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Abstract— We propose a general family of MAC scheduling
algorithms that achieve any rate-point on a uniform discrete-
lattice within the throughput-region (i.e., lattice-throughput-
optimal) under a physical interference model. Under the physical
interference model, a centralized algorithm requires information
on node locations (and distance among nodes) to determine a
schedule that is provably throughput-optimal. In this paper, we
propose a distributed, synchronous contention-based scheduling
algorithm that (i) is lattice-throughput-optimal, (ii) does not
require node location information, and (iii) has a signaling
complexity that does not depend on network size. Thus, it is
amenable to simple implementation, and is robust to network
dynamics such as topology and load changes.

I. I

We consider a MAC link scheduling algorithm for a time-
slotted wireless ad-hoc network under a physical interference
model. The MAC scheduling problem for such networks has
been an active research topic during the past decades, with
much of the research focusing on a graph-based interference
model, where primary (i.e., one-hop) and secondary (i.e., two-
hop) conflict models are considered. However, the graph-based
interference model is a tremendous simplification of wireless
communications mainly because it is oblivious to a realistic
aggregate interference [1], [2], i.e., the interference caused
by various transmitters may accumulate to eventually impede
reception.

MAC scheduling algorithms under graph-based interference
models can be broadly classified into: (i) distributed sub-
optimal algorithms with partial throughput-guarantees (e.g.,
[3]–[6]), where distributed, fast algorithms achieving provable
lower bounds on the throughput region have been proposed
based on sub-optimal choices for a schedule on each time-slot
(e.g., maximal scheduling used in switch scheduling [7]), and
(ii) graph-coloring based algorithms (see [8] and references
therein), where the coloring problem (which is NP-complete)
is formulated by transforming the original graph into a link
contention graph, and suboptimal polynomial centralized or
distributed heuristics algorithms have been proposed.

In this paper, under the physical interference model, we
propose a family of dynamic, randomized, distributed MAC
scheduling algorithms and associated generalized conditions,
which, if satisfied, ensure lattice-throughput-optimality, i.e.,
achieving any rate-point on a uniform discrete-lattice within
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the throughput-region. Note that under the physical inter-
ference model, even a centralized scheduling algorithm re-
quires exact topology knowledge (i.e., node locations and
network connectivity) to achieve throughput-optimality, which
is needed to compute the amount of interference generated
by simultaneously activated nodes. However, somewhat sur-
prisingly, we propose a distributed algorithm that achieves
lattice-throughput-optimality without centralized geographical
information. To the best of our knowledge, this paper is
the first attempt to propose a distributed, throughput-optimal
scheduling algorithm under the physical interference model.

As an instance of the proposed family of lattice-throughput-
optimal algorithms, we develop a synchronized contention
based algorithm, RCAMA (Randomized Contention Aware
Multiple Access), which requires only a simple contention
signaling on each time-slot, leading to significant simplifica-
tion of implementation. In addition to being provably lattice-
throughput-optimal, RCAMA operates in a “dynamic” manner,
i.e., determined schedules are not necessarily conflict-free,
but they are progressively improved to approach an optimal
schedule (see Figure 1). Further, simple contention signaling
enables RCAMA to adapt to changes in traffic load and
network topology by learning a neighborhood’s contention
patterns in an autonomous way.

The main motivation of RCAMA is that although individual
(end-to-end) traffic loads may change quickly, the aggregates
on some congested links may, in many relevant applications,
change more slowly and locally. Similarly, node mobility (that
leads to changes in topology and load) might be slow enough
to permit a MAC scheduler to learn and exploit the offered
traffic characteristics so as to quickly realize “good” schedules.

There has been much recent work in the context of algo-
rithms with provable (partial) throughput guarantees under the
graph-based interference model. Examples include distributed
suboptimal schemes [3]–[6], which provide lower-bounds on
the throughput-region with no explicit knowledge of the
offered load (i.e., statistics/knowledge of the load over any
link in the network). These algorithms require either control
message overheads growing with the network size [3]–[5]
or constant overhead but can only realize limited throughput
guarantees [6]. Clearly, their message complexities will sig-
nificantly increase under the physical interference model due
to the more complex interference relationships among links.
Recently, the authors in [9], [10] have proposed scheduling
algorithms with a 100% throughput guarantee under graph-
based interference models, but they still require high control
message complexity.

In contrast with the above sub-optimal, distributed ap-
proaches, we assume that a node only has explicit knowl-



edge of the local (long-term) offered load (i.e., offered load
on each of its outgoing links). However, we are able to
prove that this extra local-information at nodes leads to a
distributed, lattice-throughput-optimal algorithm that requires
only three-stages of simple contention signaling (which leads
to six signaling messages over one-hop) on each time-slot,
irrespective of network size. In our preliminary work [11],
a family of lattice-throughput-optimal scheduling algorithms
was proposed based on a graph based interference model.
However, as discussed earlier, under the physical interference
model, finding a throughput-optimal algorithm seems to be a
much more difficult task, since the maximum number of hops
that need to be considered is at most two for the graph-based
interference model, whereas under the physical interference
model, interference is aggregate, leading to the possibility that
an arbitrary number of hops must be considered in deciding a
“good” schedule.

In practice, depending on the service supported by the
network, information on the offered load can either be ex-
plicitly given to the nodes or be measured by the nodes. If
we have a guaranteed-service network based on a resource
reservation signaling (e.g., RSVP [12]), the amount of load
could be known a priori by nodes in the path of a reserved
flow. However, in a typical best-effort service network, the
amount of load is not explicitly provided to the nodes, but
the nodes could measure/estimate offered load over a suitable
time-period. Because the loads might exhibit some variation,
or measurements might be noisy, a node might use an upper
estimate for it (i.e., overbook).

Recently, there have been several efforts towards analysis
and design of wireless multi-hop networks under more general
interference models than the graph-based interference model.

The work of [13] develops a mathematical programming
formulation for minimizing the frame size over a TDMA
wireless multi-hop networks, based on the optimal joint MAC
scheduling and power control under the physical interference
model. This work differs from ours in that the proposed
distributed, heuristic algorithm in [13] is sub-optimal, and
it operates under a “relaxed physical interference model,”
where the interference generated by only a single interfering
transmitter closest to the intended receiver is considered.
The authors in [14], [15] also adopt this relaxed physical
interference model to design and study the performance of
a MAC protocol. The authors in [15] consider a mathematical
optimization formulation for MAC scheduling under the phys-
ical interference model, and propose a heuristic centralized
scheme with the goal of using the centralized heuristic as a
benchmark of other distributed on-line algorithms.

In [16], the authors introduce a new class of interference
models characterized by the parameter K, where a successful
reception of a message at a receiver requires no transmission
from nodes that are K-hops away from the receiver. The
work of [17] defines the “scheduling complexity,” which
corresponds to the minimum amount of time required until
a connected graph structure can be scheduled. However, they
do not address the scheduling problem directly, and focus
only on asymptotic analysis of scheduling complexity. In [18],
[19], the authors have focused only on computing maximum

throughput under the physical interference model by jointly
considering routing, MAC scheduling, and power control in
an optimization framework. However, in [18], [19], the MAC
scheduling part is captured using an abstract fluid model,
and no practical, throughput-optimal, distributed algorithm is
presented.

A. Main Contributions and Organization

The main contributions of this paper are as follows:
(i) Under the physical interference model, we first propose a

family of scheduling algorithms (DRS: Dynamic Randomized
Scheduling) that achieves any rate-point on a uniform discrete-
lattice within the throughput region (i.e., lattice-throughput-
optimal). To that end, we give two general conditions, which,
if satisfied, ensure that an algorithm in the DRS family is
lattice-throughput-optimal, and we further study their rate of
convergence.

(ii) Next, as an instance of the DRS family, we propose a
synchronous contention-based algorithm, RCAMA (Random-
ized Contention-Aware Multiple Access), where multi-stage
contention signaling in conjunction with randomized time-
slot selection is used. We prove lattice-throughput-optimality
of RCAMA, by showing that RCAMA satisfies the two
conditions in (i). Further, we propose an adaptive variation
of RCAMA, ARCAMA (Adaptive RCAMA), which again
satisfies the two conditions in (i) and adaptively biases slot
selection probabilities based on the past contention histories.
We show via simulation that only a short duration of memory
is enough to increase performance, resulting in good adapta-
tion to load/topology changes.

The paper is organized as follows: We begin with a de-
scription of the system model, notations, and definitions in
Section II. Next, in Section III, we define the DRS algo-
rithm family, and present two general conditions for a DRS
algorithm to be lattice-throughput-optimal. In Section IV,
as an instance of such a lattice-throughput-optimal family,
we propose RCAMA, and discuss its variations for better
adaptation to load/topology changes. Finally, in Section VI,
we validate our results using simulations.

II. S M, N,  D

A. System Model

We assume that time is slotted. A time-slot duration is
suitably chosen to accommodate the transmission of one
fixed-size packet and includes a guard time corresponding
to the maximum differential propagation delay between pairs
of nodes in the network. We model the wireless multi-hop
network by a graph G(L,V), where L and V denote a set of
directional links, and a set of nodes, respectively. We assume
that for any link between two nodes there is a counter-part in
the opposite direction. We denote a directed link from node i
to node j by i→ j.

The wireless system has a single frequency/code, which is
available for both data and control message transmission, and
there is no separate physical channel for control messages (i.e.,
in-band signaling). Each node in the system is equipped with
an omni-directional antenna, and synchronized. We assume



that each transmission is intended for only one receiver1, and
each node has only a single transceiver (i.e., half-duplex radio).

We denote the (fixed) power level which a transmitter uses
for data transmission by P, and the physical interference
model based on SINR (Signal-to-Interference-Noise Radio) is
considered. In this interference model, a link i→ j, i, j ∈ V is
connected, if Gi jP/η j ≥ γ, where Gi j is the propagation loss
from i to j, and η j is the thermal noise power at j. The SINR
threshold γ depends on the desired bit rate, bit error rate, and
design parameters such as modulation, coding, and so on.

A message (e.g., data, ack, or control messages) from i to
j is decodable, if

Gi jP
η j +

∑
k∈VI ,k,i Gk jP

≥ γ, (1)

where VI is the set of nodes, which transmit simultaneously
with i on a given time-slot.

In practice, in addition to interference, wireless links are
prone to errors due to many other factors (e.g., fading). This
leads to high packet loss rate detrimental to upper-layer perfor-
mance. Thus, in many MAC protocols, reliability is provided
by acknowledging transmissions and possibly retransmitting.
Thus, we define the following:

Definition 2.1: We say that a transmission over i→ j is
successful, if both the data message from i to j and the
corresponding ack message from j to i are decodable at j and
i, respectively, where ack message from j will be launched
only when the data message is decodable at i.

In this paper, we focus only on link-level flows, and we do
not consider routing and transport-layer end-to-end flows.

B. Lattice-Throughput-Optimality: Notation and Definitions

Definition 2.2: A link schedule ~A = (Al : l =

1, . . . , |L|), Al ∈ {0, 1} is a binary vector representing the set of
links scheduled for transmission attempt on a time-slot, where
Al = 1 if the link l is scheduled, and 0 otherwise. We define
a reverse of a link schedule ~A, R(~A) = (Bl) to be: B( j,i) = 1, if
A(i, j) = 1, and 0 otherwise.

Definition 2.3: A link schedule ~A is said to be successful,
if the transmissions scheduled by ~A and R(~A) are successful,
respectively. We denote the collection of all successful link
schedules by A.

Definition 2.4: We define the throughput region Λ by:

Λ =

{
~α | ~α =

∑

~Ai∈A
βi ~Ai, 0 ≤ βi ≤ 1,

|A|∑

i=1

βi = 1
}
.

Definition 2.5: For any fixed positive integer F, we define
the F-lattice-throughput region ΛF by:

ΛF =

{
~α | ~α =

∑

~Ai∈A
βi ~Ai, βi =

ki

F
,

|A|∑

i=1

ki = F, ki ∈ {0, . . . , F}
}
.

Intuitively, ΛF is the lattice-sampling of Λ with adjacent points
having a distance of 1/F. Note that Λ = CL(∪F=1,...,∞ΛF),
where CL(Z) is the closure of a set Z.

Definition 2.6: A scheduling algorithm Π chooses a se-
quence of link schedules (which are not necessarily success-

1In other words, we consider a “link” scheduling, not “node” scheduling.

ful), (~A[s] : s = 0, 1, . . .), where ~A[s] is the link schedule on
time-slot s.

Definition 2.7: For a fixed F, the offered load ~ρ is said to
be F-lattice-feasible if ~ρ ∈ ΛF .

Definition 2.8: A scheduling algorithm Π is said to be F-
lattice-throughput-optimal, if Π achieves any F-lattice-feasible
load.

For a F-lattice-feasible load ~ρ, by multiplying the offered
load by F, we henceforth deal with positive integer-valued
load, ~θ ∈ Z|L|+ , i.e., θl corresponds to the number of requested
time-slots over link l out of F time-slots. We call a group of
F time-slots a frame throughout this paper.

In our framework, the lattice-parameter F is a system-
wide parameter that is known to every node in the network
a-priori. Thus, throughout this paper, we implicitly assume
that the lattice-parameter, denoted by F, is fixed. Further,
for simplicity, we use the terms “throughput-optimal” and
“feasible” to refer to “F-lattice-throughput-optimal” and “F-
lattice-feasible,” respectively, unless explicitly needed.

III. D R S: C 

T-O

In this paper, we consider “frame-based” scheduling algo-
rithms, where scheduling patterns are determined on a frame-
by-frame basis (i.e., F time-slots)2, and we will see that it is
sufficient to consider such class of algorithms.

Definition 3.1: We define a frame schedule (FS) to be a
consecutive sequence of F link schedules, i.e., a |L|×F matrix,
C(F, ~θ) = (cls : l = 1, . . . , |L|, s = 1, . . . , F), where cls = 1 if
a transmission is scheduled over link l on time slot s, and 0
otherwise. Further, the l-th row vector of C(F, ~θ), is said to be
a slot schedule over l. A FS C(F, ~θ) is said to be feasible, if all
of F link schedules (column vectors) in C(F, ~θ) are successful.

As mentioned in Section I, we assume that a node has
knowledge only of the local offered load (i.e., arrival rate) on
each of its outgoing links. Thus, for all l ∈ L, θl =

∑F
s=1 cls,

i.e., the number of scheduled time-slots on each link is equal
to the load offered on that link.

Definition 3.2: We additionally define a transmission pri-
ority, R = (rls : l = 1, . . . , |L|, s = 1, . . . , F) where rls = 1
(rls = 0) if cls = 1 and its priority is high (low), and NULL
otherwise (cls = 0).

In this paper, we consider the following class of frame-
scheduling algorithms:

Definition 3.3: A dynamic randomized scheduling (DRS)
algorithm randomly chooses a sequence of (C[t],R[t] : t =

0, 1, . . .) over frames, where C[t] and R[t] are the FS and
the transmission priority at frame t, respectively. A randomly
chosen (C[t],R[t]) at frame t may depend on FSs of the
previous, say m, frames. In this case we say that a DRS
algorithm has history m. Note that in a DRS algorithm without
priority, R[t] is not in use.

Remark 3.1: It is clear that ~θ is F-lattice-feasible, if and
only if there exists a feasible frame schedule C(F, ~θ), by
Definition 2.5. Our objective in this paper is to develop a DRS

2Thus, we henceforth use a term ‘time-slot s’ to refer to the s-th time-
slot inside a frame. We typically use ‘s’ and ‘t’ to refer to the indexes of a
time-slot and a frame, respectively.



scheduling algorithm which finds a feasible frame schedule
within a finite number of frames, and sustains the schedule
thereafter, for any given feasible load. It can be easily seen that
a DRS algorithm satisfying such properties achieves lattice-
throughput-optimality. Thus, it suffices to consider the family
of DRS algorithms.

Now, we derive two conditions, which, if met, ensure that
a DRS algorithm is throughput-optimal: (i) FSC (Feasibility
Sustenance Condition), where if a FS converges to a feasible
one, it has to be sustained thereafter, and (ii) FIC (Finite
Improvement Condition), where before converging to a feasible
FS, a sequence of FSs over frames tend to be progressively
“closer” to a feasible FS with positive probability.

We first define a “distance” between two FSs (under the
same topology and load), C = (cls) and C′ = (c′ls), to be:

D(C,C′) =

|L|∑

l=1

θl −
|L|∑

l=1

F∑

s=1

cls × c′ls. (2)

Note that D(C,C′) = 0 implies C = C′.
Definition 3.4: For a given fixed load and topology, let the

current frame to be ti.
(1) FSC: If C[ti] is feasible, C[t] = C[ti], w.p. 1 ∀t > ti.
(2) FIC: If C[ti] is not feasible, for any feasible FS C?, there
is a t < ∞ (not dependent on C?), such that D(C[ti],C?) >
D(C[ti + t],C?) with positive probability.

Subject these two conditions, we have the following theo-
rem:

Theorem 3.1: For any fixed feasible offered load and topol-
ogy, consider a DRS algorithm Π which satisfies FSC and FIC.
We have that

(i) Π converges to a feasible FS, and thus Π is throughput-
optimal.

(ii) Let τΠ(C) be the convergence time of Π to a feasible
FS for a given initial frame schedule C. Then, ∀t ∈ Z+,
there exist constants 0 < KΠ < ∞ and 0 < pΠ < 1, such
that Pr

{
τΠ(C) > tKΠ

}
≤ pt

Π
.

Due to space limitations, we skip the proof, which is
available in [20]. The sketch of proof is as follows: First,
it is easily seen that a sequence of FSs over frames forms
a Markov chain. Then, FIC implies that we can construct a
converging path to a feasible FS (say, C?) within a finite time,
since D(C,C?) is upper-bounded.

FIC and FSC enable us to verify throughput-optimality of
a DRS algorithm. In addition, it can be customized/enhanced,
and still be throughput-optimal, as long as the extended version
satisfies FIC and FSC. In this paper, we develop a “base-line”
DRS algorithm (RCAMA) with history 1 in Section IV, and
then extend RCAMA to ARCAMA (Adaptive RCAMA) with
multiple frame histories for better adaptation to load/topology
changes in Section V, with both RCAMA and ARCAMA
satisfying FSC and FIC.

IV. RCAMA

A. Overview

The frame and time-slot structure of RCAMA are shown
in Figure 1. A time-slot is divided into two parts: time for

1 2 ...... ...... F

Frame

i F-1

Stage 1

RTS-H CTS-H Data

Stage 2 Stage 3

randomly
adapt

randomly
adapt

FS FS FS FS FS FS FS....... ....... ........................ .......

same schedules same schedules

load/topology
changes

load/topology
changes

converged optimal
schedule

converged optimal
schedule

time-slot

Ack
RTS-
H/L

CTS-
H/L

RTS-
H/L

CTS-
H/L

Fig. 1. Frame and slot structure of RCAMA: RTS-H/CTS-H and RTS-
L/CTS-L refer to signaling messages sent by high and low priority transmit-
ters/receivers, respectively.

contention signaling and time for data and ack transmission3.
We will describe RCAMA by dividing its behavior into two
different time-scales: (i) per-frame operation, where each node
randomly determines the slot-schedules for the transmissions
over its adjacent outgoing links, and (ii) per-slot operation,
where a node initiates a RTS/CTS-like contention signaling
to resolve contentions and learn contention patterns in the
neighborhood.

The RCAMA is designed to ensure the following two
properties:

(i) Persistence: A successful transmission (TX) on a time-
slot at the current frame persists on the same slot at the
next frame.

(ii) Preemption: An unsuccessful TX can preempt a time-
slot (with positive probability) used by a persistent
successful TX.

As discussed earlier, it suffices to show that the system
converges to a feasible FS to achieve throughput-optimality.
By persistence property, once the system reaches a “good”
(i.e., feasible) FS, it stays in that FS. Preemption property does
not make a deterministic “winner-loser” relationship among
TXs, and enables the system to avoid a deadlock, i.e., being
stuck in a “bad” FS. These two properties ensure that the
system will visit arbitrary FSs, finally reach a feasible FS,
and sustain thereafter.

We satisfy these two properties by assigning priority to
scheduled TXs. More specifically, by assigning high priority
to unsuccessful TXs and low priority to persistent successful
TXs, respectively, we allow a newly scheduled unsuccessful
TX on a time-slot to beat existing successful ones. Later, we
will show that it is sufficient to always ensure the success of
newly incoming TXs (which was unsuccessful at the previous
frame), for throughput-optimality (see Theorem 4.1).

In addition to provable throughput-optimality, by using a
low-cost contention signaling (i.e., message complexity does
not depend on network size), the algorithm can adapt to
load and topology changes by “learning” local contention
patterns. In other words, RCAMA does not need any explicit
mechanism to inform the nodes of such network changes,
and it automatically avoids the situation where multiple time-
slots are commonly accessed by interfering links. Further,

3For notational simplicity, we use the term ‘TX’ to refer to the word
‘transmission’ throughout this paper.



application of non-uniform time-slot access probability for
unsuccessful TXs enables the system to learn local contention
levels, and to distribute scheduled TXs at different time-slots
in a more efficient manner (see Section V).

We note that a similar idea of using multiple priorities
has been introduced in the TDMA scheduling used in Z-
MAC [21]. However, Z-MAC considers only the graph-based
interference model, and its major objective of multiple priori-
ties is to solve the hidden terminal problem without provable
throughput-guarantee, whereas we use two-level priority to get
both provable convergence and throughput-guarantee.

B. Per-Frame Operation: Randomized Slot-Selection

When each frame starts, each node (say, v ∈ V) determines
the slot-schedules and contention priorities for the TXs over
its adjacent outgoing links. To do this, the following simple
rules are used:

Rule 4.1 (Slot and Priority Selection Rule):
(i) A successful TX on time-slot s at frame t−1 persists on

the same time-slot s at frame t, with priority set to be low.
(ii) If a TX was unsuccessful at frame t − 1, a time-slot is

randomly selected from the time-slots not already taken in (i),
and its priority is set to be high.

Rule 4.1(i) corresponds to the persistence property. Pre-
emption property is satisfied by Rule 4.1(ii) in conjunction
with three-stage signaling in Section IV-C. An example of
Rule 4.1 is given in Figure 2.

C. Per-Slot Operation: Three-Stage Contention Signaling

Following the determined slot-schedules in Section IV-
B, on each time-slot, nodes use the three-stage (synchro-
nized) RTS/CTS contention signaling mechanism to resolve
contentions, and data/ack TX follows (see Figure 3 for the
pictorial algorithm description).

Definition 4.1: A scheduled TX over i→ j is said to be
valid, if j decodes RTS from i, and i decodes CTS from j.

Note that in our three-stage signaling, the validity of a TX
does not imply success of the TX, i.e., even if RTS/CTS are
decoded, its data TX or ack reception could fail. For this
reason, we differentiate between validity and success of a TX.

We first denote a set of links where TXs are scheduled (on
this time-slot and at this frame) with high and low priority by
H and M, respectively, where H ,M ⊂ L, and recall that L
is the set of all links in the network. At each stage, contention
signaling is conducted for high and/or low priority TXs. We
use the notations H i

V and H i
I to refer to valid and invalid high

priority TXs at stage i, respectively. Similarly, Mi
V and Mi

I
are used for low priority TXs.

(i) Stage 1: Contention signaling is performed for
only the TXs in H , based on which H1

V and H1
I are deter-

mined (note that H1
V ∪ H1

I = H). The three-stage contention
signaling is constructed to ensure that data TXs occur over the
links inH1

V , irrespective of the results of the subsequent stages
2 and 3. However, their success is not guaranteed, because TXs
in H1

V could fail if their actual data/ack TXs occur together
with TXs in M.

1,Hl1

l2

l3

frame t-1 frame t

0,H

0,L

0,L

1,H

0,L

L

1      2     3       4      5      6      7      8 1      2      3      4      5      6      7      8

L

HH

H

H

1/0  :   transmission success/failure
H/L :   high/low priority

frame size = 8 slots

outgoing links of a node: l1, l2, l3 

θl1  = 3 θl2  = 2 θl3  = 1

Fig. 2. Example of Rule 4.1: Since at frame t−1, the TX over l1 on time-slot
‘1’ and over l2 on time-slot ‘4’ were successful, these TXs are scheduled once
again with low contention priority at the same time-slot positions at frame
t. For the unsuccessful TXs over l1 on time-slots ‘2’ and ‘3’, we randomly
choose two time-slots of the remaining time-slots, which were not taken by
previously successful TXs (i.e., the node does not consider time-slots ‘1’ and
‘4’ in this random selection). In the example, time-slot ‘2’ and ‘7’ are selected,
and they are scheduled with high contention priority.

on a time-slot s and at frame t

High (H)

stage 1 valid high (H1
V) invalid high (H1

I)

Low (M)

valid high (H2
V) invalid high (H2

I) valid low (M2
V) invalid low (M2

I)stage 2

stage 3 valid and invalid high (H3
V) valid low (M3

V)

contention signaling

contention signaling

contention signaling (power adjustment for H2
F)

data transmissions occur

invalid low (M3
I)

Fig. 3. Three-stage contention signaling in RCAMA

We will later show that it suffices to guarantee the success
of all TXs in H1

V on each time-slot for throughput-optimality
(see Theorem 4.1). Thus, the objective of subsequent stages 2
and 3 is to ensure the success of TXs in H1

V .

(ii) Stage 2: Contention signaling is performed for
the TXs in H1

V and the TXs in M, based on which H2
V , H2

I

M2
V , and M2

I are determined. Note that H2
V ∪H2

I = H1
V , and

M2
V ∪ M2

I = M. The role of this stage is to identify high
priority TXs in H1

V , which fails due to interference by low
priority TXs, i.e., identify H2

I .

(iii) Stage 3: Contention signaling is performed again
for the TXs in H1

V and only for the TXs in M2
V . Recall that

preemption property for throughput-optimality is intended to
ensure the success of high priority TXs in H1

V . The objective
of stage 3 is to invalidate low priority TXs, which can cause
the TXs in H2

I to fail (note that TXs in H2
V will be successful

even with interference by low priority TXs). To that end, we
employ signaling power adjustment in RTS/CTS signaling for
TXs ofH2

I , i.e., the transmitters and the receivers inH2
I adjust

their signaling powers appropriately, such that interfering low
priority TXs are invalidated.
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Fig. 4. Example of RCAMA: In absence of contention priority and signaling
power adjustment, TX over A→B keeps failing with either choice of time-
slot ‘1’ or ‘2’, since RTS from A is not decodable at B due to interference
from either C or D, over frames. However, in RCAMA, from Rule 4.1, the
unsuccessful TX over A→B at frame ‘0’ is assigned high priority at frame
‘1,’ and due to stages 2 and 3, B adjusts the power for its CTS (destined to
A and broadcast to D), such that CTS from F is not decodable at D (see the
frame 1 in (b)). The same procedure can be applied when TXs over A→B
and C→E are assigned high and low on a same time-slot, respectively. By
this procedure, the system ultimately converges to a feasible FS.

(iv) data/ack: Data TXs occur for TXs in H1
V and

TXs in M3
V . ACK messages are sent back to the transmitters

by the receivers which can decode data.
An example of the three-stage contention signaling in

RCAMA is presented in Figure 4, to show how it operates
for convergence to a feasible FS.

We note that transmission power control for signaling,
which is similar to signaling power adjustment in this pa-
per, has been proposed with the main objective of through-
put improvement (see [22] and the references therein). The
approaches in [22], however, do not consider the physical
interference model and they do not provide a study of provable
performance guarantees (i.e., no throughput-optimal proper-
ties).

D. Signaling Power Adjustment and Throughput-Optimality
The remaining question is how to compute the adjusted

powers for TXs in H2
I in an efficient, distributed manner,

which we will discuss in this section.
We will use the notation H2

I (s)[t] to explicitly refer to H2
I

on the time-slot s at frame t. We first let ~PA
s [t] = ( ~Pr, ~Pc)s[t],

~Pr = (Pr
l ), ~P

c = (Pc
l ), l ∈ H2

I (s)[t] be the adjusted signaling
power vector on time-slot s and frame t at stage 3, where ~Pr

and ~Pc corresponds to the powers for sending RTS and CTS
messages, respectively.

Definition 4.2: For any given fixed topology and load, con-
sider a sequence of adjusted signaling power vectors, (~PA

s [t] :
s = 1, . . . , F, t = 0, 1, . . . , ). RCAMA is said to satisfy High
Priority Condition (HPC) with (~PA

s [t]), if with ~PA
s [t], all the

TXs in H1
V (s)[t] are successful, over any time-slot and frame.

As described in Section IV-A, Definition 4.2 corresponds to
the condition that “good” high priority TXs (i.e., valid TXs at
stage 1) are guaranteed to be successful. Now, Theorem 4.1
implies that it suffices to guarantee the success of TXs in
H1

V by using sufficiently large adjusted power in stage 3 for

throughput-optimality of RCAMA. Recall thatH1
V = H2

V∪H2
I ,

and TXs in H2
V are guaranteed to be successful even with

interference by low priority TXs. Due to space limitations, we
skip the proof, which is available in [20].

Theorem 4.1: For any given fixed topology and load, sup-
pose that RCAMA satisfies HPC with (~PA

s [t]), then
(i) RCAMA satisfies FSC and FIC. Thus, it is throughput-

optimal from Theorem 3.1.
(ii) RCAMA satisfies HPC with any ( ~QA

s [t]), where ~QA
s [t] ≥

~PA
s [t], s = 1, . . . , F, t = 0, 1, . . . , in element-wise.

This result enables us to develop the following simple,
distributed throughput-optimal algorithm:

RCAMA-MAX: All the powers in the signaling power ad-
justment (i.e., ~PA

s [t]) are set to be Pmax, where Pmax is the
amount of signaling power, such that signaling with Pmax in a
TX invalidates all other simultaneously scheduled TXs.

The assumption on existence of Pmax is reasonable for
wireless multi-hop networks deployed in a finite size of plane.
Now, we have the following immediate corollary:

Corollary 4.1 (RCAMA-MAX): For any fixed topology and
feasible load, RCAMA-MAX satisfies HPC, and thus it is
throughput-optimal.

Remark 4.1: Note that under the physical interference
model, a centralized algorithm needs information on node
locations and network connectivity to achieve throughput-
optimality. Surprisingly, however, Corollary 4.1 implies that
there exists a distributed throughput-optimal scheduling algo-
rithm that does not need such centralized topology informa-
tion.

In spite of the provable throughput-optimality and the fully
distributed nature of RCAMA-MAX, it may not be a practical
algorithm, since for a large-scale multi-hop network, Pmax
should be very large. This is not a desirable feature due to low
efficiency of energy utilization and poor transient throughput.
In other words, with RCAMA-MAX, every low priority TXs
will fail, and only high priority TXs surviving stage 1 will suc-
ceed. The main observation behind this limitation of RCAMA-
MAX is that we need to consider the “worst-case,” i.e., the
case when a large number of far field low priority TXs interfere
with a high priority TX (which was valid at stage 1). However,
it is known that interference is dominated by a small number
of nearby transmissions mainly due to non-linear signal power
loss. Using this observation, in the next section, we propose a
new distributed algorithm, RCAMA-VIR, which uses far lower
powers than Pmax, but still guarantees throughput-optimality
under reasonable assumptions.

E. RCAMA-VIR
The main idea in RCAMA-VIR is to use a sufficiently high

power (but not so large as Pmax in stage 3 signaling), such that
low priority interferers of H2

I can be suppressed. This is done
by estimating (and developing bounds) on the interference
power.

In this section, we assume the following: (i) A receiver
can only measure the total received signal power (the desired
signal power plus interference) and know a boolean result
about the target SINR (i.e., the target SINR is larger than
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Fig. 5. Example of RCAMA-VIR: we have one high priority and N low
priority TXs scheduled on a same time-slot. The high priority TX is clearly
valid at stage 1. At stage 2, suppose that at stage 2 an RTS over A→B
is not decodable due to the aggregate interference of RTSs from Ci to Di,
i = 1, . . . ,N. Now, B assumes that its RTS decoding failure is due to a single
virtual low priority TX. By estimating such aggregate interference, B computes
the distance from itself to C′ (the virtual transmitter). In the CTS-slot of stage
3, B sets the sufficiently large CTS power to invalidate a CTS from D′ (the
virtual receiver of C′), based on the “worst-case” assumption that there does
not exist a signal power path-loss between C′ and D′.

the threshold γ or not)4, (ii) the propagation loss is modeled
by Gi j = 1/d(i, j)α(i, j), where d(i, j) is the distance between
nodes i and j, and α(i, j) is the path loss exponent (which may
depend on the node-pair), and each node knows just its (lower
and upper) bounds (i.e., α ≤ α(i, j) ≤ ᾱ), (iii) the system is
interference-limited5.

The transmitter s(l) and the receiver d(l) of link l ∈ H2
I

perform the following procedures:

RCAMA-VIR:
(i) d(l) (s(l)) estimates the aggregate interference generated

by low priority TXs during RTS (CTS) slot, and as-
sumes that such interference is caused by the transmitter
(receiver) of a single virtual low priority TX. (see Sec-
tion IV-F for discussion on estimation of the aggregate
interference).

(ii) d(l) (s(l)) computes an upper-bound on the distance to
the transmitter (the receiver) of the virtual TX. This
upper-bound is computed based on the bounds on the
path loss exponent (i.e., α ≤ α ≤ ᾱ), and the interference
estimation in (i).

(iii) By assuming that there is no power path-loss between
the virtual transmitter and receiver, d(l) (s(l)) computes
the adjusted CTS (RTS) power, required to invalidate
the virtual TX.

An example of RCAMA-VIR is shown in Figure 5. Note
that RCAMA-VIR may not be throughput-optimal, when many
far field low priority transmissions are interfering a high pri-
ority transmission. However, we will show that RCAMA-VIR
achieves throughput-optimality under reasonable assumptions
(see Theorem 4.2).

F. Estimation of Interference
Note that the major difference between stages 1 and 2 is

the existence of low priority TXs. Thus, it is intuitive to use

4Note that we do not assume that the receiver is able to know the exact
SINR value as well as individual or even aggregate pure interference generated
by other transmissions.

5In this system, the link operates at a sufficiently high γ (SINR threshold),
so that the effect of thermal noise is negligible as compared to the interference.
However, this can be readily extended to the more general assumption that
0 ≤ η j ≤ ε × (interference), where ε is the ratio of thermal noise to the total
interference.

measurement of the total received signal powers at stages 1
and 2 and using their differences to estimate the interference
by low priority TXs.

Consider a TX l ∈ H2
I . We let the total received signal

power on RTS and CTS slots at stage 1 by d(l) and s(l) be
R̂1

d(l) and Ĉ1
s(l), respectively. Similarly, at stage 2, we use the

notations R̂2
d(l) and Ĉ2

s(l). Then, we use the following to estimate
the interference by low priority transmitters and receivers:

Îr
d(l) = R̂2

d(l) − R̂1
d(l), Îc

s(l) = Ĉ2
s(l) − Ĉ1

s(l).

Using the above method for estimation, we have

Îr
d(l) ≤ Ir

d(l), Îc
s(l) ≤ Ic

s(l), (3)

where Ir
d(l) and Ic

s(l) are the exact aggregate low priority
interference to d(l) and s(l), respectively. In other words, our
estimation is a lower-bound on the exact interference by low
priority TXs. This lower-bound in the interference estimation
and the bounds on the path loss exponent lead to an upper-
bound on the distance to the transmitter/receiver of the virtual
TX, which is used in the proof of throughput-optimality of
RCAMA-VIR. The proof of (3) and more technical details
are presented in [20].

Theorem 4.2 (RCAMA-VIR): Suppose that there exists a
maximum distance of interference between nodes and a max-
imum number of interferers, denoted by dint and Nint, respec-
tively. If 2α√Nint(dint)ᾱ/(2α) ≤ dmin, where dmin is the minimum
distance between two nodes, then RCAMA-VIR satisfies HPC.
Thus, it is throughput-optimal from Theorem 4.1.

Theorem 4.2 implies that if the inter-node distance is
sufficiently large, i.e., node density in a plane is not too high
and nodes are distributed in a sufficiently uniform manner,
throughput-optimality is provably guaranteed in RCAMA-
VIR. See [20] for the complete proof.

Numerical Example 4.1: As a numerical example, consider
the case when dint = 2 × dmin (a typical setting in the IEEE
802.11 DCF by assuming that transmission rage is set to be
dmin) for different values of bounds on path-loss exponents and
Nint, given by:

dmin ≥ 2.5 m if ᾱ = α = 3, Nint = 2,
dmin ≥ 4 m if ᾱ = α = 4, Nint = 16,
dmin ≥ 8 m if ᾱ = 4, α = 3, Nint = 4.

As discussed earlier, due to non-linear path-loss exponents, the
number of interferers affecting other simultaneously scheduled
TXs seems to be quite limited, i.e., Nint is small, where we
have more relaxed condition on dmin for provable guarantee.

V. ARCAMA (A RCAMA)
Note that RCAMA chooses new time-slots for unsuccessful

TXs with equal probability in the subsequent frames. In fact,
one can potentially increase the rate of convergence or adapt to
load changes more effectively by intelligently guessing which
time-slot is likely to be successful and by biasing the time-slot
access probability. As an example, a time-slot with consecutive
success is highly likely to be “safe”, so that it would be
beneficial to sustain the corresponding time-slot with higher
probability at the next frame than other time-slots. In this
section, we propose a general family of variations of DCAMA,
ARCAMA (Adaptive RCAMA) family (a subset of the DRS



family), which adaptively assigns different time-slot access
probabilities, depending on the past contention history. This
provides ARCAMA with a more efficient learning of local
contention patterns, leading to more robustness to network
changes. As shown in Proposition 5.1 below, such variations
of RCAMA inherit all throughput-optimal properties.

To that end, each link is assigned its own slot weight vector,
and the individual nodes maintain slot weight vectors for its
adjacent outgoing links. This slot weight vector is updated
every frame, mainly based on the TX results (success or
failure) at the past frames. To increase/decrease the slot weight
vector, we define the time-slot status, which corresponds to the
result of past TXs on the corresponding time-slots. Then, the
slot access probability is set to be inversely proportional to the
current weight. This biased probability is used for selecting
time-slots for unsuccessful TXs. Also, by setting a minimum
and maximum for each weight, we can avoid pathological
cases (e.g., the time-slot access probability could be arbitrarily
small or close to ‘1’), i.e., there exist w̄ and w, such that
1 ≤ w < w̄ < ∞ and ∀s ∈ {1, 2, . . . , F},∀l ∈ L, and ∀t > 0,
w ≤ wl

s[t] ≤ w̄, where we denote the slot weight vector of link
l at frame t by ~wl[t] = (wl

s[t] : s = 1. · · · , F, ).
Proposition 5.1: For any fixed topology and feasible load

and any positive integer m < ∞, in ARCAMA with history m,
Theorems 4.1 and 4.2 still holds.

We skip the proof for brevity, since it is similar to that of
RCAMA.

VI. S

In this section, we evaluate the performance of RCAMA
and ARCAMA algorithm by comparing them to the base-line
RANDOM algorithm. The RANDOM algorithm determines
slot-schedules (based on the requested loads) in a purely ran-
dom manner at each frame, and uses a single-level RTS/CTS
signaling to gain access to the channel. We choose RANDOM
algorithm as a base-line, since it is similar to Aloha-like
strategy (a “standard” algorithm for link scheduling), and
behaves like a slotted version of a CSMA-like contention-
based scheme.

Prior to presenting simulation results, we comment on the
control overhead of the RCAMA/ARCAMA algorithm. Our
approach has additional overheads as compared to a standard
contention based MAC protocol (which has only one RTS/CTS
signaling phase). Suppose that a MAC packet has 1000 bytes
of data (note that in the 802.11 MAC, the size limit is
2312 bytes). The overhead of each RTS/CTS message pair
with RCAMA is no more than 30 bytes (6 bytes each for
source/destination addresses, and 3 bytes for signaling such as
RTS priority level, stage, etc) will suffice for our algorithm.
Thus, the additional overhead is about 30 × 2 bytes, which
corresponds to approximately 6%. However, as we will show
by simulation results, the performance increase is more than
about 20%.

We simulate wireless multi-hop networks with nodes which
are randomly distributed in a 1000 × 1000 meter-square
area. Thermal noise power at each receiver (i.e., η j), the
minimum required SINR level (i.e., γ), and the transmit power
level (i.e., P) are set to be -90 dBm, 18 dB, and 15 dBm,

respectively. Figure 6(a) shows the network topology and
link connectivity generated at random using the parameters
above. More simulation results under various parameters and
environments are available in [20].
Weight Maintenance Algorithm: We use a simple weight
maintenance algorithm based on three frame contention history
in ARCAMA, where a slot status is defined for each outgoing
links of a node, and we increase (decrease) its weight more ag-
gressively for back-to-back failures (successes) on a slot over
past three frames. We expect to see even better performance
increase when more sophisticated maintenance algorithms are
used. Note that the slot access probability is set to be inversely
proportional to the current weight. The intuition for these
choices is that more back-to-back successes at a time slot
indicate that the offered loads around the corresponding node
at that time-slot are relatively low (i.e., less “congested”), and
transmissions in that time-slot are likely to be successful in the
future. Similar intuition is applied for back-to-back failures.
We skip the details, which is described in [20].
Different Signaling Power Adjustment Schemes: First, we
investigate the effect of different signaling power adjustment
schemes on the throughput performance and energy consump-
tion at the “steady” state (i.e., no load or topology changes
for some time).

Figure 6(c) shows the performance of RCAMA and AR-
CAMA algorithms for a normalized load by a randomly
chosen maximally feasible load6, which varies from 50% to
100%. We measure the aggregate normalized throughput for
every varying load over 3000 frames. Each point in the graph
is the mean value of 50 simulation experiments with different
random seed values. In the simulation results, (A)RCAMA-
NOR represents the (A)RCAMA without signaling power
adjustment at stage 3. Figure 6(b) shows a trace of the
used powers for signaling per one transmission for different
RCAMA versions. Similarly, Figure 6(d) shows the aggregate
average power used in contention signaling per one successful
transmission for different values of normalized load. With both
simulation results, we observe that the algorithms without
power adjustment From these simulation results, we observe
the following: (i) ARCAMA has better transient throughput
than RCAMA, (ii) With both ARCAMA and RCAMA, the
algorithm without power adjustment has greater transient
throughput than other throughput-optimal versions with power
adjustment (i.e., (A)RCAMA-VIR and (A)RCAMA-MAX), as
well as better savings of energy.

Note that, in practice, we may need lower powers than
that used by RCAMA-VIR, and the condition on dmin in
Theorem 4.2 can be relaxed. This is because RCAMA-VIR
is conservatively designed again by considering the point-of-
view from one single high priority TX and other low priority
TXs for the probable throughput-optimality. In other words,
we have not considered the fact that other high priority TXs,
which were valid at stage 1, also generate interference to
interfering low priority TXs, and interference among low-
priority TXs still exists. In fact, as seen in Section VI, RCAMA
with no signaling power adjustment has a better (transient)

6A load is said to be maximally feasible if the resulting system load becomes
infeasible with any load increase anywhere in the network.
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Fig. 6. Steady-state throughput and energy usage

performance than RCAMA-MAX and RCAMA-VIR even
if it is not provably throughput-optimal. Essentially, overall
higher performance than RANDOM is due to accessing the
channel with two-level priority, which significantly reduces
contentions.
Adaptation to load changes: In this simulation, we investi-
gate the effect of network changes in load on the performance
of RCAMA-NOR and ARCAMA-NOR algorithm, again for
the network topology in Figure 6(a). We generate time-varying
loads by a random walk model, where we first determine
a normalized offered load of 60% by a randomly chosen
maximally feasible load. Then, at the beginning of each frame
we randomly choose Lch links and increase their link loads
by one slot with probability PI , decrease their link loads with
probability PD, or stay at the current load (i.e., no change)
with probability 1−PI −PD. For simplicity, in the simulation,
we set P̂ , PI = PD. Thus, higher values of P̂ corresponds to
a faster load change with time. Then, the mean load change
time (MLCT) over Lch links is 1/(2P̂) frames.

Figure 7(a) shows an example trace of throughput (i.e., num-
ber of successful transmission slots) for MLCT= 25 frames
and Lch = 5, where we observe that ARCAMA algorithm
tracks the actual load very well, resulting in nice adaptation
to time-varying load changes. Figure 7(b) shows that the
throughput (over 50000 frames) normalized by the actual
(time-varying) offered load for different values of MLCTs
(Lch = 1) varying from 25 to 100 frames, where the error bars
represent the maximum and minimum values of 10 simulations
with different random seed values (i.e., different load changing
patterns). For a network with a link capacity of 10 Mbps, and
a frame-size of 10 (which corresponds to a 10 msec frame
duration), this corresponds to a load change ranging from
once every 250 msec to once every 1 seconds. We observe
that with ARCAMA algorithm, the normalized throughput is
above 90%, whereas the RANDOM achieves about 60%.
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