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Abstract — Much of the research on Internet modeling and
analysis has focused on the design of end controllers and network
algorithms with the objective of stability and convergence of the
transmission rate. However, the Internet is composed of a mix-
ture of both (controlled) elastic flows and (uncontrolled) real-time
flows. Uncontrolled real-time flows do not react to network con-
gestion as well as they require a certain level of QoS guarantees.
In this paper, we study the effects of marking elasticity (which
characterizes how quickly the marking level changes during tran-
sients) on the QoS for uncontrolled real-time flows, at a router
accessed by both uncontrolled real-time and controlled flows.

First, we derive lower and upper bounds on the queue over-
flow probability at a router of a single bottleneck system. Using
this, we quantify the trade-off between stability for controlled
flows and QoS guarantee for uncontrolled real-time flows as a
function of marking elasticity. The results indicate that some
marking functions may be “uniformly” better than others. In
particular, among the marking functions that we have compared,
our bounds indicate that a rate based version of REM seems to
provide the largest local-stability region for any given QoS re-
quirement.

Next, as a function of the marking function elasticity, we quan-
tify the excess capacity required at the router with FIFO schedul-
ing that results in the same queue overflow probability if priority
scheduling was used instead. We show that the difference in the
required capacities with FIFO and priority queueing decreases
with more elastic marking functions. In other words, the gains
due to scheduling decreases with increasing marking elasticity.

I. I NTRODUCTION

There has been extensive research on the modeling and analysis of
the controlled elastic flows in the Internet by adopting differential
equation based models of source controllers and AQM (Active Queue
Management) algorithms. Much of this work has focused on the de-
sign of end host controllers and control algorithms (marking func-
tions) at the intermediate routers for (global and local) stable end-
to-end operation over the Internet by adopting control theoretic tools
[1, 2, 3, 4, 5, 6, 7].

However, the Internet carries a mixture of traffic ranging from
controlled non-real-time elastic data traffic to uncontrolled real-time
traffic (e.g., voice and multimedia traffic). Uncontrolled real-time
flows do not react to network feedback and requires tight QoS (Qual-
ity of Service) guarantees. From a network control and management
point of view, real-time sources are admitted into the network only
if there are sufficient resources to satisfy their QoS requirements.
On the other hand, non-real-time sources are always admitted into
the network with the understanding that the resources in the net-
work would be allocated to them on a best-effort basis (i.e., real-
time sources are given higher priority and whatever bandwidth is
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Figure 1: Priority and FIFO Queueing Disciplines

left unused by the real-time sources is allocated to the non-real-time
sources). One of the proposed architectures for providing differenti-
ated QoS in the Internet is “Differentiated Service” model (DiffServ)
[8], where users can belong to one of a small number of classes, and
QoS (such as delay, loss ratio, and throughput) for a user’s data flow
will be class-dependent. To implement such a service, routers in the
Internet treat (schedule) packets from various classes in a differenti-
ated manner depending on the class QoS specifications by adopting
“priority” based scheduling algorithms (see Figure 1).

On the other hand, it seems reasonable to believe that by appro-
priately designing an AQM mechanism (marking function) at inter-
mediate routers, we can potentially provide the required QoS to the
uncontrolled real-time flowswithout any differentiationat the routers.
The intuition is the following: an “aggressive” marking function will
mark a larger number of controlled flow packets (for instance, those
controlled by TCP) when a burst of packets arrive. This will cause
the controlled flows to back-off, thus potentially decreasing the delay
or packet loss probability experienced by real-time flows with their
link utilization being sustained equivalent. In this paper, we study
the trade-off between packet marking [9] for controlled flows and the
effect of this marking on the QoS of uncontrolled real-time flows.

We consider a network where resources are shared by uncontrolled
real-time and controlled elastic flows, and packets in the router are
scheduled in a first-come-first-serve manner (i.e., no differentiation).
Over such a network, the behavior of real-time and controlled flows
are coupled together, and the QoS experienced by real-time flows
will be affected by the behavior of controlled flows due to their flows
sharing a common link. For example, a large burst of QoS-sensitive
packets from a real-time flow could potentially encounter a significant
delay or loss at the router due to the controlled flows sharing the link.

With this setup, we first characterize the “aggressiveness” of a
marking function by itselasticity.

Definition I.1. Given any two marking functionsp1(z) and p2(z),
we say thatp2(z) is more elasticthan p1(z) if for any z ≥ z⋆, we
have

p1(z
⋆) = p2(z

⋆)
p2(z) ≥ p1(z),

wherez⋆ is the equilibrium data rate at the router.

Thus, the elasticity of a marking function corresponds to how ag-
gressively the marking value changes as the arrival data rate deviates
from the equilibrium rate (see Figure 2).
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Figure 2: Elasticity of Marking Functions

The parameters that impact the source dynamics for a controlled
flow are the round-trip delay, the elasticity of the marking function,
and the rate of adaptation at the controlled source. In this paper, we
model the dynamics of controlled flows by means of aninstant adap-
tation algorithm,where the sources react to network feedback with
no delay and adapt immediately to the equilibrium rate for a given
network configuration. The instant adaptation scheme enables us to
separate the effect of other parameters and to focus only on the elas-
ticity of marking functions [10, 2].

We consider queue overflow probability as the QoS parameter
experienced by real-time flows. The problem of determining the
queue overflow probability has been studied extensively for queues
[11, 12, 13, 14, 15] in the context of “open-loop” flows (i.e., there
are no controlled flows). This research has been done, primarily us-
ing a large deviation framework, which is known to be appropriate to
analyze performance of the system with a large number of flows. In
this paper, we focus on a router where the resource is shared by real-
time flows as well as controlled flows (with FIFO queueing). Thus,
the controlled sources react and adapt to the dynamics at the router,
and affects the QoS of real-time flows. We derive the queue overflow
probability by adapting large-deviation technique to such a shared
system by controlled and real-time flows.

In this paper, we study and quantify the following two trade-offs
related with marking elasticity:(i) stability-elasticity trade-off and
(ii) scheduling-elasticity trade-off. First, stability-elasticity trade-off
refers to the trade-off between QoS-provisioning for real-time flows
and stability for controlled flows. The key trade-off we explore is
the following: the more elastic the marking function is, the better is
the QoS experienced by real-time flows. However, this also leads to
the negative property of less stability for controlled flows (stability-
elasticity trade-off).

Next, we consider the case where the real-time flows are given ab-
solute priority over the controlled flows (priority scheduling). In this
case, the delay or loss perceived by the real-time flows (QoS) will not
be affected by the behavior of the controlled flows. However, by sim-
ply increasing the capacity of the link and suitably adjusting marking
elasticity (parameters of marking functions), it seems possible to give
the same perceived QoS to the real-time flows in the network with
only FIFO scheduling.We call thisscheduling-elasticity trade-offin
this paper.

The main contributions of this paper are the following:

(i) Using the instant adaptation model for source dynamics, we
derive lower and upper bounds of the queue overflow probabil-
ity at a router, where a single buffer is shared by controlled and
real-time flows. Using these bounds, we quantify the trade-
off between stability for controlled flows and QoS-guarantee
for uncontrolled real-time flows as a function of the elasticity
of the marking function (see Figure 4). The results indicate
that some marking functions may be “uniformly” better than
others. In particular, among the marking functions that we
have compared, our bounds indicate that a rate based version
of REM [7] seems to provide the largest local-stability region
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Figure 3: System Model

for anygiven QoS requirement.

(ii) We next quantify the required excess capacity (the difference
in the required link capacities with FIFO and priority queue-
ing), as well as the marking function elasticity that results
in the same queue overflow probability with FIFO schedul-
ing and priority scheduling (see Figure 5). We show that
the difference in the required capacities with FIFO and prior-
ity queueingdecreaseswith stricter QoS requirements (queue
overflow probability). In other words, the gains achieved by
scheduling1 at the router decrease with increasing QoS. This
indicates that by appropriately choosing the marking function
and by using only a FIFO queue at the router, we can satisfy
the QoS requirements of real-time flows without much over-
provisioning.

II. SYSTEM MODEL AND PROBLEM STATEMENT

II.A SYSTEM MODEL

Consider the system shown in Figure 3. We consider asingledis-
crete time queue with two types of flows:(i) controlled flows and(ii)
uncontrolled flows. We use the terminology “controlled flows” (also
called elastic flows) to refer to flows of data traffic which react and
adapt their transmission rates to feedback from the network. An ex-
ample of such a flow is a TCP (Transmission Control Protocol) flow.
“Uncontrolled flows” refer to data flows that do not react to network
feedback. Examples of such flows include real-time video/audio,
which usually require guarantee of real-time data transfer. The queue
is fed byn independent identically distributed (over flows) station-
ary, ergodic uncontrolled flows and byn controlled flows determined
by a congestion control algorithm described later. The buffer size is
scaled withn, and the output capacity of the corresponding queue is
suitably scaled withn so that the queue is stable. Thus,nth system
has a buffer of sizenB, and a capacity ofnC. For system stability, we
assume thatx⋆ + y⋆ < C, wherex⋆ is the fixed point of a controlled
flow andy⋆ is the expected value of an uncontrolled flow.

From the controlled flows’ point of view, the system we have de-
scribed above can be thought of as a closed loop system (with de-
lay) and feedback control is applied at the router based onaggregate
arrivals. A popular modeling and analysis methodology for such
closed-loop systems in the Internet context has been through func-
tional differential (or difference) equations basedfluid models[16, 3].

The router is modeled by amarking function(see Section B)
which signals congestion by marking flows, and receivers detect the
marks and inform the respective flow sources to increase or decrease
their transmission rate. We model flows by fluid processes. We de-
note the fluid rates of individual flows by{xk[i], k = 1, . . . , n},

1Any class based scheduling policy will result in poorer QoS to real-time
flows than strict priority queueing. Thus, a priority queueing system pro-
vides an upper bound on the QoS given real-time flows with any class-based
scheduling policy employed at the router.



Table 1: Examples of Marking Functions
Type p̂(z, C) < m, m >

M ( z
C

)B < 0, C >
R αz

C−(1−α)z
< 0, C >

L α( z
C
− η) < Cη, C(1/α + η) >

E 1 − e−
α

C
z < 0,∞ >

V
�

z−αC
z

�+
< αC,∞ >

wherexk[i] denotes the number of arrivals2 of controlled flowk at
time i. In this paper, we considerinstant adaptationalgorithm, which
is represented by:

w = xk[i]p
� nX

j=1

xj [i] +
nX

j=1

yj [i], nC
�

(1)

In the instant adaptation algorithm, congestion controllers adapt to
the fixed point of the difference equation of weighted proportional
fair controller [17, 18, 10, 2] with no delay [10, 2]. In this scheme,
as the rate of the uncontrolled flow varies with time, the correspond-
ing equilibrium rate varies appropriately (as determined by the elastic
properties ofp(·)), and the instant adaptation scheme tracks this vari-
ation of the equilibrium rate. This allows us to focus purely on the
properties of the marking function.

II.B M ARKING FUNCTION

The marking function,p(z, C) represents the fraction of flow to be
marked when the total arrivals to the associated router with capacity
C is z. We consider the following form of marking functions

p(z, C) =

8><>:0 if 0 ≤ z ≤ m,

p̂(z, C) if m < z < m,

1 if z ≥ m,

(2)

wherem ∈ [0, C), m ∈ (0,∞), andm < m. p̂(z, C) is assumed to
satisfy the following condition.

Assumption II.1. We assume that̂p(z, C) is a increasing, Lipschitz
continuous, differentiable function with range[0, 1], that satisfies
p̂(z, C) = p̂(z/C, 1).

Assumption II.1 says that the fraction of packets marked simply
depends on the ratio of the total arrival rate and the link capacity,
which is satisfied by typical marking functions such as those in Ta-
ble 1 (see [17, 19] for more details)3.

Examples of marking functionŝp(z, C) we consider in this paper
(satisfying Assumption II.1) are shown in Table 1: TypeM has the
interpretation of the queue length exceedingB in an M/M/1 queue
with arrival ratez. TypeR can be used as a rate based model for REM
(Random Exponential Marking [7]) for a suitable choice ofα [20].
TypeL is a linear marking function, and models the simplified RED
(Random Early Detection [9]). TypeE is a rate based exponential
marking. Finally, typeV has the interpretation of the fraction of fluid
lost when the arrival rate exceeds a certain level, called the “virtual
capacity” [21].

2We use the terms “number of arrivals” and “arrivals” interchangeably.
Further, the term “arrival rate” corresponds to the number ofarrivals per time-
slot.

3For notational simplicity, we will omit the second parameterC through-
out this paper unless explicitly needed

Then, the individual flow dynamics at timei of instant adaptation
can be represented as follows by using Assumption II.1 and summing
over the flow indexk,

w = xk[i]p
� 1

n

nX
j=1

xj [i] +
1

n

nX
j=1

yj [i], C
�

= x[i]p(x[i] + y[i], C), (3)

wherex[i] andy[i] arethe average arrivals (over flows)at timei.

II.C PROBLEM STATEMENT

A widely used QoS parameter (for the uncontrolled real-time flows)
is the probability that the queue length exceeds some threshold. The
queue overflow probability can be extended to analyze the delay of
a typical packet [22]. It is clear that the QoS performance for un-
controlled flows will be the “best” if such flows are always given
strict priority access at the routers (i.e., priority scheduling at the
router). We will later use priority scheduling as a reference model
to assess the performance of FIFO scheduling (used in Section D to
study scheduling-elasticity trade-off). With priority scheduling, we
assume that two separate queues are used to store data from the con-
trolled and uncontrolled flows, respectively.

We consider a discrete time framework, and denote the queue
length at time0 with FIFO and priority schedulers byQP

0 (for a queue
of uncontrolled real-time flows) andQF

0 , respectively. We consider
the queueing process over the time interval[−TI , 0), whereTI < ∞.
We assume that the system is stable (thus, queue length is0) over the
time interval(−∞,−TI), meaning that the transmission rates of all
controlled flows and all uncontrolled flows arex⋆ andy⋆, respec-
tively, wherex⋆ is the fixed point of controlled flows andy⋆ is the
expected value (average rate) of a uncontrolled flow.

In other words, in this paper we are interested in the transient be-
havior of the system. We assume that the system is in “steady-state”
until time−TI , and our objective is to compute the buffer overflow
probability as a function of the time-scale of the transient phenom-
enon (i.e.,TI ) as well as the marking function. However, we observe
that the analysis in this paper holds even ifTI is not finite as we can
show that with instant adaptation, the queueing process is continuous
(see Theorem III.1) with respect to the arrivals even over arbitrarily
larger interval of time.

We denote the sum of arrivals ofn uncontrolled andn controlled
flows over the time interval[i, j) by Y n[i, j) =

Pn

k=1 Yk[i, j)
and Xn[i, j) =

Pn

k=1 Xk[i, j), respectively4 We let Zn[i, j) =
Y n[i, j)+Xn[i, j), to denote the total sum of controlled and uncon-
trolled arrivals over the same time interval[i, j) in thenth system.

For a fixedTI , consider a following non-negativescaled(deter-
ministic) arrival vector over the interval[−TI , 0).

~vvv[−TI , 0) =
�
v[−TI ], v[−TI + 1], . . . , v[−1]

�
Then, from Loyne’s formula on the queue length process, the queue
size function corresponding to an arrival vector~vvv[−TI , 0) can be de-
fined as:

Q
�
~vvv[−TI , 0)

�
, sup

0<T≤TI

� −1X
i=−T

v[i] − CT
�

(4)

4Thus,Xk[i, j) denotes the random variable corresponding to the num-
ber of arrivals from thekth controlled flow over the time interval[i, j), and
a similar definition holds forYk[i, j). In addition, we useXk[i] to denote
Xk[i, i + 1), and this notation is applied for other random arrivals. Finally,
we use upper-case letters and lower-case letters to denote random variables
and deterministic quantities, respectively.



Thus, the queue overflows probabilities of priority and FIFO
queueing are given by:

Pr(QP
0 ≥nB)=Pr

 
sup

0<T≤TI

� 1

n
Y n[−T,0)−CT

�
≥B

!
(5)

Pr(QF
0 ≥nB)=Pr

 
sup

0<T≤TI

� 1

n
Zn[−T,0)−CT

�
≥B

!
(6)

II.D ELASTICITY OF MARKING FUNCTIONS: WARPING

In this section, we parameterize the elasticity of marking functions by
adopting “warped” marking functions.An warped marking function
has a parameter (denoted byβ), which determines the elasticity of
the marking functions by shifting (0 < β < 1) and twisting (β ≥ 1)
the original marking functions.

Prior to describing warping, first we make the following additional
assumption on the marking function.

Assumption II.2. 1/p(z, C) is convex over(z0,∞), wherez0 =
sup{x : p(x, C) = 0, x ≥ 0}

The typical marking functions in Table 1 satisfy Assumption II.2.
Given any marking functionp(z) satisfying Assumption II.1 and

II.2, we construct a family of marking functions{pβ(z)}, which are
parameterized byβ and are defined bypβ(z) , p(fβ(z)), where

fβ(z) =

(
β(z − γ) if 0 < β < 1,

γzβ if β ≥ 1.

For a given system (with a mixture of controlled and uncontrolled
arrivals), let the equilibrium rate at the router be denoted byz⋆. For
each value ofβ, the parameterγ (in the definition offβ(z)) is chosen
such that at this equilibrium ratez⋆, fβ(z⋆) = z⋆. This definition
ensures that we have the equivalent steady-state marked volume of
data at a router over the set of marking functions{pβ(·)} (pβ(z⋆) =
p(z⋆), ∀β > 0,) leading toinvariability of steady-state utilization of
the system.Further, forz > z⋆, we have

pβ(z) > p(z) if β > 1,
pβ(z) < p(z) if 0 < β < 1.

In other words,{pβ(z)} corresponds to a family of marking func-
tions whose elasticity is varying (with respect to the nominal marking
functionp(z)). If β > 1, pβ(z) is more elastic, and ifβ < 1, pβ(z)
is less elasticfrom Definition I.1. Note that the functionfβ(z) is
constructed such that for eachβ, pβ(z) satisfies Assumption II.1 and
II.2.

III. STABILITY -ELASTICITY AND
SCHEDULING-ELASTICITY TRADE-OFF

III.A Q UEUE OVERFLOW PROBABILITY

From (5), (6), and (4), the queue overflow probability with priority
and FIFO scheduling can be expressed as Pr(Q( 1

n
Y n[−TI , 0)) ≥

B) and Pr(Q( 1
n
Zn[−TI , 0)) ≥ B), respectively. In the largen

regime, we can derive asymptotic expressions for the queue over-
flow probabilities using large deviation techniques. This requires
the application of the Gartner-Ellis Theorem, as well as the contrac-
tion principle [23]. Applicability of contraction principle depends
on the continuity of the queue size function with respect to the ar-
rival processfrom the uncontrolled flows(denoted byeQ in Theo-
rem III.1). However, with FIFO scheduling, the arrival process to

the queue consists of the sum of arrivals from the controlled and un-
controlled flows. Thus, we need to prove:(i) the queueing process
is continuous with respect to the total arrival process, and(ii) the
controlled arrival process (determined by the dynamics of the con-
gestion controller, the marking function, and the uncontrolled flows)
is a continuous function of the uncontrolled arrival process. In [24],
the author proved thatQ(·) (the queue size function with only sto-
chastic uncontrolled arrivals) is continuous (i.e., no controlled flows
are present).

We now prove the continuity of the queue length at time 0 with
respect to the uncontrolled flows~yyy[−TI , 0), with FIFO scheduling.

Theorem III.1. With the instant adaptation algorithm, the queue size
functioneQ : RTI

+ 7→ R is continuous with respect to the uncontrolled
arrival process~yyy[−TI , 0) in the topology endowed with supremum
norm, whereeQ is defined aseQ(~yyy[−TI , 0)) , Q(~yyy[−TI , 0) + ~xxx[−TI , 0))

= sup
0<T≤TI

 
−1X
−T

�
x[i] + y[i]

�
− CT

!
,

and~xxx[−TI , 0) is determined by (3) (i.e., is function of~yyy[−TI , 0)).
Thus, we have

lim
n→∞

1

n
log Pr

�
Q
� 1

n
Zn[−TI , 0)

�
≥ B

�
= −IF (B),

whereIF (B) is defined as

IF (B) , inf
~yyy[−TI ,0)

n
I
�
~yyy[−TI , 0)

�
: eQ�~yyy[−TI , 0)

�
≥ B

o
, (7)

whereI(~yyy[−TI , 0)) is the rate function of the vector~yyy[−TI , 0) ∈

RTI

+ [23].

Proof. The proof is presented in [25].

III.B C OMPUTATION OF BOUNDS ON THERATE
FUNCTION

This section focuses on computation of lower and upper bound on
IF (B), leading to upper and lower bound on asymptotic queue over-
flow probability, respectively. First, we add an additional assumption
that an uncontrolled flows are independent and identically distributed
over timefor simplicity. The computation ofIF (B) for non-i.i.d ar-
rivals is left as future work. This i.i.d assumption ensures [23] that
for any fixedT, we have

I(~yyy[−T, 0)) =

−1X
i=−T

I(y[i]), (8)

whereI(·) is defined as

I(y) = sup
θ

�
yθ − log E(eθY1[−1])

�
,

andY1[−1] is the random variable denoting the number of arrivals
from flow ’1’ at time slot ’-1’.

From Theorem III.1 and (8), the rate function is given by:

IF (B) = inf
0<T≤TI

IT
F (B), (9)

where

IT
F (B)= inf

~yyy[−T,0)∈A

−1X
i=−T

I(y[i]), A=
n
~yyy[−T,0): eQ(~yyy[−T,0))≥B

o
Then, we have the following result on the upper and lower bound on
IF (B).



Theorem III.2 (Upper and lower bound).

inf
0<T≤TI

TI

�
C +

B

T
−

w

T

� 1

p(B + C)
+

(T − 1)

p(C)

��
≤ IF (B)

≤ inf
0<T≤TI

TI

�
C +

B

T
−

w

p(C + B/T )

�
(10)

Proof. The proof is presented in [25]

III.C STABILITY -ELASTICITY TRADE-OFF

Using the lower and upper bounds on the rate function derived in
the previous section, we study the effect of elasticity of marking func-
tions on the stability (for controlled flows) and QoS (for uncontrolled
flows), and their trade-off.

We fix a nominal marking functionp(z), and consider the family
of marking functions{pβ(z)} that are correspondingly generated for
various values ofβ, the elasticity parameter. Recall thatβ > 1 cor-
responds to a more elastic marking function, andβ < 1 corresponds
to a less elastic marking function.

For the stability analysis, we use the local stability condition for
the weighted proportional fair controller from [2, 4], and determine
for each marking functionpβ(z), themaximum round-trip propaga-
tion delayd that the system can tolerate before going into local insta-
bility (and thus, global instability). This is given by [2]:

κ(pβ(z⋆) + z⋆p′
β(z⋆)) < sin

�
π

2(2d + 1)

�
, (11)

whereκ is the gain constant that determines the rate of source adap-
tation to network feedback (see [4] for details). Further, by definition
of pβ(x), we can show that

p′
β(z⋆) = f ′

β(z⋆)p′(z⋆) = βp′(z⋆).

Thus, for each value ofβ, the stability condition (11) reduces to

κ(p(z⋆) + βz⋆p′(z⋆)) < sin

�
π

2(2d + 1)

�
(12)

On the other hand, with the instant adaptation scheme, the up-
per bound on the rate function from Theorem III.2 provides a lower
bound on the queue overflow probability. In other words, for a fixed
value ofβ and the corresponding marking functionpβ(z), we can get
no better QoSthan that given by Theorem III.2. With a finite value of
κ, (and thus, non-instant source adaptation), the QoS will be worse
(as the controlled source will take longer to adapt to a burst).

To summarize, for each value ofβ, we compare the best QoS that
can be provided by an instantly adapting source (an ideal scheme),
and the corresponding largest round-trip delay that can be tolerated
and still lead to system stability, if the same marking function were
used with a proportional fair controller.Such a trade-off is parame-
terized byβ, the elasticity of the marking function. The more elastic
the marking function is, the worse is the stability behavior (asβ be-
comes larger in (12)). On the other hand, increasingβ improvesthe
QoS behavior for the real-time uncontrolled flows. For this reason,
we refer to this study asstability-elasticity trade-off.

We illustrate this trade-off in Figure 4. For each marking function
in Table 1, we plot the trade-off between largest allowable round-trip
delay for stability and queue overflow probability as a parametric plot
of β. The parameter settings for Figure 4 are thatn, C, w, and the link
utilization are set to be500, 100, 5, and 95%. Uncontrolled arrivals
are modeled by bursty two state-Markov ON-OFF process, where
packets arrive at the rate of 500 pkts/unit-time in the ON state, and
with ON probability being0.1 (this is denoted by ON-OFF(500,0.1)).
Thus, the scaled expected uncontrolled arrival rate is 50, and the fixed
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Figure 4: Stability-Elasticity Trade-off:n = 500, w = 5, c =
100, κ = 0.2 and ON-OFF(500, 0.1)

point of scaled controlled arrival rate is 45 due to the setting of 95%
link utilization, leading to the marking probability at the fixed point
of 5/45. The plot clearly illustrates the trade-off between QoS for
real-time flows and stability for controlled flows.The results also in-
dicate that some marking functions may be “uniformly” better than
others. In particular, among the marking functions that we have com-
pared, our bounds indicate that for the fixed point considered in Fig-
ure 4 (i.e.,z⋆), a rate based version of REM [7] seems to provide
the largest local-stability region foranygiven QoS requirement.To
analytically construct uniformly optimal marking functions is an in-
teresting problem for future research.

In addition, we see different sensitivities to marking elasticity for
different marking functions. The reason why we have vertical lines
in the rate based version of REM (TypeR) and M/M/1 (TypeM )
marking function (in the dotted elliptical region) is that their original
(non-warped) marking valuep(z) is 1, whenx > C (see Table 1).
Thus, the queue overflow probability in this case decreases only until
some thresholdβ and stays constant after this threshold.

III.D SCHEDULING-ELASTICITY TRADE-OFF

In this section, we derive the required capacity (which results in the
same queue overflow probability with FIFO scheduling and priority
scheduling) as a function of marking elasticity (i.e.,β). It is clear that
the capacity required for supporting some fixed queue overflow prob-
ability L (for real-time flows) with priority scheduling is the smallest
(over scheduling policies) since absolute priority is given to these
real-time flows (see Figure 1). With FIFO scheduling, the important
question to address is: how muchextra capacityis needed to support
a given queue overflow probabilityL. In this section,we quantita-
tively show that this extra capacity can be significantly decreased by
appropriately changing the marking elasticity without changing the
equilibrium traffic rates.

The lower bound on the rate function in Theorem III.2 provides an
upper bound on the queue overflow probability (which is a function
of the capacity at the router). Thus, Theorem III.2 can be used to
derive the (upper bound) capacity required to support a given QoS.

With priority queueing (where only stochastic uncontrolled flows
are considered, since controlled flows do not affect the queue dy-
namics for the uncontrolled flows), a sufficient condition of required
capacity (in the large number of flows regime) for a given queue over-
flow probability [12] and for the queue stability is given by:

Λ(δ/B)

δ/B
< CP , (13)

x⋆ + y⋆ < CP (14)
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Figure 5: Scheduling-Elasticity Trade-off:n = 100, w =
5, z⋆ = 98 andB = 1

wheren × CP is the capacity required to support a queue overflow
probability ofexp(−nIP (B)), whenn flows are present. Note that
either (13) or (14) can be the dominant condition ofCP , depending
on the given queue overflow probability.

Proposition III.1. A sufficient condition forIF (B) > δ and the
queue stability is:

Λ(δ/B)

δ/B
< CF −

w

p(CF )
,

where

Λ(θ) = log E[eθY1[−1]].

Proof. The proof is presented in [25].

Based on Proposition III.1 and (13), Figure 5 shows the required
scaled capacity (i.e.,CF andCP ) with FIFO and priority scheduling
to support a given QoS, for two values of the elasticity parameterβ
and for different queue overflow probabilities. Note that the para-
meters of marking functions are automatically determined by choos-
ing link utilization, the fixed point, and the expected value of uncon-
trolled and controlled arrivals.

First, we observe that for a small valueβ, the difference between
the capacities with FIFO and priority queueing is large for all values
of the queue overflow probability. This is due to the fact that the con-
trolled flows back-off sluggishly. On the other hand, for more elastic
marking functions, the required capacities with both scheduling algo-
rithms are very close.

For a less bursty uncontrolled arrivals (Figure 5-(a)), in priority
scheduling, the queue stability condition (i.e.,CP < z⋆ = 98)
dominates the QoS condition (14), while for a more bursty arrivals
(Figure 5-(b)), the QoS condition is stronger than the queue stabil-
ity condition. In both cases, we observe that the required capacity
with FIFO can be significantly decreased (almost same as that with
priority scheduling) by increasing the marking elasticity.
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