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Abstract—We study how an innovation (e.g., product or
technology) diffuses over a social network when individuals
strategically make selfish, rational choices in adopting the
new innovation. This diffusion has been studied by modeling
individuals’ interactions with a noisy best response dynamic
over a networked coordination game, but mainly in the non-
progressive setup. In this paper, we study the case when people
are progressive, i.e., never going back to the old technology
once the new technology is chosen, where such a progressive
behavior is explained using the notion of sunk cost fallacy in
social psychology. Our main focus is on the diffusion time, i.e.,
time till all choose the new innovation. To this end, we first
provide a combinatorial characterization of the diffusion time
that corresponds to the time reaching the absorbing state in
a Markov chain. Based on this, we propose a polynomial-time
algorithm that computes the diffusion time, where such a task is
known to be computationally intractable in the non-progressive
diffusion. Second, we asymptotically quantify the diffusion times
for a class of well-known social graph topologies, and compare
them to those under the non-progressive diffusion. Finally, we
study the impact of seeding to speed up the diffusion in the
progressive setup, and show that the diffusion speed is impossible
to significantly accelerate with just a small-budget seeding, which
is in part in stark contrast to that in the non-progressive diffusion.
Our results provide not only understandings on the progressive
strategic diffusion in a social network, but also computational
tractability on other related problems, e.g., seeding, which we
believe should be of broader interest in the future.

I. INTRODUCTION

Social networks are major routes, explicitly and implicitly,
for most individuals exchanging their opinions about new
products, social trends and political issues via their interac-
tions. The motivation of this paper is to study the diffusion
of technology innovation over social networks, where people
adopt the new technology based on the strategic decision of
whether the new technology gives them higher payoff or not.
In this case, the payoff of each individual is quantified by the
summation of payoffs between her and each of her neighbors
(or friends). For example, consider an old OS, and a new OS is
released to the market (e.g., Windows 7 and Windows 8). Due
to the issues of software compatibility and innovation of the
new OS, one gets higher payoffs when she can “coordinate”
with more social neighbors, i.e., use the same OS, and the
coordination with the new OS provides higher payoff than that
with the old OS. This game-based diffusion model has been
studied with various research goals, see e.g., [1]–[9], where
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of primary interest is the diffusion time – the time until all
individuals finally choose the new technology.

Most prior work on this line has been mainly based on
the assumption of non-progressiveness that one is allowed
to freely switch between old and new technologies multiple
times. However, progressive behaviors are often observed in
practice, i.e., once people adopt a new technology, they are
frozen and do not return to an old technology. For example,
most people do not switch back to the old OS after installing
the new OS even if they suffer from software incompatibility
issues with friends who use old OS yet. In social psychology
[10], such progressive behavior is explained as the so-called
sunk cost fallacy where individuals have strong misgivings to
“waste” investment.

Motivated by this, the main goal of this paper is to
understand the diffusion time in the game-based diffusion
model under the progressive assumption, i.e., how it behaves
differently compared to that under the non-progressive one
studied in the literature. Our contributions are summarized in
what follows.

Characterization and computation of diffusion time. We
first characterize the diffusion time in the progressive setup
as a convenient combinatorial value, which is analogous to
the known combinatorial formula in the non-progressive one
[4]. Somewhat surprisingly, we found that our combinatorial
characterization is computationally tractable, while that in [4]
is not. Namely, we develop a polynomial-time algorithm that
computes the diffusion time in the progressive setup exactly,
being in sharp contrast to the non-progressive setup whose
diffusion time is known to be computationally intractable
(i.e., NP-hard). Such a polynomial-time computation of the
diffusion time is a quite unique characteristic in the progressive
diffusion, and can be also useful for other related problems,
e.g., we also design a polynomial-time seeding algorithm as
we provide its details later.

Asymptotic analysis of diffusion time. Second, we establish
the asymptotic bounds on the diffusion time in the progres-
sive setup for the following social network topologies: d-
dimensional, random k-regular, small-world, scale-free, and
Erdős-Rényi graphs. From this analysis, we asymptotically
quantify the positive impact of progressiveness on the diffusion
speed in the game-based model, briefly summarized as follows.
The diffusion time is significantly reduced compared to that in
the non-progressive case, but well-connected graphs such as
Erdős-Rényi graphs still experience slow diffusion. An inter-
esting consequence of our results is that in random k-regular



and small-world graphs, the diffusion time is independent of
the network size, while it is not the case in the non-progressive
setup. In addition, we found a new insight for scale-free graphs
that a more skewed degree distribution leads to higher impact
of progressiveness on the diffusion time.
Acceleration of diffusion time. Third, we study the effect
of seeding for accelerating the diffusion speed for the graphs
having long diffusion time, where seeding means that a subset
of the nodes pre-adopt the new technology a priori.1 We prove
that the seeding effect in the progressive setup is marginal for a
small seed budget in the sense that seeding of a constant num-
ber of nodes can reduce the diffusion time by only a constant
factor, implying that an order-wise reduction in diffusion time
requires a budget scaling with the network size. This is again
quite different from in the non-progressive setup, where there
exist some cases when the diffusion time is drastically reduced
even with a single seeding (see Section III-C). Nevertheless,
given a social network and a seed budget, we also propose
a simple greedy algorithm choosing seeds which outperforms
other popular algorithms in our experiments (see Section V).
Such a low-complexity design is possible mainly due to our
polynomial computation of the progressive diffusion time as
we explained earlier.

A. Related Work
In what follows, we briefly summarize the related work to

our results. First, we note that research on diffusion in the
progressive, game-based model is quite limited to the best of
our knowledge, which includes [1], [14], [15]. The authors of
those papers study the conditions (of network topology and the
payoff difference between old and new technologies) on the
existence of a finite size of seed set, referred as the so-called
“contagion set,” that enables the entire spread in the infinite
network. In particular, the authors of [1] study the case of
the progressive mode. Our work differs from them in that we
consider a noisy best response dynamic, but more importantly,
our major focus is on the diffusion time that is a significant
quantity in the diffusion study. Despite of the difference of
interests, our result can be used to determine the existence
of contagion set (see Section III-C). Related to seeding, in
the non-progressive setup, influence maximization via seeding
has been studied by [5], [16]. In particular, the authors of [16]
study maximizing the influence spread by choosing a seed
set against a set of “negative individuals” who refuse new
technology no matter what their neighbors use.

Different from the game-based strategic diffusion as in this
paper, people have extensively studied the diffusion effects
with close relevance to raging epidemic, e.g., SIRS model
[17], and interacting particle system, e.g., Ising model [18].
The key difference of epidemic-based model from the game-
based one lies in the fact that nodes are “infected” just
based on the individuals’ simple contacts. Popular epidemic

1For example, a software company with a new OS release may give
economic incentives to a group of people whose task is to use the new OS
in advance and advertise it to their social neighbors. Seeding is motivated at
other applications, e.g., [11] in viral marketing, [12] in graph detection, and
[13] in computer virus vaccine dissemination.

models on which an extensive array of diffusion research has
been conducted (see e.g., [17], [19]–[24], just name a few)
include SI (Susceptible-Infected), SIS (Susceptible-Infected-
Susceptible), SIR (Susceptible-Infected-Removed), IC (Inde-
pendent Cascade), LT (Linear Threshold) [22], [25], [26]. The
epidemic models of SI, IC and LT implicitly and explicitly
include the context of progressiveness, because, for example,
in the SI model, a node cannot become susceptible once it is
infected. In IC and LT models, a node has just one chance
of infecting other nodes and cannot infect others if such
chance passed. SIS model is clearly non-progressive, since
nodes can freely switch back to the susceptible state. SIR
model has arguably partial progressiveness in the sense that
individuals are allowed to turn back to the old technology (i.e.,
susceptible) after choosing the new technology (i.e., infected),
but are frozen thereafter (i.e., removed with immunity). In
[22], [27], the authors addressed the influence maximization
problem in LT and IC models.

In summary, the social diffusion problems have been heavily
studied in the literature under various assumptions and setups,
while this paper first tackles the asymptotic and computational
aspects of the progressive diffusion time in game-based mod-
els. We believe that our results should be of boarder interest
for other related problems, e.g., seeding and contagion set, in
the future research.

Organization. The rest of this paper is organized as follows:
In Section II, we describe our diffusion model of interest with
necessary preliminaries. Then, in Section III, we present our
main results on the diffusion time analysis in the progressive
setup, followed by the proofs in Section IV. In Section V, we
provide the experimental results, and conclude in Section VI.

II. MODEL AND PRELIMINARIES

A. Networked Coordination Game

We model a social network with an undirected graph G =
(V,E) with |V | = n, where V and E are the sets of nodes and
edges, respectively. Each node i ∈ V represents an individual
(or a user) and has its strategy xi ∈ {−1,+1}, where +1 or
−1 represent the new and old technologies, respectively. Each
edge represents a social relationship between two individuals.
Let N(i) denote the set of node i’s neighbors, i.e., N(i) =
{j ∈ V | (i, j) ∈ E and i 6= j}.

We now describe the payoffs of individuals, where an
individual’s payoff is affected by its neighbors’ strategies. To
model it, we first consider the well-known two-person coordi-
nation game whose payoff matrix is given by Table I, where an
individual can choose one of new or old technologies, +1 and
−1. We make the following mild assumptions on the payoffs.
First, there always exists coordination gain, i.e., a > d and
b > c. Second, coordination gain becomes larger for the new
technology, i.e., a− d > b− c.

TABLE I
PAYOFF MATRIX OF TWO-PERSON COORDINATION GAME

+1 −1

+1 (a, a) (c, d)
−1 (d, c) (b, b)



The two-person coordination game is extended to a net-
worked version as follows: We let x = (xj ∈ {−1,+1} : j ∈
V ), and x−i = (xj : j ∈ V \ {i}) be a strategy vector chosen
by the entire nodes and those except for i, respectively. Then,
in the n-person game over G, node i’s payoff Pi(xi,x−i) for
the state x is modeled to be the aggregate payoff against all
of i’s neighbors, i.e.,

Pi(xi,x−i) =
∑

j∈N(i)

P (xi, xj), (1)

where P (xi, xj) is the payoff from the two-person coordina-
tion game in Table I. For notational convenience, let −1 (resp.
+1) denote the state where every user adopts −1 (resp. +1).

B. Diffusion Dynamics

In this section, we describe the diffusion dynamics of our
interest: how new technologies are spread over the social
network G under strategic choices of individuals. We assume
that each individual has its own independent Poisson clock
with unit rate, and whenever the clock ticks, it decides which
strategy to adopt. We first describe the well-known best
response dynamics, where each individual selects a strategy
that maximizes its own payoff: a node i chooses +1, if

(a− d)|N+(i)| ≥ (b− c)|N−(i)| (2)

where N+(i) and N−(i) denote the sets of node i’s neighbors
adopting +1 and −1, respectively. Noting that for a given state
x, Pi(+1,x−i)−Pi(−1,x−i) is the payoff difference between
when node i chooses +1 and −1, the best response of node i
is sign(Pi(+1,x−i) − Pi(−1,x−i)). A simple algebra gives
us the following expression of the best response of node i:

sign

(
hi +

∑
j∈N(i)

xj

)
, (3)

where hi = h|N(i)| and h = a−d−b+c
a−d+b−c .

However, people are often affected by many external and
internal noise factors in choosing their strategies. We model
such “noisy” behavior by introducing small mutation probabil-
ity that a strategy is irrationally chosen, often called noisy best
response. A version of the noisy best response we study in this
paper is logit dynamics [5], [6], [28]–[30]. Each person adopts
a strategy according to a distribution of the logit form which
allocates larger probability to those strategies delivering larger
payoffs. Formally, for the given state x, each node i selects
the strategy si ∈ {−1,+1} with the following probability:

P[si|x] =
exp(βsiIi(x))

exp(βIi(x)) + exp(−βIi(x))
, (4)

where
Ii(x) := hi +

∑
j∈N(i)

xj .

The parameter β represents the degree of user rationality,
where β = ∞ corresponds to the best response and β = 0
lets users update their strategies uniformly at random. Note
that (a−d+b−c)siIi(x) is the actual payoff gain for strategy
si instead of −si from (3), but (a−d+ b− c) is removed just

for convenient handling of other quantities later without loss
of generality.

Progressive or non-progressive. There exist two setups of
individuals’ updating their strategies: non-progressive and
progressive. In the non-progressive setup, each node updates
its strategy −1 or +1 upon every tick of its Poisson clock
according to the transition probability in (4) with no exception,
whereas in the progressive setup only nodes having −1 (i.e.,
the old technology) updates its strategy, i.e., once a node
selects +1 strategy (i.e., the new technology), it is frozen.
However, we note that such frozen nodes still affect other
nodes having −1, and thus have impact on the entire diffusion
process until all nodes adopt +1. In both cases, {x(t) : t ≥ 0}
forms a continuous-time Markov chain with the state space
{+1,−1}n, where x(t) denotes the (strategy) state at time t.
The progressive setup is the main focus of this paper.

C. Diffusion Speed

We are interested in understanding how fast or slow every
individual adopts the new technology under the strategic
choices described in the previous section. To this end, we
define a random variable called the hitting time to +1 from
initial state y ∈ {+1,−1}n, and denote it by T (y):

T (y) := inf{t ≥ 0 | x(t) = +1,x(0) = y}.

Using this, we next define the typical hitting time τ to be:

τ := sup
y∈{+1,−1}n

inf
{
t ≥ 0 | P[T (y) ≥ t] ≤ e−1

}
. (5)

This means that with probability 1−1/e (> 1/2), every node
adopts the innovation +1 within time τ. This typical hitting
time has also been used to measure the diffusion speed for
a similar model based on the close relation between hitting
and mixing of the Markov chain, e.g., see [4]. Since the
typical hitting time depends on the presence (or absence)
of progressiveness, we let τP and τN denote the typical
hitting time under progressive and non-progressive setups,
respectively.

The combinatorial characterization of typical hitting time
τN in the non-progressive setup was studied by Montanari and
Saberi [4], where the authors show the following theorem.

Theorem II.1. As β →∞, the typical hitting time τN in the
non-progressive setup is

τN = exp(2βΓ∗(G) + o(β)).

In the above, Γ∗(G) is defined as follows:

Γ∗(G) := max
S0⊂V

min−→v ∈L(V \S0)
max

1≤t≤|−→v |
[H(Vt ∪ S0)−H(S0)] ,

where for a subset S ⊂ V we define L(S) as the set of all
vertex orderings of S, and for an ordering−→v = (v1, ..., v|S|) ∈
L(S), Vt is the set of nodes up to t, i.e., Vt = {v1, ..., vt}.
Also, H(S) is defined as:

H(S) := cut(S, V \ S)− h
∑
i∈S
|N(i)|.2 (6)

2Here, cut(A,B) is the number of edges between A and B, A,B ⊂ V .



The main goal of this paper is to obtain such a combinatorial
characterization of typical hitting time τP in the progressive
setup, if possible, and understand how it behaves for various
social network topologies.

III. MAIN RESULT: PROGRESSIVE DIFFUSION

We are now ready to state the main results of this paper.
First, we obtain the following theorem characterizing the
typical hitting time τP in the progressive setup by a min-max
combinatorial optimization, which is analogous to Theorem
II.1 in the non-progressive setup.

Theorem III.1. As β →∞, the typical hitting time τP in the
progressive setup is

τP = exp(2β∆∗(G) + o(β)),

where

∆∗(G) := min−→v ∈L(V )
max

1≤t≤|−→v |
[H(Vt)−H(Vt−1)] . (7)

The proof of Theorem III.1 is presented in Section IV-A.
We refer the readers to Theorem II.1 for the definitions of
−→v , Vt,L(V ), H(Vt) in the above theorem. To provide some
intuition behind Theorem III.1 and II.1, consider a linear
ordering −→v that corresponds to a diffusion path to +1. Then,
observe that [H(Vt)−H(Vt−1)] is proportional to the payoff
loss of node vt due to selecting +1 instead of −1. Therefore,
Theorem III.1 implies that diffusion in the progressive setup
typically occurs along paths that minimize the largest payoff
loss of a node adopting +1 and the exponent of the diffusion
time is dominated by the largest loss, i.e., ∆∗(G). Meanwhile
in non-progressive setup, a node, who just chooses +1 despite
of payoff loss, can easily turn back to −1 if its neighbors
are still hesitating to adopt +1 thus diffusion in the non-
progressive setup is characterized by aggregated payoff loss
over a segment of the diffusion path instead of a node’s loss.

A. Asymptotic Bounds on Progressive Diffusion

Theorem III.1 allows us to establish asymptotic bounds
on diffusion speed for various social network topologies. In
particular, we study the following representative social graphs:
◦ d-dimensional graph. A graph is called a d-dimensional

graph with parameter R, if each node i can be embedded
to a position πi in Rd such that (i, j) ∈ E implies that
the Euclidean distance between πi and πj is less than
radius R and any cube of volume B contains at most 2B
nodes.

◦ Random k-regular graph. An k-regular graph is a graph
where every node has the same degree k. In addition, a
random k-regular graph is one selected from the uniform
probability distribution over the space of all possible k-
regular graphs given n nodes.

◦ Small-world graph. This graph has parameter (k, r),
where the nodes are placed on a d-dimensional grid
of side-length n1/d. Two nodes i, j are connected by
an edge if they are the nearest neighbors. Further, each
node i is connected to k other nodes j1, j2, ..., jk drawn
independently with distribution Pi(j) ∝ |i− j|−r.

◦ Scale-free graph. A scale-free graph with parameter γ is
a graph whose degree distribution follows a power law,
i.e., the fraction f(k) of nodes having k connections to
other nodes goes for large values of k as f(k) = Θ(k−γ).
◦ Erdős-Rényi (ER) graph. This graph with the parameter

(n, p) is a random graph of n nodes such that every node
pair becomes an edge with probability p.

For the above social graphs, we obtain the following the-
orem using Theorem III.1, where it characterizes asymptotic
bounds on the typical hitting time in the progressive setup.

Theorem III.2. As β →∞, the typical hitting time τP in the
progressive setup is τP = exp(2β∆∗(G) + o(β)), where
(a) If G is a d-dimensional graph with radius R = O(1),

∆∗(G) = O(1).
(b) If G is a k-regular graph with degree k = O(1), ∆∗(G) =

O(1).
(c) If G is a small-world graph with shortcut edges of k =

O(1), ∆∗(G) = O(1).
(d) If G is a scale-free graph with parameter γ > 1, ∆∗(G) =

O(n1/γ).
(e) If G is an ER graph with np = ω(log n), ∆∗(G) = Θ(np)

with high probability.

The proof of the above theorem is presented in Section IV-B.
The essence to prove the above theorem lies in obtaining
the asymptotic bound on ∆∗(G) in (7) for each graph. We
remark that the corresponding asymptotic bounds on Γ∗(G)
for the non-progressive setup were already established in [4]
and [5], where we remind that ∆∗(G) and Γ∗(G) are the
dominant exponents of diffusion times in progressive and non-
progressive setups, respectively. In Table II, we compare the
diffusion speeds between both setups.3

TABLE II
COMPARISONS OF DIFFUSION SPEEDS BETWEEN PROGRESSIVE AND

NON-PROGRESSIVE SETUPS.

Graph Progressive: Non-progressive:
∆∗(G) Γ∗(G)

d-dimensional
O(1) O(1) [4](

R = O(1)
)

Random k-regular
O(1) Ω(n) [4](

3 ≤ k = O(1)
)

Small-world
O(1) Ω(n) [4](

r < d
)

Scale-free∗
O(n1/γ) Ω(n) [4](

1 < γ, dmin ≥ 2
)

Erdős-Rényi
Θ(np) Θ(n2p) [5](

np = ω(logn)
)

∗ Here, dmin is the minimum degree of the graph.

Table II implies that progressiveness in individuals’ strate-
gic choices of the new technology significantly reduces the
diffusion time, where its quantitative impacts depend on the
underlying social network topologies. Somewhat interestingly,
in random k-regular and small-world graphs, the diffusion time
in the progressive setup does not depends on the network
size, while it does not hold in the non-progressive one. In
addition, for scale-free graphs, one can conclude that more

3Additional conditions on the graph parameters unstated in Theorem III.2,
but stated in Table II are needed only in the non-progressive setup.



skewed degree distribution, i.e., higher parameter γ, leads to
higher impact of progressiveness.

B. Computational Complexity on Progressive Diffusion
In the previous section, we study asymptotic bounds on

diffusion speed for various social networks. Another inter-
esting question is whether one can compute the diffusion
speed efficiently given a social graph, where it is known for
the non-progressive setup that computing the diffusion speed,
i.e., Γ∗(G), is computationally intractable (see [4]). However,
somewhat surprisingly, we show that it is not the case for the
progressive setup by proposing the following polynomial-time
algorithm computing the diffusion speed, i.e., ∆∗(G).

Algorithm 1: Computation of ∆∗(G)

Input: Graph G = (V,E)
Output: ∆

Initially, S = ∅ and ∆ = 0.1

for t = 1, 2, ..., n do2

Pick a node3

i∗ ∈ arg mini∈V \S [H(S ∪ {i})−H(S)] .
Update ∆ and S:4

∆← max{∆, H(S ∪ {i∗})−H(S)} and then;5

S ← S ∪ {i∗}.6

end7

Output ∆.8

The above algorithm consists of n iterations which updates
S and ∆ in a greedy fashion. The algorithm starts with ∆ = 0
and S = ∅. In each iteration, a node, which minimizes a
certain quantity among all i ∈ V \ S, is selected and added
to S. The sequence of selected nodes in this way becomes
an optimal ordering for ∆∗(G) as we formally state in the
following theorem.

Theorem III.3. For any given graph G, Algorithm 1 outputs
∆∗(G) in O(n2) time.

The proof of the above theorem is presented in Section IV-C.

C. Accelerating Progressive Diffusion
In this section, we study how much one can reduce the

diffusion time by choosing a subset C ⊂ V of nodes that
initially select new technology +1 (i.e., early adopters) and the
diffusion dynamic starts from it. Such nodes can be interpreted
as a way to encourage diffusion, where it is popularly called
seeding and |C| is often referred to as seed budget. Formally,
seeding a subset C ⊂ V means forcing xi(t) = +1 for every
node i ∈ C and all t ≥ 0. Now we define the typical hitting
time τP(C) in the progressive setup under a seeding set C and
Theorem III.1 can be naturally generalized to characterize it
as follows:

τP(C) := sup
y∈S(C)

inf{t ≥ 0 | P[T (y) ≥ t] ≤ e−1}

= exp(2β∆∗(G;C) + o(β)),

where

S(C) := {y ∈ {+1,−1}n | yi = +1 if i ∈ C}

∆∗(G;C) := min−→v ∈L(V \C)
max

1≤t≤|V \C|
[H(Vt ∪ C)−H(Vt-1 ∪ C)].

We note that a similar extension of Theorem II.1 is doable
for the non-progressive setup, where one can naturally define
τN (C) and Γ∗(G;C) as well.

Fundamental limit of seeding via a constant budget. Using
the above notations, we establish the following fundamental
limit on the impact of seeding in the non-progressive setup,
where its proof is given in Section IV-D.

Theorem III.4. For given graph G = (V,E) and seed budget
k, we have

∆∗(G)− 2k ≤ min
C⊂V :|C|≤k

∆∗(G;C) ≤ ∆∗(G).

The above theorem implies that just a constant size of
seeding does not suffice to achieve an order-wise reduction
of diffusion time in the progressive setup. However, it is
not the case in the non-progressive setup, as exemplified
in what follows: Consider a star graph G, where all nodes
except a center node c are just connected to c. In the non-
progressive setup, it is easy to check that Γ∗(G) = Ω(n) but
Γ∗(G; {c}) = 0, because each “outer” node is only connected
to a center node, thus is immediately infected by +1 at the next
updating chance. Theorem III.4 implies that such a dramatic
reduction does not occur in the progressive setup due to such
a single seeding, i..e, one has to pay a seed budget scaling to
the network size for the purpose.

Finally, we remark that Theorem III.4 is also useful to
understand the impact of seeding under the best response
diffusion dynamics (i.e., β = ∞). It is not hard to see that
∆∗(G;C) = 0 provides a sufficient and necessary condition
so that every nodes will always select new technology +1
eventually under the best response dynamics (in both pro-
gressive and non-progressive setups). In particular, when the
condition holds with |C| = O(1), the seeding set C is often
referred as to contagion set, and minimal h for existing such
a contagion set is often referred as contagion threshold (see
[1]). Therefore, Theorem III.4 implies that ∆∗(G) = O(1) is
a necessary condition for the existence of such a contagion set
in general graph G, while the author in [1] studied sufficient
ones which can be checked for a very limited class of graphs.

IV. PROOFS OF THEOREMS

This section provides the proofs of Theorems III.1, III.2,
III.3 and III.4. For the notational convenience, we introduce
some useful notation. First, for S ⊂ V and i ∈ V \ S, we
define I(S, i) as:

I(S, i) :=
[
H(S ∪ {i})−H(S)

]
+

=
[
(1− h)|N(i)| − 2|N(i) ∩ S|

]
+
,

where [x]+ = max{x, 0} and the last equality is from the
definition of H(·) in (6). We note that I(S, i) is the increment
of H(·) when a new node i is added to the node set S. In
addition, for a linear ordering −→v = (v1, v2, . . . , vn), we define

∆(−→v ) := max
1≤t≤n

I(Vt−1, vt). (8)



Using the above notation, we simply express the key value
∆∗(G) as:

∆∗(G) = min−→v ∈L(V )
∆(−→v ).

A. Proof of Theorem III.1
First, we can easily check that the infimum in (5) is achieved

when y = −1, i.e.,

τP = inf{t ≥ 0 | P[T (−1) ≥ t] ≤ e−1}, (9)

because for any two initial states a with b with a ≥ b
(component-wise), T (b) stochastically dominates T (a). To
complete the proof of Theorem III.1, it suffices to show that
as β →∞,

P
[
T (−1) > exp(2β∆∗(G) + log β)

]
→ 0, (10)

P
[
T (−1) < exp(2β∆∗(G)− log β)

]
→ 0. (11)

In the rest of this section, we will focus on showing the above
convergences.

Given initial state x(0) = −1, let −→σ = (σ1, σ2, ..., σn) ∈
L(V ) be a random ordering which corresponds to an ordered
sequence of V adopting +1. We now state two key lemmas
for the proof of (10) and (11), whose proofs are presented in
Appendix A and B, respectively.

Lemma IV.1. For any given ordering −→v ∈ L(V ), it follows
that as β →∞,

P
[
T (−1) > exp(2β∆(−→v ) + log β) | −→σ = −→v

]
→ 0, (12)

P
[
T (−1) < exp(2β∆(−→v )− log β) | −→σ = −→v

]
→ 0. (13)

Lemma IV.2. As β →∞,

P
[
∆(−→σ ) = ∆∗(G)

]
→ 1.

Lemma IV.1 gives us the fact that for any diffusion sequence
−→v , the bounds of T (−1) are characterized by ∆(−→v ), and
Lemma IV.2 states that the diffusion sequence −→σ occurs in
the most probably way to minimize ∆, i.e.,

P
[
−→σ ∈ arg min−→v ∈L(V )

∆(−→v )

]
→ 1.

Now, one can observe that (10) and (11) directly follow from
Lemma IV.1 and IV.2. This finishes the proof of Theorem III.1.

B. Proof of Theorem III.2
We first state the following key lemma for the proof of

Theorem III.2, which provides the lower and upper bounds of
∆∗(G) in terms of the degree distribution of graph G.

Lemma IV.3. For a given graph G = (V,E),

(1− h)dmin ≤ ∆∗(G) ≤ (1− h) dsqr

where dmin is the minimum degree of G and dsqr = sup{k =
1, 2, ..., n | dk ≥ k} where dk denotes the k-th largest degree.

The proof of the above lemma is given in Appendix C.
One can interpret dsqr as follows: when we sort the nodes in
descending order of their degrees, dsqr is the last sorting index
which does not exceed the degree of the corresponding node.
Clearly,

dsqr ≤ dmax, (14)

where dmax is the maximum degree of G. Lemma IV.3 is
highly useful in the sense that it extremely simplifies the
asymptotic analysis of ∆∗(G), which is a topology-dependent,
complex combinatorial value, especially for the graphs simply
permitting the analysis on its degree distribution. In the rest
of the proof, we let d(i) be the degree of node i.

(a) d-dimensional, random k-regular, and small-world
graphs: These graphs have bounded maximum degree, i.e.,
dmax = O(1). Thus, from Lemma IV.3 and (14), the con-
clusions of Theorem III.2 for the three graphs immediately
follow.

(b) Scale-free graph: From Lemma IV.3, it suffices to show
dsqr = O(n1/γ) for scale-free graphs with γ > 1. To this end,
let f(k) be the fraction of nodes that have degree k, where
f(k) = Θ(k−γ) from the definition of the scale-free graphs.
Then we have for each i = 1, ..., n,

d(i) = k if
n∑

k′=k+1

f(k′) <
i

n
≤

n∑
k′=k

f(k′).

Remarking that
∫
x−γdx = x1−γ

1−γ , the following holds:
n∑

k′=k

f(k′) = θ(k1−γ). (15)

Now, to understand dsqr of scale-free graphs, suppose one
draws the line y = x and considers a linear interpolation
of points (i, d(i)) on (x, y)-plane. Then, the x value of the
intersecting point is rounded down to the exact value of dsqr.
From this observation and (15), it follows that dsqr

n = Θ(d1−γ
sqr ),

implying dsqr = Θ(n1/γ). Hence, the conclusion of Theorem
III.2 for the scale-free graph follows.

(c) ER graph: For ER graph G = (V,E) with np = ω(log n),
it is elementary to show that as n→∞,

P
[
|d(i)− (n− 1)p| ≤ (n−1)p

2 , ∀i ∈ V
]
→ 1,

where one can use the Chernoff inequality and the union bound
to prove it. This means that d(i) = Θ(np) for all i ∈ V ,
thus dmin = Θ(np) and dmax = Θ(np) with high probability.
Hence, from Lemma IV.3 and (14), the conclusion of Theorem
III.2 for the ER graph follows.

C. Proof of Theorem III.3

First, it is clear that Algorithm 1 needs O(n2) time to
terminate since it has n iterations and each iteration takes
O(n) time. In what follows, we will focus on the proof that
it will output a correct answer. To begin with, we let ordering
−→v = (v1, v2, ..., vn) ∈ L(V ) be an ordering where node vt is
selected as i∗ in the t-th iteration of Algorithm 1. Our goal is
to prove that −→v is a minimizer of function ∆(·), i.e.,

∆(−→v ) = ∆∗(G). (16)

To this end, consider an ordering −→w ∈ L(V ) and construct
an ordering −→w † ∈ L(V ) by moving v1 to the first place on
ordering −→w , i.e,.

−→w † = (v1, w1, ..., ws−1, ws+1, ..., wn)



where ws = v1. We will show that

∆(−→w ) ≥ ∆(−→w †). (17)

The above inequality suffices to show (16) since one can also
recursively move vl to the l-th place for ∆(−→w ) ≥ ∆(−→v ).

For node i ∈ V , let W (i) and W †(i) denote the sets of
nodes before node i in orderings −→w and −→w †, respectively.
We have W (i) ⊂ W †(i) for all node i except v1 due to our
construction of −→w †. Hence, form the monotonicity of I(S, i)
with respect to S, it follows that

I(W (i), i) ≥ I(W †(i), i) for all i 6= v1. (18)

Furthermore, we observe that

max
i∈V

I(W (i), i) ≥ I(W (w1), w1) ≥ I(W †(v1), v1),

where the second inequality is because Algorithm 1 selects v1

at its first iteration. Combining the above inequality with (18),
we conclude that

max
i∈V

I(W (i), i) ≥ max
i∈V

I(W †(i), i),

which implies (17) and completes the proof of Theorem III.3.

D. Proof of Theorem III.4
Consider an arbitrary seed set C ⊂ V and node i ∈ C. It

is enough to show that

∆∗(G) ≥ ∆∗(G;C) ≥ ∆∗(G;C \ {i})− 2, (19)

where the first inequality is trivial.
For notational simplicity, we let D = C \ {i} and m =

|V \D|. We construct an ordering −→w ∈ L(V \D) of length
m as follows:
−→w = (w1, w2, ..., wm−1, wm) = (v1, v2, ..., vm−1, i),

where −→v = (v1, ..., vm−1) ∈ L(V \ C) of length (m − 1) is
an ordering which the minimization in ∆∗(G;C) finds, i.e.,

∆∗(G;C) = max
1≤t≤m−1

I(C ∪ Vt−1, vt).

Then, we have Wt = Vt for t = 1, ...,m − 1, where Vt =
{v1, ..., vt} and Wt = {w1, ..., wt}. Thus the construction of
−→w allows to have that for all t = 1, ...,m− 1,

I(C ∪ Vt−1, vt)

=
[
(1− h)|N(wt)| − 2|N(wt) ∩ (C ∪Wt−1)|

]
+

(a)
≥
[
(1− h)|N(wt)| − 2|N(wt) ∩ (D ∪Wt−1)|

]
+
− 2

= I(D ∪Wt−1, wt)− 2, (20)

where, the inequality (a) holds because node wt can have at
most one edge to node i. Furthermore, one can observe that

I(D ∪Wm−1, wm) = I(V \ {i}, i) = 0 (21)

since (1− h)|N(i)| − 2|N(i)| < 0. Using (20) and (21), one
can conclude that

∆∗(G;C) = max
1≤t≤m−1

I(C ∪ Vt−1, vt)

≥ max
1≤t≤m

I(D ∪Wt−1, wt)− 2 ≥ ∆∗(G;D)− 2

where the last inequality holds from the definition of
∆∗(G;D). This shows the second inequality of (19) and
completes the proof of Theorem III.4.

V. EXPERIMENTAL RESULTS AND SEEDING ALGORITHM

In this section, we provide numerical evaluations that sup-
port our analytical results. First, we demonstrate via simula-
tions that estimating diffusion times via ∆∗ computation (i.e.,
Algorithm 1) is good under a variety of scenarios. Second,
we propose a simple seeding algorithm in the progressive
setup inspired by minimizing ∆∗ greedily, and verify that
it outperforms other natural heuristics. We use the data set
extracted by the authors in [31], depicted in Figure 1(a).
These data set consists of an undirected graph consisting of
4039 nodes and 88234 edges where each node corresponds
to a Facebook user and a pair of nodes has an edge if
their corresponding users are in each other’s Friend Lists of
Facebook.

(a) Verification of ∆∗: For varying values of β and h, ∆∗

computed by Algorithm 1 is compared with the value from
simulations which are obtained by the following way. For
given β and h, we run 1000 random simulations and obtain
their hitting times. From those hitting time samples, we calcu-
late the simulated ∆∗ by taking the logarithm of the median of
hitting time samples and dividing it by 2β (see the formula in
Theorem III.1). Figure 1(b) plots our numerical results, where
we observe that for three choices of h = 0.3, 0.5, 0.7, our
analytic and simulated ∆∗’s are almost same even for small β,
although Theorem III.1 requires β →∞. These experimental
results indicate that our characterization of the diffusion time
is highly correct even when people behave with some degree
of irrationality (i.e., small β).

(b) Greedy seeding algorithm: We propose the following
greedy seeding algorithm using the direct computations of ∆∗

(i.e., Algorithm 1), where we call it ∆-greedy. We assume
the seed budget k (i.e., it can selects k nodes initially forcing
them to have +1 strategy) and the algorithm description is as
follows:

◦ ∆-greedy. It iteratively chooses set of k nodes, denoted
by c1, ...., ck. Let Ct = {c1, ..., ct} be the intermediate set
containing the first t seeds. Then, ct+1 is selected as a maxi-
mizer i of I(Ct+1, i) among minimizers of ∆∗(G;Ct∪{i}),
e.g., if the minimizer i of ∆∗(G;Ct ∪ {i}) is unique,
then it becomes ct+1. One can choose any minimizer of
∆∗(G;Ct ∪ {i}), but we propose to choose one which
additionally maximizes I(Ct+1, i) for more reduction in ∆∗

in ct+2, ct+3, . . . .

We compare ∆-greedy to the following heuristics:

◦ Degree. This chooses k nodes in the order of their degrees.
◦ Random. This selects k nodes uniformly at random.
◦ PrPaS. This is a heuristic proposed in [5] under the non-

progressive assumption. The algorithm first partitions the
graph into clusters and randomly selects seeds in each
cluster of which budget is allocated proportionally to its
size.

◦ Cut. This runs k iterations where at each iteration a node
with the maximum number of edges is selected, and then
removed from the seed candidates.



(a) Each of 4039 circles correspond to a Facebook
user and 88234 edges connect them based on
FriendLists in Facebook.
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Fig. 1. The Facebook network and simulation results.

Figure 1(c) shows the required seed budgets for making
∆∗ < 1 (i.e., fast diffusion) under the above five algorithms,
under various values of h and β = 5. Recall that every point
is the average over 1000 samples. We observe that ∆-greedy
is superior to other four algorithms, which demonstrates the
value of polynomial computation of ∆∗ by Algorithm 1 for the
seeding problem. Moreover, the proposed ∆-greedy might be
an optimal seeding algorithm in the progressive setup, where
its theoretical analysis is an interesting open question. Such a
seeding algorithm is impossible in the non-progressive setup
since Γ∗ is computationally intractable.

VI. CONCLUSION

In this paper, we have studied how the diffusion speed
of new technology under a noisy game-based model and the
progressive assumption. We have characterized the diffusion
time via the combinatorial value which can be computed by a
polynomial time algorithm and also provided the asymptotic
analysis of the diffusion time for a group of popular graphs.
Finally, we have studied the fundamental limit of seeding in
the progressive setup, and show that the diffusion speed is
impossible to significantly accelerate with just a small-budget.
Interestingly enough, all these results are in part contrast
to those in the non-progressive setup. We believe that the
computational tools developed in this paper will be of broader
interest to tackle other related problems in this area.
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APPENDIX

A. Proof of Lemma IV.1

In this section, we present the proof of Lemma IV.1. To
begin with, we study random variable T (−1) conditioned on
the event that the progressive diffusion occurs along ordering
−→v = (v1, . . . , vn), i.e., −→σ = −→v . Then the hitting time T (−1)
can be written as a summation of random variables as follow:

T (−1) =

n∑
t=1

T (Vt−1, vt)

where Vt = {v1, ..., vt} and for subset S ⊂ V and node i ∈
V \S, we define T (S, i) be the time duration till node i selects
+1, while nodes in S and V \ (S ∪{i}) remain to choose +1
and −1, respectively. Since node i has an exponential clock
of unit rate to update its strategy, T (S, i) is an exponential
random variable with rate parameter λ(S, i), where λ(S, i) is
the probability that node i selects +1 when its clock ticks.
Furthermore, from (4), one can check that

1
2 exp(−2βI(S, i)) ≤ λ(S, i) ≤ exp(−2βI(S, i)). (22)

Proof of (12). From (22), we have that for all t = 1, ..., n,
1
2 exp(−2β∆(−→v )) ≤ λ(Vt−1, vt), (23)

where we remind that ∆(−→v ) = max1≤t≤n I(Vt−1, vt). This
implies that T (Vt−1, vt) for all t is stochastically domi-
nated by an exponential random variable with parameter
1
2 exp(−2β∆(−→v )). Using this, we have

P [T (−1) > exp(2β∆(−→v ) + log β) | −→σ = −→v ]

≤ P [Z > exp(2β∆(−→v ) + log β) | −→σ = −→v ]

=

n−1∑
k=0

e−
β
2 (β2 )k

k!
≤ ne−

β
2 (β2 )n −−−−→

β→∞
0,

where Z is the summation of n independent exponential
random variables with parameter 1

2 exp(−2β∆(−→v )). This
completes the proof of (12).
Proof of (13). Now we define t∗ as

t∗ ∈ arg max
1≤t≤n

I(Vt−1, vt).

Using this notation, we derive that
P [T (−1) < exp(2β∆(−→v )− log β) | −→σ = −→v ]

≤ P [T (Vt∗−1, vt∗) < exp(2β∆(−→v )− log β) | −→σ = −→v ]

(a)

≤ 1− e−
1
β ≤ 1

β
−−−−→
β→∞

0,

where the inequality (a) from the definition of t∗ and (22).
This completes the proof of (13).

B. Proof of Lemma IV.2

Consider an ordering −→v = (v1, . . . , vn) such that ∆(−→v ) 6=
∆∗(G). Then, there exist indices a and b such that 1 ≤ a <
b ≤ n and

I(Va−1, va) > I(Va−1, vb) (24)
where Vt = {v1, ..., vt}. For the event −→σ = −→v to occur,
node va should select +1 before node vb does. Under this
observation, we have

P[−→σ = −→v ] ≤ P[T (Va−1, va) < T (Va−1, vb)]

≤ exp(−2βI(Va−1, va))

exp(−2βI(Va−1, va)) + 1
2 exp(−2βI(Va−1, vb))

where the last inequality is from (22). In the above, the last
term goes to 0 as β →∞ due to (24), which implies that
P[∆(−→σ ) 6= ∆∗(G)] =

∑
∆(−→v ) 6=∆∗(G)

P[−→σ = −→v ] −−−−→
β→∞

0.

This completes the proof of Lemma IV.2.

C. Proof of Lemma IV.3

We first obtain the lower bound of ∆∗(G) as follow:
∆∗(G) = min−→v ∈L(V )

max
1≤t≤n

I(Vt−1, vt) ≥ min−→v ∈L(V )
I(V0, v1)

= min
i∈V

I(∅, i) = min
i∈V

(1− h)|N(i)| = (1− h)dmin.

Now we focus on the proof of the upper bound of ∆∗(G)
in Lemma IV.3. Consider an ordering −→w = (w1, . . . , wn) in
increasing order of degree, i.e., |N(wt)| ≥ |N(wt′)| if t ≥ t′

so that we have for all t = 1, ..., n

dn−t+1 = |N(wt)| (25)
where we recall that di denotes the i-th largest degree in nodes
of graph G. Then, we have N(wt) ∩Wt−1 = N(wt) \ (V \
Wt−1) where Wt = {w1, ..., wt}. This implies that
|N(wt)| ≥ |N(wt) ∩Wt−1| ≥ |N(wt)| − |V \Wt−1|

= |N(wt)| − (n− t+ 1). (26)
Using (25) and (26), it follows that

∆∗(G) = min−→v ∈L(V )
max

1≤t≤n
I(Vt−1, vt)

≤ max
1≤t≤n

I(Wt−1, wt)

= max
1≤t≤n

[
(1− h)|N(wt)| − 2|N(wt) ∩Wt−1|

]
(b)

≤ max
1≤t≤n

[
(1− h)|N(wt)| − 2[|N(wt)| − (n− t)

]
+

(c)
= max

1≤i≤n

[
(1− h)di − 2[di − i]+

]
, (27)

where (b) is due to (26) and for (c) we use (25) by replacing
(n− t+1) with i. Moreover, by the definition of dsqr, one can
observe that [di − i]+ = di − i ≥ 0 for all i ≤ dsqr and

max
1≤i≤dsqr

[
(1− h)di − 2[di − i]+

]
= max

1≤i≤dsqr

[
2i− (1 + h)di

]
≤ max

1≤i≤dsqr
(1− h)i = (1− h)dsqr (28)

where the last inequality is due to di ≥ i for all i ≤ dsqr and
0 ≤ h ≤ 1. In addition, we obtain

max
dsqr<i≤n

[
(1− h)di − 2[di − i]+

]
= max

dsqr<i≤n
(1− h)di

≤ (1− h)dsqr, (29)
where the first equality is from the fact that [di − i]+ = 0
for all i > dsqr and the last inequality holds since di is
decreasing with respect to i (i.e., the dsqr-th or later degree
is less than dsqr). Finally, by combining (27), (28) and (29),
one can conclude that
∆∗(G) ≤ max

1≤i≤n

[
(1− h)di − 2[di − i]+

]
≤ (1− h)dsqr,

and this completes the proof of Lemma IV.3.


