to α = 2, the
stretch is sub-polynomial. Note that when 0 < α ≤ 1, the caching gain vanishes, so
requiring to reach the corresponding original server. We now seek to find a policy in the
RLP class whose performance is close to that of Oracle, if any.

4.2 RLP-TC

We now present the result on the stretch bound∆(dA) of RLP-TC in Theorem 3. We will
focus only on the case when α > 1, because even the lower-bound provided by Oracle

proves that there is no caching gain for α ≤ 1, see Theorem 1.

Theorem 3. For α > 1, the upper-bound of routing stretch ∆(dA) for RLP-TC scales
as follows: With high probability,

∆(dA) =

Θ(dA) if FAST,

Θ
(
d2A

log dA
T (n)

)
if NORMAL,

Θ(1
M2) if SLOW.

(11)

Note that the performance of RLP-TC depends on T (n), as expected. In FAST,
∆(dA) = Θ(dA), i.e., there is no gain due to the lack of time to learn and apply such
a learning result to the content placement. In NORMAL, ∆(dA) decreases as T (n) in-
creases, because the repeated learning process helps where we have enough time to
learn the popularity and use such knowledge in placing contents, until ∆(dA) reaches
Θ(1/M2) in (11) at the threshold T (n) = Θ(d2A log dA ·M2) in (3). After this thresh-
old, i.e., SLOW, the repeated learning and placement do not help in reducing routing
stretch, so as to keep the stretch Θ(1/M2). Since M is inversely proportional to α as in
(4), we can conclude that a system efficiently utilizes the chance of learning with rela-
tively smaller T (n) for the cases of having highly biased content popularity. In SLOW,
RLP-TC is near-optimal, since it achieves ∆(dA) as Oracle in Table 1 for α > 1 ex-
cept the case α = 2, we have an order-wise difference Θ(log dA) = O(log n) = o(n)
between Θ(log2 dA) in RLP-TC and Θ(log dA) in Oracle.
Application to Power-law and Erdös−Rényi graphs. As case studies, we now apply
Theorem 3 to two popular random graphs: Power-law (PL) and ER graphs, which have

Title Suppressed Due to Excessive Length 11

well-known results for dA, so that we are able to obtain more concrete stretch rep-
resentation. In the PL graph, the fraction of nodes with degree i is proportional to
1/iγ for some constant γ > 0. If the average degree is strictly greater than 1, and
2 < γ < 3, it is known that the average to-sever-distance dA under the shortest path
routing is dA = Θ(log n/ log log n) [6]. The ER-graph is constructed by randomly
connecting two nodes with some probability, say p. If np is of the order log n, then the
graph almost surely contains a giant component of size of order n connected with high
probability, and it is known by [8] that the average to-server-distance under the shortest
path routing is dA = Θ(log n/ log np). Using those facts about dA under two example
graphs and applying dA to Theorem 3, for given T (n) and α, we can obtain the stretch
upper bound. For example, suppose we consider the case α > 2 (e.g., Youtube [4]) and
dA = Θ(log n/ log log n), where the ER graph with np = Θ(log n) and PL graph with
2 < γ < 3 and the average degree strictly greater than 1. Under three regimes, we get:

∆(dA) =

Θ
(

logn
log logn

)
if FAST,

Θ
(

log2 n
log logn ·

1
T (n)

)
if NORMAL,

Θ(1) if SLOW.

Thus, for example, we see that under FAST, the routing stretch has order Θ(logn
log logn),

and inversely proportional to T (n) during NORMAL. Under SLOW, the routing stretch
is order-optimal in both cases in PL and ER graphs , i.e., the same as Oracle.
Trade-off between learning complexity and efficiency. We now purely study the im-
pact of repeated learning, by considering a policy RLP-TC-OL (RLP-TC with One-time
Learning). RLP-TC-OL is the same as RLP-TC except that we have a = (a0, a1), where
a0 and ai are as in RLP-TC, i.e., we learn the popularity during a0 only once, and use the
learnt popularity during the remaining T (n) without no further learning. This compar-
ison, as presented in Table 2, gives us interesting messages on the impact of repeated
learning and the trade-off between system overheads and the routing stretch. Note that
as m increases, contents at a cache should be more often re-organized, incurring an in-
creasing number of file copies and usage of network bandwidths. Both policies’ stretch
start at the order Θ(dA) because of the lack of learning time in both policies. How-
ever, in NORMAL, RLP-TC decreases more rapidly because of T (n) in the denominator
of ∆(dA) as shown in Table 2 (rather that

√
T (n)), and thus the effect of repeated

learning becomes visible. In SLOW, both schemes again perform similarly, because, in
presence of enough time to learn and play, only a long period of initial learning time,
i.e., a0 is enough to achieve short routing stretch without need of repeated learning.

5 Simulation Results

5.1 Setup

In this section, we present simulation results to study the practical relevance of RLP-TC
to LFU and LRU, where we also plot the result of Oracle to show the fundamental
limit. To slightly elaborate on our implementation of tested algorithms, first in Oracle,

12 Boram Jin, Jiin Woo, and Yung Yi

we exactly follow the description in Section 3.1 with allowing the cache size of some
intermediate nodes to be larger than the given limit. In the RLP class, we employ two
simplified versions, marked as: (i) RLP-TC: RLP-TC with a0 = 1, and ai = 1 for
1 ≤ i ≤ T (n) (update the popularity statistics for each request, and globally change
the cache contents in the network), and (ii) RLP-TC(5,50): RLP-TC with a0 = 5 and
a1 = 45 (i.e., just two-time learning during a given T (n)). The result of RLP-TC(5,50)
helps in understanding the impact of limited number of popularity learning chances.
The popularity follows Zipf-like distribution in (1) with various values of popularity
bias α.

We consider three topologies in our simulations as described in what follows:
◦ Line topology: This is a simple line topology consisting of 10 nodes, where |C| =
1000 and b = 5. All content requests arrive at the first node based on the content
popularities and the last cache is connected to servers of all contents, and unresolved
requests are forwarded to the next caches under the shortest path routing.
◦ Tree topology; We consider a binary tree topology with total 1023 nodes, where the

height is 10, a root node has all contents as a server, and all requests arrive at the
bottom leaves. Thus the maximum routing stretch from the content-requested node
to the server is 10).
◦ AS (Autonomous System) topology: We consider tree AS topologies: Cogent (USA-

Europe), Colt Telecom (Europe), and TW Telecom (USA) from [1], as seen in Fig. 3.
We conducted an off-line processing to extract the topological features of these three
topologies, presented in Table 3, which are highly heterogeneous except for the av-
erage degree.

(b)

(a)

(c)

Fig. 3: AS topologies of (a) Cogent (Europe-
USA), (b) Colt Telecom (Europe), and (c) TW
Telecom (USA) [1]

Table 3: Simulation environments

Topology Cogent Colt Tel. TW Tel.

N 197 153 76
Avg. deg., dA 2.49,10.4 2.50,8.24 3.08,3.21
|C|, b 3000, 5

î = min[b · dA, |C|] 50 40 15

We construct the simulation environment such that b ·dA � |C|, based on the recent
trend of explosive increase in the number of contents. To get simulation results, we
perform 40 times of random instances.

5.2 Results

Line topology. We compare the routing stretches of RLP-TC, and RLP-TC-TL (5, 50)
with LRU and LFU as shown in Fig. 4 for T (n) = 500, and 10000. Oracle has the
lowest stretch. RLP-TC, and RLP-TC-TL (5, 50) performs between LFU and LRU, where

Title Suppressed Due to Excessive Length 13

0.5 1 1.5 2 2.5 3
α (Content Popularity)

0

2

4

6

8

10

A
ve

ra
ge

 R
ou

tin
g

St
re

tc
h

Oracle
LFU
LRU
RLP-TC
RLP-TC-TL (5, 50)

T(n) = 500

(Hop)

0.5 1 1.5 2 2.5 3
α (Content Popularity)

0

2

4

6

8

10

A
ve

ra
ge

 R
ou

tin
g

St
re

tc
h

Oracle
LFU
LRU
RLP-TC
RLP-TC-TL (5, 50)

T(n) = 10000

(Hop)

(a) T (n) = 500 (b) T (n) = 10000

Fig. 4: Line topology. Average routing stretches of five policies (Oracle, LFU, LRU, RLP-TC and
RLP-TC-TL (5, 50)) for various α at T (n) =500 and 10000.

2 4 6 8 10
Distance (Number of Hops)

0

0.2

0.4

0.6

0.8

1

H
it

Pr
ob

ab
ili

ty
 (

C
D

F) Oracle
LFU
LRU
RLP-TC
RLP-TC-TL (5, 50)

α=0.5

2 4 6 8 10
Distance (Number of Hops)

0

0.2

0.4

0.6

0.8

1

H
it

Pr
ob

ab
ili

ty
 (

C
D

F)

Oracle
LFU
LRU
RLP-TC
RLP-TC-TL (5, 50)

α=2.0

(a) α = 0.5 (b) α = 2.0

Fig. 5: Line topology. Hit probability (CDF) of five policies (Oracle, LFU, LRU, RLP-TC, and
RLP-TC-TL (5, 50)) for high ranked 50 contents over α= 0.5, and 2.0.

2 4 6 8 10
Distance (Number of Hops)

0

0.2

0.4

0.6

0.8

1

H
it

Pr
ob

ab
ili

ty
 (

C
D

F)

Contents (50)
Contents (10)
Contents (5)
Contents (1)

2 4 6 8 10
Distance (Number of Hops)

0

0.2

0.4

0.6

0.8

1

H
it

Pr
ob

ab
ili

ty
 (

C
D

F)

Contents (50)
Contents (10)
Contents (5)
Contents (1)

(a) LFU (b) LRU

2 4 6 8 10
Distance (Number of Hops)

0

0.2

0.4

0.6

0.8

1

H
it

Pr
ob

ab
ili

ty
 (

C
D

F)

Contents (50)
Contents (10)
Contents (5)
Contents (1)

2 4 6 8 10
Distance (Number of Hops)

0

0.2

0.4

0.6

0.8

1

H
it

Pr
ob

ab
ili

ty
 (

C
D

F)

Contents (50)
Contents (10)
Contents (5)
Contents (1)

(c) RLP-TC (d) RLP-TC-TL (5, 50)

Fig. 6: Line topology. Hit probability (CDF) of four policies (LFU, LRU, RLP-TC and RLP-TC-TL
(5, 50)) for high ranked 1, 5, 10, and 50 contents for α = 1.5.

we see that (i) a small number of popularity learning at the starting period of the sys-
tem is highly beneficial (at least under our setting), and (ii) our analysis of centralized
RLP-TC algorithms can be a good approximation of the one between LFU and LRU.
Note that it is natural that LFU outperforms LRU, since LRU has more strength when
the content configurations are dynamically changing. Figs. 5 and 6 show on average

14 Boram Jin, Jiin Woo, and Yung Yi

0.5 1 1.5 2 2.5 3
α (Content Popularity)

0

2

4

6

8

10

A
v
er

ag
e

R
o
u
ti

n
g
 S

tr
et

ch

Oracle
LFU
LRU
RLP-TC

T(n) = 500

(Hop)

0.5 1 1.5 2 2.5 3
α (Content Popularity)

0

2

4

6

8

10

A
v
er

ag
e

R
o
u
ti

n
g
 S

tr
et

ch

Oracle
LFU
LRU
RLP-TC

T(n) = 10000

(Hop)

(a) T (n) = 500 (b) T (n) = 10000

Fig. 7: Tree topology. Average routing stretches of four policies (Oracle, LFU, LRU, and
RLP-TC) for various α at T (n) =500 and 10000.

when the requested contents experience HIT. Oracle and LFU show the similar cumu-
lative distribution function (CDF) of hit probability for 50 top-ranked contents, since
LFU operates so as to autonomously place the contents as an ascending order of con-
tent popularity based on the history of requested contents at each node. Although the
hit probability of RLP-TC for the first node is lower than that of LRU because RLP-TC
probabilistically selects the contents based on the estimated popularity, at 10-th node,
the sum hit probability (CDF) of RLP-TC exceeds that of LRU, where RLP-TC smartly
utilizes the tilted distribution with cutting. Thus, in LRU, there is no increment of the
sum hit probabilities (CDF) between 10 and 50 top-ranked contents due to caching un-
popular contents (over the rank 50). Despite less active learning in RLP-TC-TL (5, 50), it
is able to detect the relatively highly popular contents, achieving the high hit probability
at the first node, but due to the lack of information, RLP-TC-TL (5, 50) does not cache
contents within ranked 10-th to 50-th contents in the backside caches in a line, so as to
have the higher routing stretch than RLP-TC.

Tree and AS topologies. First in tree topology, we compare the performance of RLP-TC
(ai = 1 for 0 ≤ i ≤ T (n)) with LFU and LRU when content popularity follows Zipf-
like distribution with |C| = 1000 and b = 5. As shown in Fig 7, average stretches of
LFU and LRU are similar to that of RLP-TC when T (n) = 10000, and RLP-TC outper-
forms LFU and LRU for T (n) = 500 because RLP-TC utilizes the gathered information
and replaces cached contents based on information for each request. In AS topologies,
we perform the simulation during 100000 slots where we focus on SLOW regime as-
suming that popularity distribution is a priori given to RLP-TC. For each test, we first
place content servers uniformly at random, and a content request arrives at a cache with
probability 0.5 at the beginning of the time slot, and unresolved requests are forwarded
to the next cache under the shortest path routing. Fig. 8 shows the results of various
caching policies over three topologies. We compare the performance of RLP-TC with
dynamic caching strategies LFU and LRU. Figure 8 shows the absolute (average) rout-
ing stretch performances of two dynamic cache replacement policies, LRU and LFU,
compared to the RLP-TC, for three graph topologies. As done in the analysis earlier, the
average routing stretch in y-axis corresponds to the number of hops. Table 4 shows the
normalized average routing stretches of LFU and LRU by that of RLP-TC. We observe
that RLP-TC’s routing stretch has good match in those of LFU and LRU (on average,
about 5.2% and 9.6% differences for LFU and LRU, respectively). Note that LFU is
known to perform better than LRU with higher implementation complexity. From our

Title Suppressed Due to Excessive Length 15

Table 4: AS topology. Average routing stretches of LFU and LRU normalized by that of RLP-TC
Topology α 0.5 1 1.5 2

Cogent (LFU) 1.017 0.967 0.874 0.836

Cogent (LRU) 1.048 1.170 1.167 1.063

Colt (LFU) 1.011 0.979 0.891 0.839

Colt (LRU) 1.041 1.158 1.152 1.026

TW (LFU) 1.017 1.016 0.945 0.937

TW (LRU) 1.030 1.135 1.097 1.066

0 0.5 1 1.5 2 2.5
α (Content Popularity)

0

3

6

9

12

A
v

er
ag

e
R

o
u

ti
n

g
 S

tr
et

ch

Oracle
LFU
LRU
RLP-TC

(Hop)

0 0.5 1 1.5 2 2.5
α (Content Popularity)

0

3

6

9
A

v
er

ag
e

R
o

u
ti

n
g

 S
tr

et
ch

Oracle
LFU
LRU
RLP-TC

(Hop)

0 0.5 1 1.5 2 2.5
α (Content Popularity)

0

1

2

3

4

5

A
v

er
ag

e
R

o
u

ti
n

g
 S

tr
et

ch

Oracle
LFU
LRU
RLP-TC

(Hop)

(a) Cogent (b) Colt (c) TW

Fig. 8: AS topology. Average routing stretch performance.

simulation results, our analysis considering static cache policies can be used to predict
the large-scale cache networks’ average routing stretch performance.

6 Conclusion

We presented asymptotic analysis of the routing stretch of large-scale cache networks.
We focused on quantitatively understanding the relation between content popularity and
average to-server-distance, as well as the impact of learning and cache sizing hetero-
geneity. We studied the asymptotic routing stretch of cache networks under on-line re-
peated learning and content placement policy. We also derived that this scaling routing
stretch is made under different dependence of the speed of popularity change, average
to-server-distance in the network of caches, and the shape of the popularity distribution.

Ackknowledgment. This work was supported by Institute for Information & commu-
nications Technology Promotion(IITP) grant funded by the Korea government(MSIT)
(No.2018-0-00170, Virtual Presence in Moving Objects through 5G and No.2016-0-
00160,Versatile Network System Architecture for Multi-dimensional Diversity).

References

1. The Internet topology zoo. http://www.topology-zoo.org/dataset.html
2. Azimdoost, B., Westphal, C., Sadjadpour, H.R.: On the throughput capacity of information-

centric networks. In: Proc. ICT (2013)
3. Carofiglio, G., Gallo, M., Muscariello, L., Perino, D.: Modeling data transfer in content-

centric networking. In: Proc. ITC (2011)

16 Boram Jin, Jiin Woo, and Yung Yi

4. Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.Y., Moon, S.: Analyzing the video popularity char-
acteristics of large-scale user generated content systems. IEEE Transactions on Networking
17(5), 1357–1370 (2009)

5. Che, H., Wang, Z., Tung, Y.: Analysis and design of hierarchical Web caching systems. In:
Proc. IEEE Infocom (2001)

6. Chung, F., Lu, L.: The average distances in random graphs with given expected degrees.
Proc. National Academy of Sciences 99(25), 15879–15882 (2002)

7. Dan, A., Towsley, D.: An approximate analysis of the LRU and FIFO buffer replacement
schemes. Performance Evaluation Review 18(1), 143–152 (1990)

8. Draief, M., Massouli, L.: Epidemics and rumours in complex networks. Cambridge Univer-
sity Press (2010)

9. Fricker, C., Robert, P., Roberts, J.: A versatile and accurate approximation for LRU cache
performance. In: Proc. ITC (2012)

10. Garetto, M., Leonardi, E., Martina, V.: A unified approach to the performance analysis of
caching systems. ACM TOMPECS 1(3), 12 (2016)

11. Gitzenis, S., Paschos, G.S., Tassiulas, L.: Asymptotic laws for joint content replication and
delivery in wireless networks. IEEE Transactions on Information Theory 59(5), 2760–2776
(2013)

12. Ioannidis, S., Yeh, E.: Adaptive caching networks with optimality guarantees. In: Proc. ACM
SIGMETRICS (2016)

13. Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H., Braynard, R.L.: Net-
working named content. In: Proc. ACM CoNext (2009)

14. Jelenković, P.: Asymptotic approximation of the move-to-front search cost distribution and
least-recently-used caching fault probabilities. The Annals of Applied Probability 9(2), 430–
464 (1999)

15. Jin, B., Woo, J., Yi, Y.: On the asymptotic content routing stretch in network of caches:
Impact of popularity learning. Tech. rep., KAIST, South Korea (2018), http://lanada.
kaist.ac.kr/pub/cache.pdf

16. Koponen, T., Chawla, M., Chun, B.G., Ermolinskiy, A., Kim, K.H., Shenker, S., Stoica, I.:
A data-oriented (and beyond) network architecture. In: Proc. ACM SIGCOMM (2007)

17. Moharir, S., Ghaderi, J., Sanghavi, S., Shakkottai, S.: Serving content with unknown de-
mand: the high-dimensional regime. In: Proc. ACM SIGMETRICS (2014)

18. Muscariello, L., Carofiglio, G., Gallo, M.: Bandwidth and storage sharing performance in in-
formation centric networking. In: Proc. ACM SIGCOMM workshop on Information-centric
networking (2011)

19. Neglia, G., Carra, D., Michiardi, P.: Cache policies for linear utility maximization. In: Proc.
IEEE Infocom (2017)

20. Psaras, I., Clegg, R.G., Landa, R., Chai, W.K., Pavlou, G.: Modelling and evaluation of
CCN-caching trees. In: Proc. NETWORKING. Springer (2011)

21. Qiu, L., Cao, G.: Cache increases the capacity of wireless networks. In: Proc. IEEE Infocom
(2016)

22. Qiu, L., Cao, G.: Popularity aware caching increases the capacity of wireless networks. In:
Proc. IEEE Infocom (2017)

23. Rosensweig, E., Kurose, J., Towsley, D.: Approximate models for general cache networks.
In: Proc. IEEE Infocom (2010)

24. Rosensweig, E.J., Menasche, D.S., Kurose, J.: On the steady-state of cache networks. In:
Proc. IEEE Infocom (2013)

25. Sikdar, S., Chaudhary, A., Kumar, S., Ganguly, N., Chakraborty, A., Kumar, G., Patil, A.,
Mukherjee, A.: Identifying and characterizing sleeping beauties on youtube. In: Proc. ACM
CSCW (2016)

http://lanada.kaist.ac.kr/pub/cache.pdf
http://lanada.kaist.ac.kr/pub/cache.pdf

	On the Asymptotic Content Routing Stretch in Network of Caches: Impact of Popularity Learning

