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Abstract—This paper studies how global information affects
the diffusion of innovations on a network. The diffusion of
innovation is modeled by the logit dynamics of a weighted N -
person coordination game among (bounded) rational users where
innovations spread through users’ strategic choices. We find a
critical asymptotic threshold for the weight on global information
where the diffusion of innovations undergoes a transition in
the rate of convergence regardless of any network structure.
In particular, it is found that the convergence to the pervasive
adoption is slowed down by global information.

I. INTRODUCTION

The proliferation of online social networks has drastically
changed how people interact and share information over the
Internet. People are actively using social networks to get new
information, exchange new ideas or behaviors, and adopt new
innovations. As the role of the social networks in exchange and
sharing of information increase, understanding the diffusion
of information, behaviors or opinions, and innovations in the
social networks becomes an important research issue, where
diffusion by local interaction is the most prominent feature.
There exist two models studying the diffusion dynamics via

local interactions in the social networks: (i) epidemic model
and (ii) game-theoretic model. In epidemic models, people
obtain new information and adopt new technology when they
have just a contact with others who already had the new
technology, i.e., the information or the technology innovation
spreads like contagious disease [1], [2]. In game-theoretic
models, a user adopts a new technology only if the new
technology (behavior) maximizes her utility, which increases
with the number of neighbors who adopt the same technology
[3], [4], [5]. In both models, the major interests lie in (a) what
is an equilibrium (or limiting behavior) of the diffusion process
after long interactions and (b) how long does it take to reach
an equilibrium, and how does such convergence depend on
the topological properties of the given social network? Under
a game-theoretic model, we characterize the role of global
information for the question (b): how the global informaiton
affects the convergence time to reach an equilibrium on general
networks.
It is true that people are more affected by those who are

in close relationship, which is the reason why study on local
interactions of social networks is important. However, for bet-
ter decision making, people generally want more information

than the local information obtained from those who are in
close relationship i.e., they use global information as well as
local information. Indeed, one’s adoption of new technology
(for example, an upgrade to a new OS release) relies on not
just the information from people that she knows, but also the
global information that can summarize the information as a
whole, e.g., public information/rumor in the media like news
papers or TV broadcasting.
Motivated by the above, this paper characterizes the role

of global information under a game-theoretic model and ad-
dresses the question of how the global informaiton affects the
convergence time to reach an equilibrium on general networks.
To that end, we start with an N -person coordination game
among bounded rational users who sometimes choose a non-
optimal decision. Users’ decision making is modeled by the
logit dynamics. To model global information, we use a simple
weight value p < 1 that measures the strength of the global
information on users’ decision making. Our main contributions
are summarized as:

• Supercritical regime. For p > m0

N , the convergence time
to the state of pervasive adoption of a new technology
takes exponential time, where N is the number of total
users and m0 is a constant depending on the payoff
structure and user’s rationality, if the quality difference
between the entrant and the incumbent, denoted by h, is
not significantly large. This implies that the global infor-
mation slows down the spread of information regardless
of a graphs structure whenever p > O(1/N).

• Subcritical regime. For p < m1

N with some constant m1,
the convergence time to the state of pervasive adoption
of a new technology with global information is bounded
by that without global information having smaller h′ than
h.

Our results imply that there exists a phase transition effect
that when p is in the larger order than 1/N, the convergence
time becomes long irrespective of the topology of the under-
lying social network, but when p is in the smaller order than
1/N, the convergence time to the pervasive adoption resembles
that without global information.

II. RELATED WORK

Game-theoretic models start with N -person coordination
game which is an extension of 2×2 coordination game whose



payoff is given by Table I. Note that 2× 2 coordination game
is a famous example for multiple Nash equilibria; the Nash
equilibria are (+1,+1) and (−1,−1). Then, it is easy to check
that the N - person coordination game also has two equilibria,
all choosing +1 and all choosing −1. A new information,
behavior or technology is represented by +1 and the diffusion
of innovation is the spread of +1 among users.

TABLE I
2× 2 COORDINATION GAME: a > d, b > c, a− d > b− c

+1 −1
+1 (a, a) (c, d)
−1 (d, c) (b, b)

The multiplicity of Nash equilibrium has raised a ques-
tion of equilibrium selection, which is extensively studied
in economics through studying the limiting behavior of N -
person coordination game. Equilibrium selection is equivalent
or identical to the question in epidemic modeling that under
which condition the disease is endemic. In the seminal paper
[6], Kandori et al. studied the limiting behavior of N -person
coordination game among bounded rational users who choose
a non-optimal strategy with small deviation probability. They
showed that the N -person coordination game converges to the
state that every player chooses the strategy +1 if a > b (and
c = d = 0) as the deviation probability goes to 0.
Despite the fact that the long-run equilibirum is all choosing

+1 as in [6] for the case a > b and c = d = 0, Ellison
[4] found that the time to reach the equilibrium depends
much on the underlying graph structures. He considered two
graphs, a complete graph and a ring graph, for which he
obtained asymptotic upper bounds of the convergence time
to the equilibrium as N goes to ∞; on a ring graph, the
convergence time to the state of all +1 is bounded by a
constant independent of the number of users, while it takes
exponential time on a complete graph. Montanari et al. [7]
extended Ellison’ results to general graphs and found that the
convergence time to the equilibrium is long if a graph is well-
connected. The result is quite striking since it contrasts with
the result in an epidemic model that the time of endemic spread
is small for well-connected graphs. [1], [7].
The impact of global information on the dynamics of an

evolutionary game or learning has been recently studied in
[8], [9]. They studied how to use global information to guide
players to choose a socially optimal (preferable) equilibrium
when there are multiple equilibria. The global information is
managed and broadcast to users by a central authority. A user
may make her choice with global information but she may
not trust the announced information and as a result she may
ignore it. In contrast to their works, we do not assume that the
global information is managed and announced by a centralized
authority, and focus on the convergence time to an equilibrium.
The global information we consider in this paper is a statistics
of popularity which is available by easily accessible media like
newspapers or TV broadcastings. In reality, it is what people
want to know other than local neighbors’ information for better
decision making. Hence, they “voluntarily” take into account
the global information.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. Network Model and Game
Consider an undirected connected graph represented by

G = {V,E} where V is the set of nodes and E is the set of
edges. Each node represents a player (or a user) and each edge
represents a social relationship between two nodes forming
the edge. We assume that there are N players i.e., |V | = N
and two technologies +1 and −1, representing a new entrant
technology and an incumbent one, respectively. The choice
of user i is denoted by xi and the set of neigboring nodes
by Ni = {j ∈ V | (i, j) ∈ E}. We assume that all users
adopt the incumbent −1 at the initial time and the entrant +1
provides better quality or aspects for users than the incumbent
−1. We consider the situation where players are rational and
repeatedly choose a technology.
We assume that a user is able to access global information

such as total number of users, N, and the number of users
choosing +1, i.e., N+ = |{j | xj = +1 and j ∈ V }. Such
global information can be obtained from newspapers or TV
broadcasting. Since the global information is given as a collec-
tive statistics, each user does not know the strategies chosen
by her non-neighbors. As opposed to global information, a
user observes what strategy her neighbors choose. Thus, a
user knows the number of neighbors choosing +1, N+

i , i.e.,
N+

i = |{j | xj = +1 and j ∈ Ni}|. It is clear thatN+ ≥ N+
i .

The payoff of a node is modeled to be given by putting
weight q1 on local information (her neighbors’ choice) and
weight q2 on the global information. That is, a node i’s payoff
is given by:
ui(xi, x−i)

= q1
∑

j:(i,j)∈E

g(xi, xj) + q2

(
N

+
g(xi, 1) + (N −N

+)g(xi,−1)
)

= q1
∑

j:(i,j)∈E

g(xi, xj) + q2
∑
j:j �=i

g(xi, xj)

= (q1 + q2)
∑

j:(i,j)∈E

g(xi, xj) + q2
∑

j:(i,j)/∈E

g(xi, xj)

where x−i = (x1, x2, ..., xi−1, xi+1, ..., xN ) and g(xi, xj) is
a payoff function of the 2 × 2 coordination game in Table I;
g(+1,+1) = a, g(+1,−1) = c, g(−1,+1) = d, g(−1,−1) =
b. As discussed earlier, we assume that that a > d, b > c and
a− d > b− c.
By normalizing, we have for some 0 < p < 1, 1

ui(xi, x−i) =
∑
j∈Ni

g(xi, xj) + p
∑
j /∈Ni

g(xi, xj). (1)

Also note that p = 0 corresponds to the case of no global
information, i.e., there are only purely local interactions as
in [7]. We easily see that there are two Nash equilibria
+1 = (+1,+1, ...,+1) where all players choose +1 and
−1 = (−1,−1, ....,−1) where all players choose −1.

1Note that a user may be more influenced by her neighbors than the
anonymous, in which case a node would put more weight on local information
than the global information. Then, we have p < 1/2 (since q1 > q2 and

q2
q1+q2

< 1/2). However, this paper allows the case when more weight can
possibly be assigned to global information, i.e., 0 < p < 1.



B. Diffusion Dynamics

We now turn to how a user dynamically change their state
(i.e., the technology that the user chooses over time). We
assume that each user has her own Poisson random clock with
unit rate and updates her strategy whenever it ticks.
We first describe the best response dynamics and then

describe a noisy response dynamics which is of our main
consideration. In the best response dynamics, a player i
chooses the best-response strategy at time when her clock
ticks, i.e., she chooses +1, if

ui(+1, x−i) ≥ ui(−1, x−i), (2)

otherwise, she chooses −1. Note that (2) is equivalent to:

(1 − p)(N+
i +Niη) + p

(
N+ + (N − 1)η

)
≥ 0

where η = c−b
a−d−c+b and Ni is the number of neighboring

nodes of i, i.e., Ni = |Ni|. Then, by letting

Ki(x) :=
∑
j∈Ni

xj + p
∑
j /∈Ni

xj + (1− p)hi + ph0,

where

h =
a− d− b+ c

a− d+ b− c
, h0 = h(N − 1), hi = hNi,

we see that +1 is the best response for i if and only ifKi(x) ≥
0, since (2) is equivalent to Ki(x) ≥ 0.
In this paper, we consider a noisy version of the best

response, called the noisy response dynamics. This is mo-
tivated by the facts that a user does not always make the
best decision and in many cases, a user sometimes choose a
non-optimal strategy with small probability, for the following
reasons: (i) some users do not react instantaneously to their
environment, (ii) users may have misinformed, and (iii) there
is a small probability that agents behaves at random (mutation
or experimentation).
A special case of noisy response dynamics is the logit dy-

namics, where each player i probabilistically chooses strategy
yi ∈ {+1,−1} under given x, with probability given by

Pr(yi|x) =
exp(βyiKi(x))

exp(βyiKi(x)) + exp(−βyiKi(x))
. (3)

with β > 0. Note that if β = 0, a user chooses her strategy
uniformly at random and if β = ∞, a user chooses the optimal
strategy (i.e., best response).
With the probability of strategy selection as governed by (3),

the entire system can be viewed as a continuous-time Markov
chain on the state space S = {x = (x1, ..xi, ..., xN ) | xi =
−1 or 1}, where a state is a strategy profile x. The transition
probability from the state x to y with yj = xj for j �= i
is given by (3). Then, we can easily check that the resulting
Markov chain is time-reversible with the following stationary
distribution:

π(x) ∝ exp(−βH(x)) (4)

where

H(x) = −
∑

(i,j)∈E

xixj − p
∑

(i,j)/∈E

xixj

− (1− p)
∑
i∈V

hixi − p
∑
i∈V

h0xi.

Note that the stationary distribution of the state +1 converges
to 1 as β → ∞. We can also verify that our game is a potential
game with the potential function H(x) [10].
Let x(t) be the state of the continuous Markov process

at time t ≥ 0. Denote by T+(w) = inf{t ≥ 0 : x(t) =
+1, x(0) = w}, the hitting time on the state +1, which
measures the speed of diffusion to the equilibrium +1. We
also define the typical hitting time τ+ = τ+(p, h) to be:

τ+ = sup
w∈S

inf

{
t ≥ 0

∣∣ Pr(T+(w) > t) ≤
1

2

}

For notational simplicity, we sometimes use just τ+ unless
confusion arises, but use τ+(p, h) to emphasize the impact of
p and h. Note that τ+(0, h) is the typical hitting time without
global information. Our interest is to study how τ+(p, h)
is affected by p, i.e., the impact of global information on
the diffusion speed, which may depend on the topological
structure of the underlying social network.

IV. ANALYSIS
This section investigates how the typical hitting time on the

state +1 changes as p changes from 0 to 1. It is known [7]
that the hitting time on the state +1 is

τ+ = τ+(p, h) = exp
{
βΓ̃+(p, h) + o(β)

}
, (5)

where

Γ̃+(p, h) = max
z �=+1

min
ω:z→+1

max
t≤|ω|−1

Hp,h(ωt)−Hp,h(z). (6)

In the above, the minimum is taken over path ω =
(ω1, ω2, . . . , ωm), i.e., ωi and ωi+1 differ in a coordinate,
starting from ω1 = z and ending with ωm = +1 and Hp,h(·)
means H(·) where we just emphasize its dependency on p, h.
We first state a monotone property of Γ̃+ as follows.
Theorem 1: Γ̃+(p, h) is a decreasing function with respect

to h.
Proof: From the monotonicity of the Ising model [7], it

follows that

Γ̃+(p, h) = max
z �=+1

min
ω:z→+1

max
t≤|ω|−1

Hp,h(ωt)−Hp,h(z)

= min
ω:−1→+1

max
t≤|ω|−1

Hp,h(ωt)−Hp,h(−1).

Therefore, we have

Hp,h(x)−Hp,h(−1)

= (1− p)
∑

(i,j)∈E

(1 − xixj) + p
∑

i,j:i�=j

(1− xixj)

−
∑
i∈V

hi(xi + 1)− p
∑
i∈V

(h0 − hi)(xi + 1)



Since h0 − hi = h(N − 1−Ni) and xi +1 ≥ 0, Γ̃+(p, h) is
decreasing with respect to h.
Theorem 1 implies that the big difference between the

quality of the entrant and that of the incumbent results in
fast diffusion of innovation, as we expect. In the following
sections, we obtain bounds on p where the hitting time τ+
(or equivalently Γ̃+) undergoes a transition from ‘(constantly)
small’ to ‘(exponentially) large’.

A. Subcritical Regime: Small p
In this section, our goal is to obtain an upper bound of p

so that the hitting time τ+ remains comparable to that without
global information (i.e., p = 0). To this end, we prove the
following theorem.
Theorem 2: If p ≤ mini∈V

hi

N , then for some 0 < h′ < h,

τ+(p, h) ≤ exp{βΓ̃+(0, h
′) + o(β)}.

Proof: From p ≤ mini∈V
hi

N , there exists h
′ > 0 such

that
hi − pN ≥ h′

i, (7)

where h′
i = h′Ni.

For given x, recall that N+ be the number of +1 in x and
note that N+ = 1

2

∑
i∈V (xi + 1). Then, we have

p
∑

i,j:i�=j

(1− xixj)

= p ·
N(N − 1)

2
− p

∑
i,j:i�=j

xixj

= p ·
N(N − 1)

2
−

1

2
p

((∑
i

xi

)2

−
∑
i

x
2
i

)

= p ·
N(N − 1)

2
−

1

2
p
(
(N+ − (N −N

+))2 −N
)

= 2pN+(N −N
+)

≤ 2pN+
N. (8)

Using the above inequality, it follows that

Hp,h(x)−Hp,h(−1)

= (1− p)
∑

(i,j)∈E

(1− xixj) + p
∑

i,j:i�=j

(1− xixj)

−
∑
i∈V

hi(xi + 1)− p
∑
i∈V

(h0 − hi)(xi + 1)

≤
∑

(i,j)∈E

(1− xixj) + 2pN+
N −

∑
i∈V

hi(xi + 1)

=
∑

(i,j)∈E

(1− xixj) +
∑
i∈V

pN(xi + 1)−
∑
i∈V

hi(xi + 1)

=
∑

(i,j)∈E

(1− xixj)−
∑
i∈V

(hi − pN)(xi + 1)

≤
∑

(i,j)∈E

(1− xixj)−
∑
i∈V

h
′
i(xi + 1) (∵ (7))

= H0,h′(x)−H0,h′(−1).

Combining the above inequality with (5) and (6) leads to the
conclusion of Theorem 2.

Note that h denotes the quality difference between the
entrant and the imcumbent and that the convergence rate to
the equilibrium +1 gets slow with h by Theorem 1.
In [4], Ellison studied the asymptotic behavior of the con-

vergence time to reach the state +1 for a complete graph and a
2k-regular graph where there is a link between node i and j if
and only if i−j ≡ ±k ( mod N) asN → ∞. Ellison showed
that τ+ = O(1) for the 2k-regular graph and τ+ = O(exp(N))
for the complete graph. Ellison’s results are extended in [7]
where typical hitting times to the equilibirum +1 are analyzed
for arbitrary underlying graph structres. An interesting result
of [7] is the case of a d-dimensional graph with bounded range
2 where for any h, the asymptotic behavior of typical hitting
time τ+ to +1 is O(1) as N → ∞ (see Section 3 in [7]).
Applying the above Theorem to d-dimensional graphs with
bounded range we have the following corollary.
Corollary 3: For any d-dimensional graph G with bounded

range,

Γ̃+(p, h) = O(1), if p ≤ min
i∈V

hi

2N
.

B. Supercritical Regime: Large p
Based on the results of [4] and [7], a well-connected graph

structure hinders the fast diffusion of innovation. Inspired by
this, in this subsection, we study the regime when p is large;
we finds the asymptotic value of p above which the typical
hitting time τ+ becomes extremely large. The theorem below
is the main result of this subsection and its implications will
be described later.
Theorem 4: For any graph G with average degree Δ,

τ+(p, h) =
exp

[
β(N + 1)

(
p
(
1
2 − h

)
(N − 1)− 2hΔ

)]
O (N2N)

.

Proof: First, we consider a discrete-time version of
the logit response dynamics. Instead of considering Poisson
clocks, we revise the dynamics so that at discrete-time t ∈ Z+,
a player is chosen uniformly at random and updates her
strategy following the logit form (3). Let z(t) be the strategy
profile of players at time t ∈ Z+ under this discrete-time
dynamics. Then, {z(t) : t ∈ Z+} is a discrete-time reversible
Markov chain on S with the same stationary distribution π
as (4). Furthermore, one can define T disc

+ (w), τdisc+ for z(t)
analogously as T+(w), τ+ for x(t). Furthermore, we have

T+(w) = inf
t

{
Poisson(t) = T disc

+ (w)
}
,

where {Poisson(t), t ≥ 0} is the Poisson process with rate N .
This implies that

τdisc+ = O(Nτ+) (9)

Thus, from (9), it suffices to prove that

τdisc+ =
exp

[
β(N + 1)

(
p
(
1
2 − h

)
(N − 1)− 2hΔ

)]
O(2N )

.

2In a d-dimensional graph with range K , any vertex i is assigned to a point
ξi ∈ R

d such that if (i, j) ∈ E, then the Euclidean distance between ξi and
ξj is less than K and any cube of volume v contains at most 2v vertices.



Furthermore, from the definition of τdisc+ , it is enough to show
that

Pr

(
T disc
+ ≤ t

∣∣∣∣ z(0) = −1

)
< 1/2, (10)

for all

t <
exp

[
β(N + 1)

(
p
(
1
2 − h

)
(N − 1)− 2hΔ

)]
2N+1

.

In the rest of the proof, we will implicitly assume z(0) = −1.
Now let P be the transition matrix for the discrete-time

Markov chain. Define the set A as

A =

{
z ∈ S :

∑
i∈V

zi ∈ {0, 1}

}
.

Then, we have that for z ∈ A,

π(z)

π(−1)
= exp (β [−H(z) +H(−1)]) ,

and

−H(z) +H(−1)

=
∑

(i,j)∈E

(zizj − 1) + p
∑

(i,j)/∈E

(zizj − 1)

+2(1− p)
∑

i∈V :zi=1

hi + 2p
∑

i∈V :zi=1

h0

= (1− p)
∑

(i,j)∈E

(zizj − 1) + p
∑
i�=j

(zizj − 1)

+2(1− p)h
∑

i∈V :zi=1

Ni + 2p
∑

i∈V :zi=1

h(N − 1)

≤ p
∑
i�=j

(zizj − 1) + 2(1− p)h · 2|E|+ 2p ·
N + 1

2
· h(N − 1)

≤ p
∑
i�=j

(zizj − 1) + 2h(1− p)ΔN + ph(N2 − 1)

where we use 2|E| = ΔN for the last inequality. Therefore,
we have

−H(z) +H(−1)

≤ p
∑
i�=j

(zizj − 1) + 2hΔ(N + 1) + ph(N2 − 1)

≤ −p
N2 − 1

2
+ 2hΔ(N + 1) + ph(N2 − 1)

=
1

2
(N + 1) (p(N − 1)(2h− 1) + 4hΔ)

where the second inequality follows from

2
∑
i�=j

zizj =

(∑
i

zi

)2

−
∑
i

z
2
i ≤ 1−N.

Let

g(N, h,Δ) =
1

2
(N + 1) (p(N − 1)(2h− 1) + 4hΔ) .

Now we observe that for any t ∈ Z+,

Pr
(
T disc
+ ≤ t

)
= Pr

(
z(s) = +1, for some s ≤ t

)
≤ Pr

(
z(s) ∈ A, for some s ≤ t

)
≤

t∑
s=1

∑
z∈A

Pr
(
z(s) = z

)

=

t∑
s=1

∑
z∈A

(
P t

)
−1,z

,

where the second inequality is from the union bound and the
last equality holds by the assumption z(0) = −1. Then,

Pr
(
T disc
+ ≤ t

)
=

t∑
s=1

∑
z∈A

(
P t

)
−1,z

=
t∑

s=1

∑
z∈A

π(z)

π(−1)

(
P t

)
z,−1

(∵ revesability of P )

≤
t∑

s=1

∑
z∈A

π(z)

π(−1)
≤

t∑
s=1

∑
z∈A

eβg(N,h,Δ)

≤ t2Neβg(N,h,Δ). (∵ |A| ≤ 2N)

Therefore, the probability is less than 1/2 if

t < 2−N−1e−βg(N,h,Δ).

This completes the proof of (10) and that of Theorem 4.
The above theorem implies that for large enough N , τ+

is exponentially large with respect to N (i.e., the diffusion is
quite slow) regardless of the underlying graph structure if

p (1− 2h) (N − 1)− 4hΔ−
2 log 2

β
> 0. (11)

Equivalently, we have the following corollary.
Corollary 5: For any graph G with average degree Δ,

τ+ = exp(Ω(εN)),

if h < 1
2 and p >

4hΔ+ 2 log 2

β
+ε

(1−2h)(N−1) for some ε > 0.

Corollary 3 and Corollary 5 have the following implication
for the d-dimensional graphs with h < 1/2: there exist
constants c1, c2 (depending on d, h) such that

the typical hitting time τ+ is

{
exp(Ω(εN)) if p > c1/N.

exp(O(β)) if p < c2/N
.

V. NUMERICAL RESULTS
In this section, we show numerical results with focus on the

hitting time on the state of +1 for d-dimensional graphs and
a real on-line social network, where we consider two typical
classes of d-dimensional graphs: rings and lattices [7]. For the
real online social network, we use “ego-Facebook” traces from
Stanford large network dataset collections [11]. In all plots, we
show the average of 1000 simulations, and all plots start from
the initial state −1.



Fig. 1 shows how the hitting times changes for rings and
lattices when p varies from 0.01 to 0.05. Rings are chosen to
verify the results of Ellison [4]. We use a = 10, b = 5, c =
d = 0 (which results in h = 1/3). The network size in rings
ranges from 5 to 250, and we use two lattices: l by l and
l by l + 1, where l varies from 2 to 16 so that the size of
resulting lattices varies from 4 to 256. We observe that in
both rings and lattices, the hitting times increase with p and
is asymptotically bounded by that for p = 0, as N → ∞, as
theoretically discussed in Section IV.
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Fig. 1. Hitting time over rings and lattices (p varies from 0.01 to 0.05.)

In Section IV, we discussed that there is a phase transition
threshold for the asymptotic value of p, where above the
order of 1/N , the diffusion speed is slow and below the
order of 1/N , the diffusion speed is bounded by that with
no global information and smaller h′ than h. To investigate
such phase transition effect, in Fig. 2 we plot the points where
T+(p, h) and T+(0, h/2) intersect. Note that in Fig. 1, above
T+(0, h/2), the diffusion speed is slow and below T+(0, h/2),
the diffusion speed is close to T+(0, h). Fig. 2 shows that
the intersection points are approximately proportional to 1/N ,
which verifies our result that the phase transition in the hitting
time occurs when p is in the order of 1/N , as stated in
Theorems 2 and 4.
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Fig. 2. Intersections of T+(0, h′) and T+(p, h) (p varies from 0.01 to 0.05).

Fig. 3 exhibits the hitting times on +1 for the ego-Facebook
network. We found that the ego-Facebook network is not
connected. Thus, we extracted the connected giant compo-
nents and used them in our numerical results. The statistical
properties of the graphs are listed in Table II. Here, we use
a = 15, b = 3, c = d = 0 (thus, h = 2/3). As in the rings and
lattices, we observe that the hitting time increases with p. In
general, as the network size grows, the hitting time naturally
increases.
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Fig. 3. Hitting time over social networks (from Facebook)

TABLE II
STATISTICAL PROPERTIES OF THE SOCIAL NETWORKS

ID number total number mean
of nodes of edges degree

A1 40 220 11.00
A2 44 138 6.27
B3 168 1656 19.71
B4 224 3192 29.50
B5 324 2514 15.52
C6 532 4812 18.04
C7 775 14024 35.68
C8 1034 26749 51.74

VI. CONCLUSION
This paper studied how global information given as a

collective signal slows down the spread of new technology
when users make rational decision in the presence of noise.
We have found that global information impedes the diffusion
of innovations whenever the (asymptotic) amount of global
information exceeds some critical threshold. As an interesting
future work, we plan to analyze the convergence speed in an
epidemic model and compare the impacts of global informa-
tion over two diffusion models.
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