
On Maximizing Diffusion Speed in Social Networks:
Impact of Random Seeding and Clustering ∗

Jungseul Ok, Youngmi Jin, Jinwoo Shin, and Yung Yi
Department of Electrical Engineering, KAIST

Daejeon, Republic of Korea
{ockjs, youngmi_jin, jinwoos, yiyung}@kaist.ac.kr

ABSTRACT
A variety of models have been proposed and analyzed to under-
stand how a new innovation (e.g., a technology, a product, or even
a behavior) diffuses over a social network, broadly classified into
either of epidemic-based or game-based ones. In this paper, we
consider a game-based model, where each individual makes a self-
ish, rational choice in terms of its payoff in adopting the new in-
novation, but with some noise. We study how diffusion effect
can be maximized by seeding a subset of individuals (within a
given budget), i.e., convincing them to pre-adopt a new innova-
tion. In particular, we aim at finding ‘good’ seeds for minimizing
the time to infect all others, i.e., diffusion speed maximization. To
this end, we design polynomial-time approximation algorithms for
three representative classes, Erdős-Rényi, planted partition and ge-
ometrically structured graph models, which correspond to globally
well-connected, locally well-connected with large clusters and lo-
cally well-connected with small clusters, respectively, provide their
performance guarantee in terms of approximation and complexity.
First, for the dense Erdős-Rényi and planted partition graphs, we
show that an arbitrary seeding and a simple seeding proportional to
the size of clusters are almost optimal with high probability. Sec-
ond, for geometrically structured sparse graphs, including planar
and d-dimensional graphs, our algorithm that (a) constructs clus-
ters, (b) seeds the border individuals among clusters, and (c) greed-
ily seeds inside each cluster always outputs an almost optimal so-
lution. We validate our theoretical findings with extensive simula-
tions under a real social graph. We believe that our results provide
new practical insights on how to seed over a social network depend-
ing on its connection structure, where individuals rationally adopt
a new innovation. To our best knowledge, we are the first to study
such diffusion speed maximization on the game-based diffusion,
while the extensive research efforts have been made in epidemic-
based models, often referred to as influence maximization.
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1. INTRODUCTION
People are actively using social networks to get new informa-

tion, exchange new ideas or behaviors, and adopt new innovations.
Clearly, it is of significant importance to understand how such in-
formation diffuses over time, where diffusion by local interaction
is the most prominent feature. Various fields including computer
science, economics, and sociology have expressed their interests in
understanding diffusion, e.g., [10, 40, 42]. People have first started
to propose diffusion models in social network with close relevance
to studies with long history on raging epidemic, e.g., SIRS model
[26] or interacting particle system, e.g., Ising model [20]. Ex-
amples of such epidemic-based diffusion model also include [15]
and [6], often referred to as independent cascade or linear threshold
models [24].

Different from epidemic-based models, people often make strate-
gic choices, i.e., an individual adopts a new technology only if the
new technology provides sufficient utility, which increases with the
number of neighbors who adopt the same technology (i.e., coordi-
nation effect) [14, 19, 33, 35]. This is called game-based diffusion
model, which is the main focus of this paper. A recent work by
Montanari and Saberi [33] addressed the question of the equilib-
rium behavior as well as the impact of topological properties on
convergence speed. Under the assumption that individuals behave
with bounded rationality (i.e., noisy best response dynamic), it has
been proved that the number of innovation adopters increases and
the innovation finally becomes widespread. However, the diffusion
time can be significantly long so that in practice the innovation of-
ten diffuses within only a small number of individuals or even be-
come extinct in practice. One of the approaches to reduce the con-
vergence time is to seed some individuals, i.e., convince a subset
of individuals to pre-adopt the new innovation, e.g., by providing
some incentives to those users.

The problem of maximizing the “degree of diffusion” by prop-
erly selecting seeds has been popularly studied in epidemic-based
models, often referred to as influence maximization, whose major
goal is to maximize the number of infected individuals. However,



in game-based models, as in e.g., [33], the problem becomes com-
pletely different mainly because diffusion is widespread at the equi-
librium. Thus, we study how to choose a constrained set of indi-
viduals to accelerate the speed of diffusion, which we call diffusion
speed maximization.

1.1 Contribution
We first formulate a diffusion speed maximization problem, say

P1, as minimizing the notion of typical hitting time which measures
the time when every individual adopts the innovation. We discuss
its computational challenges mainly stemming from (i) MCMC
(Markov Chain Monte Carlo) based estimation and (ii) probabilis-
tic feature of a typical hitting time, which is neither algebraic nor
combinatorial (see Section 2.3). Therefore, we transform the orig-
inal problem P1 into a combinatorial optimization, say P2, using
the theory of meta-stability of Markov chains [39], which, however,
turns out to be computationally intractable as well as difficult to be
reduced to a classical NP-hard problem amenable to approxima-
tion. For example, the influence maximization in epidemic-based
models becomes the submodular maximization in most cases, whose
greedy algorithm guarantees constant approximation [24]. How-
ever, we found that the optimization P2 is not a submodular prob-
lem (see our discussion in Section 2.3).

Despite this hardness of P2, we propose polynomial-time ap-
proximation algorithms for three graph classes, Erdős-Rényi, planted
partition and geometrically structured graphs, and their provable
performance guarantees in terms of approximation ratio as well as
complexity. Our contribution lies in providing new insights on how
to seed individuals depending on the connection structure of under-
lying graph topologies.

◦ Erdős-Rényi and planted partition graphs. We show that an
arbitrary seeding and a simple seeding proportional to the size
of clusters are close to an optimal one with high probability for
the dense Erdős-Rényi and planted partition graphs, respectively
(see Theorems 3.1 and 3.2). The main technical ingredient for
this result is on our concentration inequalities on the so-called
‘energy function’ (see Lemma 4.1), which provides the exact ap-
proximation qualities of the random seeding via a solution of
certain quartic equations. Then it is provably almost optimal via
obtaining its approximate close-form solution.

◦ Geometrically structured graphs. For this graph class, includ-
ing planar and d-dimensional graphs, we design an algorithmic
framework, called PaS (Partitioning and Seeding), and provide
a condition, which, if met, provably guarantees good approx-
imation with polynomial complexity (see Theorem 3.3). PaS
consists of two phases: (i) partitioning the graph into multiple
clusters, and (ii) seeding within each cluster. The proposed PaS
framework relies on our finding that the diffusion process in a
graph is dominated by the slowest diffusion process among the
underlying clusters. Thus, in the partitioning phase, a given
graph should be smartly partitioned into the clusters in which
a seeding problem becomes tractable (via seeding the “border
individuals” among clusters). Then, to minimize the diffusion
time, our focus simply becomes a good seed budget allocation to
each cluster that minimizes the overall diffusion time. A greedy
algorithm is run to achieve the desired budget allocation in the
seeding phase.

The practical implications from our theoretical findings are sum-
marized in what follows: Erdős-Rényi, planted partition and geo-
metrically structured graphs represent (a) globally well-connected,
(b) locally well-connected with big clusters, and (c) locally well-
connected with small clusters, respectively. First, for globally well-

connected graphs like Erdős-Rényi graphs, careful seeding is not
highly required, because the underlying topological structure such
as high symmetry and connectivity does not change significantly
even after seeding with a small budget. However, for locally well-
connected graphs, it is necessary to intelligently exploit their clus-
tering characteristics, where the network-wide diffusion time is gov-
erned by both intra-cluster diffusion and inter-cluster correlation.
As is in sharp contrast to epidemic-based models, in game-based
ones, it turns out that in (b) intra-cluster diffusion becomes the
dominant factor, as opposed to in (c) where inter-cluster correlation
dominantly determines the network-wide diffusion speed. Thus, as
described in Sections 3.2 and 3.3, for planted partition graphs, we
focus only on how to distribute the seed budget to each (big) clus-
ter, while for geometrically structured graphs, the seeds are mainly
selected from the border individuals to remove inter-cluster corre-
lation.

1.2 Related Work
As discussed earlier, diffusion models in literature can be broadly

classified into: (i) epidemic-based [2–4,13,17,24,26] and (ii) game-
based [5, 14, 23, 43], depending on how diffusion occurs, i.e., just
like a contagious disease or individuals’ strategic choices. In par-
ticular, game-based diffusion models [5, 14, 23, 43] adopt a net-
worked coordination game where the payoff matrix appropriately
models the value of accepting new technology for the neighbors’
selections, and studied the equilibrium and the dynamics. Espe-
cially, Kandori et al. [23] proved that the noisy best response dy-
namic converges to the equilibrium that the innovation becomes
widespread. Recently, significant attention has been paid to the
study of convergence time. In [33], it was shown that in highly
connected graph, the convergence becomes slower as opposed to
in epidemic models. In [21], the authors showed that the external
information such as advertisement on a new technology may slow
down diffusion, again on the contrary to in epidemic models [4].
In practice, a small set of influential nodes, called seeds, can be
convinced to pre-adopt a new technology, which can increase the
effect of diffusion. See [12] for motivation in viral marketing, [37]
in graph detection, and [27] in computer virus vaccine dissemi-
nation. The problem of how to maximize the diffusion effect for
both diffusion models are summarized next, where depending on
the adopted diffusion model, different problems can be formulated.

Epidemic-based model. In [24, 25], the authors addressed the so-
called influence maximization problem in linear threshold (LT) and
independent cascade (IC) models. In both LT and IC models, each
individual has only one chance to infect its neighbors right after its
infection. Thus, a main goal is to maximize the influence spread,
i.e., maximize the number of infected individuals. In [24,25], it was
first discussed that the problem is computationally intractable be-
cause of #P-completeness in measuring influence spread for a given
seed set and NP-completeness in finding the optimal seed set that
maximizes influence spread. Using the technique on the submod-
ular set function maximization in [36], they showed that a greedy
algorithm achieves at least (1 − 1/e − ε) of the optimal influence
spread where ε represents the inaccuracy of Monte Carlo simula-
tion for measuring the influence spread. Since the Monte-Carlo
based measurement does not tend to scale with the network size,
the authors in [9] proposed a scalable method called MIA using a
tree structure. In [18], a clustering concept is proposed to reduce
the computational complexity in measuring the influence spread.
In [8], Chen et al. proposed modified LT and IC models by adding
contact process, which delays infection chance of the infected in-
dividual from its infection. Using the modified models, the authors
formulated an influence maximization with time deadline and pro-



posed a greedy algorithm motivated by [24, 25]. In [16], Goyal et
al. generalized the influence maximization problem in LT and IC
models as an optimization problem with three dimensions: influ-
ence spread, seed budget, and time deadline.

Game-based model. In [11,23,28,35], the authors considered only
the best-response dynamics and studied the conditions (of network
topology and the payoff difference between old and new technolo-
gies) on the existence of a small seed set, referred as the so-called
“contagion set,” under which all individuals adopt new technology.
In [29], a noisy best response was considered with objective of
maximizing the influence spread by choosing a seed set assuming
that there exists a set of “negative individuals,” and a greedy al-
gorithm was proposed with simulation-based evaluations. As dis-
cussed in [33], without negative seeding, it is guaranteed to con-
verge to a state where all individuals adopt the new technology.
This paper studies a problem of minimizing the convergence time
to such an equilibrium under a noisy best response dynamic. To the
best of our knowledge, this paper is the first to study this diffusion
speed maximization in a game-based diffusion model.

2. MODEL AND FORMULATION

2.1 Network Model and Coordination Game
Network model. We consider a social network as an undirected
graph G = (V,E), where V is the set of n nodes and E is the
set of edges. Each node represents an individual (or a user) and
each edge represents a social relationship between two individuals.
We let N(i) be the set of node i’s neighbors, i.e., N(i) = {j ∈
V | (i, j) ∈ E}. We simply use +1 and -1 to refer to new and old
technologies, respectively. We are interested in how a new technol-
ogy diffuses over the network.

Networked coordination game. We first consider the famous two-
person coordination game whose payoff matrix is given by Table 1,
where an individual can choose one of new or old technologies,
+1 and -1. We make the following practical assumptions on the
payoffs. First, there always exists coordination gain, i.e., a > d
and b > c. Second, coordination gain becomes larger for the new
technology, i.e., a− d > b− c.

Table 1: Two-person coordination game
P +1 −1

+1 (a, a) (c, d)
−1 (d, c) (b, b)

The two-person coordination game is extended to an n-person
game over G. We let x = (xj ∈ {−1,+1} : j ∈ V ), and x−i =
(xj : j ∈ V \ {i}) be the states (i.e., a strategy vector chosen by
the entire nodes) of all and those except for i, respectively. Then,
in n-person game over G, node i’s payoff Pi(xi,x−i) for the state
x is modeled to be the aggregate payoff against all of i’s neighbors,
i.e.,

Pi(xi,x−i) =
∑

j∈N(i)

P (xi, xj), (1)

where P (xi, xj) is the payoff from the two-person coordination
game, as in Table 1. For notational convenience, let −1 = (resp.
+1) denote the state where every user adopts −1 (resp. +1).

2.2 Diffusion Dynamics
Seed set. We consider a continuous time model, where each node
updates its strategy whenever its own independent Poisson clock
with unit rate ticks. Let x(t) = (xi(t) : i ∈ V ) ∈ {+1,−1}V be

the network state at time t, representing the strategies of all nodes
at time t. We introduce the notion of seed set C ⊂ V, where each
node in C is initialized by +1 and does not change its strategy over
all time, i.e., for any i ∈ C, xi(t) = +1 for all t ≥ 0. Next, we
describe how each non-seed individual updates its strategy.
Best response. As is well-known in game theory, in the best re-
sponse dynamics, each (non-seed) individual selects a strategy that
maximizes its own payoff: a node i chooses +1, if

(a− d)|N+(i)| ≥ (b− c)|N−(i)| (2)

where N+(i) and N−(i) denote the sets of node i’s neighbors
adopting +1 and −1, respectively. Noting that for a given state x
Pi(+1,x−i) − Pi(−1,x−i) represents the payoff difference be-
tween when node i chooses +1 and -1, the best response of node i
is sign(Pi(+1,x−i)− Pi(−1,x−i)), simply expressed as:

sign

(
hi +

∑
j∈N(i)

xj

)
, (3)

where hi = h|N(i)| and h = a−d−b+c
a−d+b−c

Noisy best response: Logit dynamics. In practice, individuals do
not always make the “best” decision. We model such behavior by
introducing small mutation probability that non-optimal strategy is
chosen, often called noisy best response. A version of the noisy
best response we focus on in this paper is logit dynamics [5,31,32,
34] that individuals adopt a strategy according to a distribution of
the logit form which allocates larger probability to those strategies
delivering larger payoffs. More formally, for the given state x,
non-seeded node i chooses the strategy yi ∈ {−1,+1} with the
following probability:

Pβ(yi|x) =
exp(βyiKi(x))

exp(βKi(x)) + exp(−βKi(x))
. (4)

where

Ki(x) =
1

2

(
hi +

∑
j∈N(i)

xj

)
.

Note that (a − d + b − c)yiKi(x) is the payoff gain for the strat-
egy yi instead of −yi from (3) and (a − d + b − c) is removed
just for convenient handling of other quantities later. Here, the pa-
rameter β represents the degree of user rationality, where β = ∞
corresponds to the best response and β = 0 lets users update their
strategies uniformly at random. When the state changes according
to the probability (4) and nodes’ independent Poisson clock ticks,
the system can be viewed as a continuous Markov chain with the
state space SC = {z ∈ {−1,+1}V | zi = 1 if i ∈ C}, recall C
is a given seed set. The dynamics here is also called the Glauber
dynamics in the “truncated” Ising model [38], where the truncation
occurs due to the existence of hard-coded nodes (i.e., the nodes in
the seed set C). Then, it is not hard to see that this chain is time-
reversible with the following stationary distribution µβ :

µβ(x) ∝ exp(−βH(x)),

where

H(x) = −1

2

 ∑
(i,j)∈E

xixj +
∑
i∈V

hixi

+ (1 + 2h)|E|. (5)

In the above, the constant term (1 + 2h)|E| is not necessarily
needed to characterize the stationary distribution, but we add due
to notational convenience in our proofs. We note that −H is often
referred to as a potential function of the n-person game described
in Section 2.1 and H is called the energy function in literature.



2.3 Problem Formulation
Our objective is to find a seed set C (within some budget con-

straint) which maximizes the speed of diffusion. To this end, we
define a couple of related concepts.

First, a random variable called the hitting time (to the state where
all users adopt +1) of our system with a seed set C starting from
the initial state y ∈ SC defined by:

T+(C,y) = inf{t ≥ 0 | x(t) = +1, x(0) = y}.

Using this, we next define the typical hitting time to be:

τ+(C) = sup
y∈SC

inf
{
t ≥ 0 | Pβ{T+(C,y) ≥ t} ≤ e−1

}
.

This means that with probability 1 − 1/e (> 1/2), every node
adopts the innovation +1 within time τ+(C). This typical hitting
time has also been used to measure the diffusion speed for a similar
model via close relation between hitting and mixing of the Markov
chain, e.g., see [33]. Our goal is to solve the following optimization
problem:

P1. min
C⊂V

τ+(C)

subject to |C| ≤ k,

where k is the given seed budget.

Computational challenges of P1. First, given a seed set C, the
computation of the typical hitting time τ+(C) is a highly non-
trivial task, primarily because the hitting time T+(C, ·) is a ran-
dom variable decided by the Markov chain of the logit dynamics
whose underlying space is exponentially large, i.e., |SC |. One can
use the Markov Chain Monte Carlo (MCMC) method for estimat-
ing τ+(C), which, however, takes at least the mixing time of the
Markov chain of the logit dynamic that is typically exponentially
large [33]. Even worse, a naive exhaustive search for the opti-
mization P1 requires computing the typical hitting time 2Ω(n) times
for k = Ω(n). Second, the hardness of the optimization P1 also
comes from the probabilistic definition of the minimizing objective
τ+(C), which is neither algebraic nor combinatorial. Due to these
reasons, at a first glance, the optimization P1 is a highly challeng-
ing computational task, similarly to other influence maximization
problems in epidemic-based diffusion models, e.g., see [24]. It is
not even clear whether the decision version of the optimization P1
is in the computational class NP.

Problem formulation via a combinatorial optimization. To over-
come such difficulties, we use the known combinatorial character-
ization of the typical hitting time τ+(C) from the theory of meta-
stability [33, 39], where it was proved that for a given seed set
C ⊂ V ,

τ+(C) = exp(βΓ∗(C) + o(β)), as β →∞., (6)

where we refer to Γ∗(C) as the diffusion exponent with respect to
the seed set C. In the above, Γ∗(C) is defined as

Γ∗(C) = max
w0∈SC

min
w:w0→+1

max
t<|w|

[H(wt)−H(w0)]. (7)

where the minimization is taken over every possible path w =
(w0, w1, · · · , wT = +1) such that for each t, wt and wt+1 are
same except for one coordinate. This implies that Γ∗ dominates
the exponent of diffusion time τ+(C) for large β. Also, Γ∗ can be
interpreted as the “energy barrier” along the most probable path to
+1. Two maximums in (7) choose the largest energy difference
along a path toward +1. Then the (middle) minimum in (7) finds a
path that has the smallest energy barrier to the ground state +1 so

that it is the most probable. In [33], it is known that the minimiza-
tion of (7) is achieved just at a monotone path w0 ≺ w2 · · · ≺ wT ,
i.e., a user is not allowed to take back from +1 to −1.

The formula (6) provides a tractable approach for bounding τ+(C)
through Γ∗(C) and motivated by this, we will focus on the follow-
ing optimization instead of P1:

P2. min
C⊂V

Γ∗(C)

subject to |C| ≤ k,

where it becomes identical to P1 as β →∞ from (6).

Further challenges of P2. Note that it is still challenging to com-
pute Γ∗(C) for a given seed set C for the following two reasons.

◦ First, there exist exponentially many monotone paths to consider
for the minimization in (7). Characterizations of Γ∗(C) using
‘tilted cut’ and ‘tilted cut-width’ are known, but they are also
computationally intractable, e.g., see Section 4.2 of [33]. Nev-
ertheless, Γ∗(C) is defined as a form of combinatorial optimiza-
tion and potentially more amenable to theoretical analysis than
τ+(C).

◦ Second, in epidemic-based diffusion models, the influence maxi-
mization problem [24], which maximizes the number of infected
individuals, could enjoy an algorithmic convenience because of
the key feature the objective function turns out to be submodu-
lar. Similar convenient features may also be applied to our case,
which, if so, would facilitate our analysis significantly. How-
ever, unfortunately our objective function Γ?(·) is neither su-
permodular nor submodular, as proved by a counter-example in
Appendix A, which motivates our study of a different kind of
approximation techniques.

3. MAIN RESULT
In this section, we describe our polynomial-time approximation

algorithms for the seeding problem P2. Each algorithm provides
the guideline on which nodes should be seeded for fast diffusion
over a game-based diffusion model for each of three graph classes,
which is classified by the criterion on how globally and locally
well-connected nodes are. To this end, we first introduce the fol-
lowing notion of “approximate solution”.

DEFINITION 3.1. A seed set C ⊂ V with |C| ≤ k is called a
(γ, δ)-approximate solution of the seeding problem P2 if

Γ∗(C) ≤ γ · min
C′:|C′|≤δk

Γ∗(C′),

where γ ≥ 1 and δ ≤ 1.

The parameters γ and δ measure the quality of an approxima-
tion solution, quantifying the degrees of suboptimality in objective
value and budget, respectively. One can observe that the solution
with (γ, δ) = (1, 1) corresponds to an optimal solution. In what
follows, we present the characteristics of approximate solutions in
three graph classes which have different topological structures in
terms of connectivity and the degree of clustering.

3.1 Erdős-Rényi Graphs
We first consider the popular Erdős-Rényi (ER) graph, denoted

by GER(n, p), which is a random graph on n nodes such that every
node pair has an edge with probability p. Let λ = np, roughly cor-
responding to the average number of neighbors per node, where our
focus is when λ = Ω(1). For ER graphs, we obtain the following
result, whose proof is presented in Section 4.1.



Figure 1: An instance of ER-graph (left) and planted partition
graph (right). Source: Lecture note of the network analysis and
modeling course in Santa Fe Institute [1].

THEOREM 3.1. For a ER graph GER(n, p) and the seed budget

k = κn with κ <
(

1−h
2
− h√

λ

)
, every C ⊂ V with |C| = k is

almost surely a (γ, δ)-approximate solution as n→∞, where

δ = 1 and γ =

1 + ε for any given ε > 0 if λ = ω(1),

1 + 2√
λ

2(1−h2)
(κ− 1−h

2 )
2−1

if λ = Θ(1).

Theorem 3.1 implies that for the relatively dense and (globally)
well-connected ER graph, formally for the case λ = ω(1), an ar-
bitrary seed set C is, somewhat surprisingly, an almost optimal
solution, i.e., (γ, δ) → (1, 1). Furthermore, we remark that in this
case, the diffusion exponent Γ∗ is λn

[
κ− 1−h

2

]2
+

+ o(λn) with
high probability.1 Thus, one needs a seed budget larger than 1−h

2
n

in order to have an order-wise reduction in Γ∗. The near optimality
of an arbitrary seeding in the dense ER graphs mainly comes from
globally symmetric connectivities of nodes which makes the influ-
encing effect by each node indistinguishable. Therefore no careful
seeding mechanism is necessary for this globally well-connected
graph.

3.2 Planted Partition Graphs
Second, we consider a generalized version of ER graphs and

study the so-called planted partition graph 2, which we denote by
GPP(n, p, q,ω). It is a popular model, e.g., [7], for social networks
with big communities (also called clusters); Given a disjoint parti-
tion of the clusters {V1, ..., Vm}, with

⋃m
l=1 Vl = V, let the frac-

tion of nodes in the graph that belongs to a cluster l be ωl = |Vl|/n
where ω = (ω1, ..., ωm) ∈ (0, 1)m. For a pair of i, j ∈ V , an
edge (i, j) exists between them with probability p = Θ(1) for the
nodes i and j if i, j belong to a same cluster, and with probability
q < p, otherwise. We obtain the following result, whose proof is
presented in Section 4.2.

THEOREM 3.2. For a planted partition graph GPP(n, p, q,ω)
and the seed budget k = κn with κ < 1−h

2
, every C ⊂ V such

that

C ∈ arg min
{C′:|C′|≤k}

max
1≤l≤m

(
1− h

2
|Vl| − |C′ ∩ Vl|

)
(8)

is almost surely a (γ, δ)-approximate solution as n → ∞, where
for any given ε > 0,

δ = 1, and γ =

{
1 + ε if p/q = ω(1),

1 + 2
pξ2/(q+ε)−3

if p/q = Θ(1),

1Here [x]+ is x if x > 0 and 0 otherwise.
2This is often referred to as the stochastic block model.

where

ξ = min
{ν∈[0,1]m:|ν|1≤κ}

max
1≤l≤m

(
1− h

2
ωl − νl

)
.

In particular, for the homogeneous cluster size, i.e.,ω = ( 1
m
, ..., 1

m
),

ξ =
1

m

(
1− h

2
− κ
)
.

Theorem 3.2 provides a guideline on how to allocate seeds, com-
ing from solving a “simple” min-max optimization (8) whose com-
putational complexity is O(1) (m is a given constant and only car-
dinality ofC′∩Vl is necessary in computing the min-max solution).
Intuitively the resulting seed setC in (8) allocates seeds proportion-
ally to the size of each cluster, and intra-cluster seeding does not
have to be carefully chosen. More formally, any seed set C with
such an allocation is an almost optimal solution, regardless of how
to seed inside each cluster if the graph is locally well-connected
with big clusters whose sizes scales with respect to n and number
of inter-cluster edges is ignorable comparing to intra-cluster ones,
i.e., |Vl| = O(n) and p/q = ω(1). Similarly to the ER graphs,
we remark that in this case, a seed budget larger than 1−h

2
n is re-

quired in order to have an order-wise reduction in Γ∗.We also ana-
lyze quality of the simple seeding when the inter-cluster edges are
relatively substantial, i.e., p/q = Θ(1). Performance of the seed-
ing gets closer to optimality as the ratio of intra-cluster edges to
inter-cluster edges increases, i.e., higher p/q.

For locally well-connected graphs with clusters, it is necessary
to intelligently exploit their clustering characteristics, where the
network-wide diffusion time is governed by both (a) intra-cluster
diffusion and (b) inter-cluster correlation. In locally well-connected
with big clusters such asGPP(n, p, q,ω), the intra-cluster diffusion
Γ∗ in each Vl dominates the inter-cluster correlation between Vl
and Vl′ with l 6= l′. Hence it suffices to focus on how much seed
budget is distributed to each (big) cluster depending on its size.

3.3 Geometrically Structured Graphs
Third, we consider locally well-connected graphs with small clus-

ters. Those graphs include geometrically structured graphs such
as planar and d-dimensional graphs. In these graphs, the inter-
cluster correlation dominantly determines the network-wide diffu-
sion speed, and hence seeds should be selected with goal of remov-
ing the correlation. Different from the earlier two types of graphs,
we here take an approach that rather than studying a particular type
of graph, we first propose an algorithm and then study a sufficient
condition that ensures good diffusion performance and is satisfied
in the well-known geometrically structured graphs such as planar
and d-dimensional graphs.

One of achieving the goal of removing inter-cluster correlation
would be to seed the border nodes among small clusters. Motivated
by this, we design a generic algorithm, called PaS (Partitioning and
Seeding) (see Algorithm 1 for a formal description) for finding
good seeds. As the name implies, PaS has two phases: (i) partition-
ing and (ii) seeding, as elaborated in what follows.
(i) Partitioning phase: In this phase, PaS finds a partitioning with,
a finite number of node clusters, where the number of clusters are
chosen appropriately, depending on the underlying graph topolo-
gies. Except for a special cluster, say V0, which will be used as the
initial seed set, PaS will find the seeds contained in each cluster by
the seeding phase.
(ii) Seeding phase: In this phase, PaS runs in multiple rounds,
where it starts from the initial seed set V0 (step 2-1) and the seed set
C increases by one in each round, until the entire seed set size be-
comes the target budget k. Let Gl and Cl be the subgraph induced



and the seed contained, by l-th cluster Vl, respectively. The seed-
ing phase consists of two sub-phases (a) partition selection and (b)
seed selection. In (a), PaS finds the partition l? that has the slowest
diffusion time with the current seed set Cl (step 2-1). In (b), for
the chosen partition l?, we replace the existing seeds Cl? by com-
pletely new set of seeds whose size increases by one. The new seed
set is chosen such that the diffusion time in cluster l? is minimized
(step 2-2). Finally, the temporary seed C is updated by a new seed
set in cluster l?, which is repeated until |C| = k (steps 2-3 and 2-4).
The choices of partition {V0, V1 . . . , Vm} in step 1 determines the
performance and complexity of the PaS algorithm, where we will
consider different choices for different social networks for rigorous
analysis.

Now, we are ready to present the performance guarantees of the
PaS algorithm. To that end, we introduce a notation: El is the edge
set of the subgraph induced by Vl ∪ V0, where Vl is the l-th cluster
resulting from the partitioning phase.

THEOREM 3.3. For given graph G = (V,E) and seeding bud-
get k = κn with κ ∈ (0, 1), suppose that {Vl : l = 0, 1, . . . ,m}
in the partitioning phase of the PaS algorithm has the following
condition:

For some ε ∈ (0, 1),

|V0| ≤ εn and |Vl| = O(1), for all l = 1, ...,m. (9)

Then, the PaS algorithm outputs a (1, 1− ε
κ

)-approximation so-
lution and its seeding phase takes O(n2) time.

The proof of Theorem 3.3 is presented in Section 4.3. Theorem
3.3 implies that if there exists an algorithm finding a ‘good’ parti-
tion (i.e., |V0|/n ≤ ε for some small ε > 0) with small clusters
(i.e., Vl = O(1)), as specified in the condition (9), the PaS algo-
rithm outputs an almost optimal solution. Note that V0 corresponds
to the set of border nodes among clusters. This condition (9) does
not always hold. However, for the following classes of social net-
works, polynomial-time algorithms are known for computing such
a partition satisfying the condition for any ε = Ω(1) [22].3

◦ d-dimensional Graph. A graph is called called a d-dimensional
graph, denoted by GdD(n, d,D,R), if each node i can be
embedded to a position πi in Rd such that (i, j) ∈ E implies
that the Euclidean distance between πi and πj is less than R
and any cube of volume of B contains at most D · B nodes,
where d,D,R = O(1).

◦ Planar Graph. A planar graph, denoted by GPL(n,∆), can
be drawn on the plane without intersection of edges except
nodes which is endpoints of edges and its maximum degree
∆ = O(1).

Therefore, we can state the following corollary of Theorem 3.3.

COROLLARY 3.1. For a d-dimensional graphGdD(n, d,D,R)
or planar graph GPL(n,∆) and seeding budget k = κn with κ ∈
(0, 1), there exists a polynomial-time4 algorithm such that it out-
puts a (1, 1− ε)-approximation solution for any ε ∈ (0, 1).

In Section 6, we will show that PaS algorithm shows indeed a good
performance for a real social graph, showing its practicability.
3In fact, the author [22] considers polynomially-growing graphs
and minor-excluded graphs, where d-dimensional graphs and pla-
nar graphs are their special cases, respectively.
4It is a polynomial with respect to n, but may be exponential with
respect to 1/ε.

Input: Graph G = (V,E) and seed budget k
Output: Seed set CPaS

1. Partitioning phase.
Construct a partition {Vl : l = 0, 1, . . . ,m}, where there
exists no edge between Vl and Vl′ for all l 6= l′ ≥ 1,

m⋃
l=0

Vl = V and Vl ∩ Vl′ = ∅, for all l 6= l′ ≥ 0.

We call V0 “separator cluster” and each component Vl
becomes a cluster, i.e., m+ 1 is the number of clusters
found in this phase.

2. Seeding phase.

2-1. Seed V0, i.e., C ← V0.

2-2. Cluster selection.
Find a cluster 1 ≤ l∗ ≤ m such that

l∗ ∈ arg max
1≤l≤m:|Cl|<|Vl|

Γ∗(Gl, Cl ∪ V0),

where Gl is the subgraph induced by Vl ∪ V0 and Cl is
the set of seeds in Vl, i.e., Cl = C ∩ Vl.

2-3. Seed selection in the selected cluster.
Find a new seed set D in Vl∗ such that

D ∈ arg min
D′⊂Vl∗ :|D′|=|Cl∗ |+1

Γ∗
(
Gl∗ , D

′ ∪ V0

)
.

2-4. Update C ← (C \ Cl∗) ∪D, and repeat the steps 2-2,
2.3, and 2-4 whenever |C| < k.

3. Terminate. Output C.

Algorithm 1: PaS (Partitioning and Seeding) Algorithm

4. PROOFS OF THEOREMS
This section provides the proofs of Theorems 3.1, 3.2 and 3.3.

4.1 Proof of Theorem 3.1
We first present the proof of Theorem 3.1 in this section. Con-

sider Erdős-Rényi graph GER(n, p) and seed budget k = κn. We

will show that for κ <
(

1−h
2
− h√

λ

)
, the following event occurs

almost surely as n→∞:

L ≤ Γ∗(C)

λn
≤ U , for all C with |C| = k, (10)

where

L =

(
κ− 1− h

2

)2

− 2(1− h2)√
λ

,

U =

(
κ− 1− h

2

)2

+
2(1− h2)√

λ
.

The above inequality (10) implies that Γ∗(C) is highly concen-
trated on the interval [L,U ] for any arbitrary seed set C such that
|C| = k. Then, we should have γ = U/L from Definition 3.1.
Theorem 3.1 is a direct implication of (10), because when λ =
λn = ω(1) for any given ε > 0, we can find sufficiently large n
such that U/L = 1 + ε, and when λ = ω(1) we can re-express



U/L as in Theorem 3.1. In the rest of this section, we focus on the
proof of (10).

To begin with, recall the energy function H(x) in (7). For con-
venience, we abuse the terminology and define the energy function
H(S) for a set S ⊂ V (not for a state x as in (7)) as:

H(S) = cut(S, V \S)−
∑
i∈S

h|N(i)|

where cut(A,B) is the cardinality of the set {(i, j) ∈ E | i ∈
A, j ∈ B} for two disjoint subsets A,B ⊂ V . Note that the
above definition coincides with the original definition (5) by setting
xi = 1 if and only if i ∈ S. Using this energy function, one can
express the function Γ∗(C) in (7) by:

Γ∗(C) = max
C⊂S0⊂V

min
S:S0→V

max
t<|S|

[
H(St)−H(S0)

]
, (11)

where for A ⊂ V , S : A → V is a monotone sequence of sets,
A = S0, S1, ..., S|S| = V such that St−1 ⊂ St and St\St−1 is a
vertex in V \A for 1 ≤ t ≤ |S|.

To show the concentration of Γ∗, we first show the concentration
of the energy function H , as stated in the next lemma whose proof
is presented in Section 5.1.

LEMMA 4.1. Consider Erdős-Rényi graphGER(n, p) with λ =
np = Ω(1). The following events occurs almost surely as n→∞:

|H(S)− a(|S|)| ≤ η(|S|),

where

a(s) = (1− h)s(n− s)p− hs(s− 1)p,

η(s) = (1− h)
√

2λs(n− s) + 2h
√
λs(s− 1).

In Lemma 4.1, H(S) is bounded by a(|S|) ± η(|S|) which de-
pends only cardinality of |S|. Thus, the paths, which are taken in
min of Γ∗, have same bounds if they have same start S0. Hence
we have following:

Γ∗(C)

λn
=

1

λn
max

C⊂S0⊂V
min

S:S0→V
max
t<|S|

[
H(St)−H(S0)

]
≤ 1

λn
max

|C|≤s1≤s2
a(s2) + η(s2)− a(s1) + η(s1) (12)

=O

(
1

n

)
+ max
κ≤σ1≤σ2

â(σ2) + η̂(σ2)− â(σ1) + η̂(σ1), (13)

where

â(σ) = (1− h)σ(1− σ)− hσ2,

η̂(σ) =
1− h√
λ

+
2h√
λ
σ.

In (12), we have max over |C| ≤ s1 ≤ s2 since C ⊂ S0 ⊂ St for
t < |S|. Also, in (13), the O( 1

n
) term is from O

(
1
n

+ 1
λn

)
since

we have λ = Ω(1).
We bound a, η by â, η̂ for achieving an upper bound of a suc-

cinct close-form for Γ∗(C)
λn

. However, we note that one can directly
consider (12) and obtain a tighter (but of a complicated form) upper
bound for Γ∗(C)

λn
. Now it is not hard to check the maximum in (13)

is (
κ−

(
1− h

2
− h√

λ

))2

+
2(1− h2)√

λ

at σ1 = κ and σ2 =
(

1−h
2

+ h√
λ

)
if κ ≤

(
1−h

2
− h√

λ

)
. This

implies that Γ∗(C)
λn
≤ U . The proof of the lower bound Γ∗(C)

λn
≥ L

can be obtained similarly. This completes the proof of (10) and
hence that of Theorem 3.1.

4.2 Proof of Theorem 3.2
In this section, we present the proof of Theorem 3.2. Consider

a planted partition graph GPP(n, p, q,ω), and a seed set C′ with
budget k < 1−h

2
n satisfying the conditions in Theorem 3.2. Then,

to show Theorem 3.2, it suffices to show that the following events
occur almost surely as n→∞:

Γ∗(C′)− Γ∗(C∗)

Γ∗(C∗)
≤ 2

p
(q+n−0.4)

ξ2 − 3
(14)

where

ξ = min
{ν∈[0,1]m:|ν|1≤κ}

max
1≤l≤m

(
1− h

2
ωl − νl

)
,

andC∗ is an optimal seed set, i.e.,C∗ ∈ arg minC:|C|≤k=κn Γ∗(C).

This is because when p/q = ω(1), i.e., q = o(1), we have n−0.4

becomes arbitrarily small as n→∞, thus the result follows.
We first let Gl be the subgraph induced by each l-th cluster Vl,

and El be the edges of Gl. We also let E0 = E \ ∪ml=1El, which
corresponds to the set of inter-cluster edges. Consider the “split
graph” G′ = (V,E′ = E \ E0), i.e., G′ is a graph removing the
inter-cluster edges from G.

It is easy to have the following, which states that the difference
of Γ? between G and G′ is bounded by the number of inter-cluster
edges: For every C ⊂ V ,

|Γ∗(G,C)− Γ∗(G′, C)| ≤ 2|E0|. (15)

To check the above, for A,B such that A ⊂ B ⊂ V , we calculate
H(B)−H(A) as below:

H(B)−H(A)

= (1− h) · cut(B \A, V \B)− (1− 3h) · cut(A,B \A)

+ 2h · edge(B \A) (16)

where edge(S) is number of edges among nodes in S, i.e., edge(S)
= |{(i, j) ∈ E|i, j ∈ S}|. Note that in (16), three edge sets counted
by cut and edge are disjoint. Thus, from removing an edge, change
in value of (16) is at most max(1−h, |1−3h|, 2h) ≤ 2 because of
0 < h < 1. Also, we have S0 ⊂ St in the expression of Γ∗ in (11).
Hence we have (15) since G′ is the graph where E0 is removed
from G.

Since the number of inter-cluster edges are stochastically domi-
nated by a random variable with the binomial distributionB

(
n(n−1)

2
, q
)

,
we have:

P
[
|E0|
n2
≤ q

2
+

1

4
n−0.4

]
→ 1 as n→∞, (17)

where note that E[|E0|] = q n(n−1)
2

.
We now present a key lemma for the proof of Theorem 3.2, stat-

ing that where Γ∗(G′, C′) and minC Γ∗(G′, C) is located.

LEMMA 4.2. For everyC′ satisfying the conditions in Theorem
3.2, the following holds almost surely as n→∞,∣∣∣∣Γ∗(G′, C′)n2

− ξ2p

∣∣∣∣ ≤ 1

2
n−0.4∣∣∣∣ min

C:|C|≤k

Γ∗(G′, C)

n2
− ξ2p

∣∣∣∣ ≤ 1

2
n−0.4. (18)

Now, combining (15), (17), and Lemma 4.2, leads to:∣∣∣∣Γ∗(C′)n2
− ξ2p

∣∣∣∣ ≤ (q + n−0.4) (19)



Furthermore, the following occurs almost surely as n→∞:

Γ∗(G,C)− Γ∗(G,C∗)

n2

(a)

≤ Γ∗(G,C′)− Γ∗(G′, C∗)

n2
+

2|E0|
n2

(b)

≤ Γ∗(G′, C′)

n2
− min
C:|C|≤k

Γ∗(G′, C)

n2
+

4|E0|
n2

(c)

≤ n−0.4 +
4|E0|
n2

(d)

≤ 2(q + n−0.4), (20)

where (a) is from (15), (b) is from (15) and the inequality:
minC Γ∗(G′, C) ≤ Γ?(G′, C?), (c) is from Lemma 4.2, and fi-
nally (d) is from (17).

Then, (14) is a direct implication of (19) and (20), noting the the
bound Γ∗(C′)

Γ∗(C∗) ≤
ξ2p−2(q+n−0.4)

ξ2p−3(q+n−0.4)
. This completes the proof.

4.3 Proof of Theorem 3.3
This section provides the proof of Theorem 3.3. It is not hard

to check the complexity of the seeding phase is O(n2) for the fol-
lowing reason: In the seeding phase, we have total k = O(n) it-
erations. In each iteration, the number of clusters in the partition
satisfying P1 is O(n)(= m). Further, the subphases of partition
selection take O(m) and O(1) times, respectively, because using
|Vl| = O(1), l = 1, . . . ,m, we can compute the value Γ∗ in each
subgraph Gl in O(1) time (note that the nodes in V0 are already
seeded).

We henceforth focus on the approximation quality of the output
from the PaS algorithm. To this end, one can observe that the output
CPaS of the PaS algorithm minimizes Γ∗ in each subgraph Gl for
the budget allocation vPaS

l = |CPaS ∩ Vl|, i.e.,

CPaS
l ∈ arg min

{Cl⊂Vl:|Cl|≤|CPaS
l
|}

Γ∗(Gl, Cl ∪ V0), (21)

where CPaS
l = CPaS ∩ Vl. Recall that Gl is the subgraph induced

by Vl ∪ V0. In addition, we use the following lemma whose proof
is given in Section 5.3.

LEMMA 4.3. For every seed set C such that V0 ⊂ C ⊂ V ,

Γ∗(C) = max
l=1,...,m

Γ∗(Gl, Cl ∪ V0),

where Cl = C ∩ Vl.
From Lemma 4.3 and (21), we have that

Γ∗(CPaS)

= max
1≤l≤m

min
{Cl⊂Vl:|Cl|≤|CPaS

l
|}

Γ∗(Gl, Cl ∪ V0). (22)

Now we state the following key lemma, where its proof uses the
above characterization of Γ∗(G,CPaS) and is presented in Section 5.4.

LEMMA 4.4. Given graph G = (V,E) and budget k, the out-
put CPaS of the PaS algorithm satisfies that

CPaS ∈ arg min
C:|C|≤k,V0⊂C

Γ∗(C).

From Lemma 4.4, it follows thatCPaS is a (1, 1− ε
κ

)-approximation
solution, since

Γ∗(CPaS) = min
C:|C|≤k,V0⊂C

Γ∗(C)

≤ min
C:|C|≤k−|V0|

Γ∗(C)

≤ min
C:|C|≤k(1− ε

κ
)
Γ∗(C),

where we use |V0| ≤ εn, k = κn and the monotone property of
Γ∗, i.e., for all A,B such that A ⊂ B ⊂ V , Γ∗(B) ≤ Γ∗(A).
This completes the proof of Theorem 3.3.

5. PROOF OF LEMMAS
This section provides the proofs of Lemmas 4.1, 4.2, 4.3 and 4.4.

5.1 Proof of Lemma 4.1
Consider a subset S ⊂ V, where let s = |S|. For i ∈ S, we can

splitN(i) into two disjoint sets asN(i) =
(
N(i)\S

)⋃(
N(i)∩

S
)
. Using this separation, H(S) in (11) can be written as:

H(S) = (1− h)cut(S, V \S)− h
∑
i∈S

|N(i) ∩ S|. (23)

In the ER graph, note that cut(S, V \ S) and 1
2

∑
i∈S |N(i) ∩ S|

follows the binomial distributions B(s(n − s), p) and B(s(s −
1)/2, p), respectively. Then, from the Chernoff’s bound, we have

P

[∣∣cut(S, V \ S)− ps(n− s)
∣∣ ≥√2λs(n− s)

]
≤ 2 exp(−n), (24)

P

[∣∣1
2

∑
i∈S

|N(i) ∩ S| − ps(s− 1)/2
∣∣ ≥√λs(s− 1)

]
≤ 2 exp(−n). (25)

Thus, by applying the union bound to (24) and (25) and using (23),
it follows that

P
[∣∣H(S)− a(s)

∣∣ ≥ η(s)
]
≤ 4 exp(−n), (26)

where a(s) and η(s) are defined in Lemma 4.1. Finally, we com-
plete the proof using the above inequality:

P

[ ⋂
S⊂V

[∣∣H(S)− a(|S|)
∣∣ ≤ η(|S|)

]]
≥ 1− 4 exp(−n) · 2n

→ 1 as n→∞,

where we use the union bound and (26) for the first inequality.

5.2 Proof of Lemma 4.2
We first note that each subgraph Gl is an ER graph GER(ωln, p)

where its Γ∗(Gl, ·) was already studied in Section 4.1. Hence, from
(13) with p = Θ(1), we have η̂(σ) = O(n−0.5) = o(n−0.4).5

Thus, for any Cl ⊂ Vl we have almost surely as n→∞:

Γ∗(GER(ωln, p), Cl)

n2

=

{ (
1−h

2
ωl − νl

)2
p+ 1

2
n−0.4 if νl ≤ 1−h

2
1
2
n−0.4 otherwise,

where νl = |Cl|
n

. Also, we note that |Vl| = ωln = Ω(n). Using
the above, we have that almost surely as n → ∞, for every Cl ⊂
Vl,

Γ∗(Gl, Cl)

n2
=

(
max

(
1− h

2
ωl − νl, 0

))2

p+
1

2
n−0.4. (27)

Since G′ consists of disconnected subgraphs G1, ..., Gm, we
provide the following which implies that the value Γ∗ in the en-
tire graph is decided by the maximum of the corresponding values
in subgraphs: for every seed set C ⊂ V ,

Γ∗(G′, C) = max
l=1,...,m

Γ∗(Gl, Cl). (28)

5Here we have λ = np = Θ(n).



The proof of (28) is almost identical to that of Lemma 4.3, and we
omit it for brevity.

Now observe that for every C ⊂ V with |C|
n
≤ κ ≤ 1−h

2
, there

exists l such that |Cl|
n

= νl ≤ 1−h
2
ωl. Thus, from (27) and (28), it

follows that for every C ⊂ V such that |C| ≤ k ≤ 1−h
2
n,

Γ∗(G′, C)

n2
=

(
max

1≤l≤m

(
1− h

2
ωl − νl

))2

p+
1

2
n−0.4, (29)

where νl = |Cl|
n

.
Therefore, it suffices to show the following:∣∣∣∣ max

1≤l≤m

(
1− h

2
ωl − ν′l

)
− ξ
∣∣∣∣ ≤ 1

2
n−0.4 (30)

where ν′l =
|C′l |
n

.
Since we consider C′ satisfying (8), max1≤l≤m

(
1−h

2
ωl − ν′l

)
and ξ are the same except that the min is taken over ν consisting
of continuous vl in ξ but we have the discreteness of ν′l = |C′∩Vl|

n
.

Due to this discreteness, ξ and maxl=1,...,m
f(Gl,C

′
l)

n
have at most

1
n

difference which is less than n−0.4 as n → ∞. This completes
the proof.

5.3 Proof of Lemma 4.3
We use proof by induction with respect to the number of clusters,

i.e. m. The following claim states formally the base case m = 2,
where its proof is presented in Appendix B.

PROPOSITION 5.1. For givenG = (V,E), consider a partition
{Vl : l = 0, 1, 2}, where there exists no edge between V1 and V2,⋃

l∈{0,1,2}

Vl = V and Vl ∩ Vl′ = ∅, for all l 6= l′ ≥ 0.

Then, it follows that for any seed set C such that V0 ⊂ C ⊂ V ,

Γ∗(C) = max
l=1,2

Γ∗(Gl, Cl ∪ V0),

where Gl = (Vl ∪ V0, El) is the induced subgraph by Vl ∪ V0 and
Cl = C ∩ Vl.

We now consider two subgraphsG1 = (V1∪V0, E1) andG-1 =
(V-1 ∪ V0, E-1) where

V-1 = ∪ml=2Vl and E-1 = ∪ml=2El.

Note that the separator V0 also partitions G into G1 and G-1 which
are the subgraphs induced by V1 and V-1, respectively. Then, from
the construction ofG-1 and Proposition 5.1, for any seed setC such
that V0 ⊂ C ⊂ V , we have

Γ∗(C) = max {Γ∗(G1, C1 ∪ V0),Γ∗(G-1, C-1 ∪ V0)} ,

where C-1 = C ∩ V-1.
Observe that V0 also partitions G-1 = (V-1 ∪ V0, E-1) into two

subgraphs G2 = (V2 ∪ V0, E2), G-2 = (V-2 ∪ V0, E-2) where
V-2 = ∪ml=3Vl andE-2 = ∪ml=3El. Then, one can also apply Propo-
sition 5.1 toG-1 again: for any seed set C such that V0 ⊂ C ⊂ V-1,

Γ∗(G-1, C-1 ∪ V0) = max {Γ∗(G2, C2 ∪ V0),Γ∗(G-2, C-2 ∪ V0)} ,

where C-2 = C ∩ V-2. Thus, we have, for any seed set C such that
V0 ⊂ C ⊂ V ,

Γ∗(C) = max

{
Γ∗(G-2, C-2 ∪ V0),max

l=1,2
Γ∗(Gl, Cl ∪ V0)

}
.

This provides the proof of Lemma 4.3 for the casem = 3. One can
repeat this procedure to complete the proof of Lemma 4.3.

5.4 Proof of Lemma 4.4
We use proof by contradiction. To this end, suppose that there

exists C∗ 6= CPaS such that, |C∗| = k, V0 ⊂ C∗ ⊂ V and

Γ∗(CPaS) > Γ∗(C∗). (31)

Let CPaS
l = CPaS ∩ Vl and C∗l = C∗ ∩ Vl. Then, from C∗ 6= CPaS,

there must exist l′ such that

|CPaS
l′ | > |C∗l′ |. (32)

The above inequality implies that the PaS algorithm selects the
cluster l′ (in step 2-3) more than |C∗l′ | times, where we say that
it does for the |C∗l′ | + 1 time at the t-th iteration of the seeding
phase. This means that at the end of the (t − 1)-th iteration, the
set of seeds in the cluster l′ has cardinality |C∗l′ | and the largest Γ∗

among clusters, i.e., |CPaS
l′ (t− 1)| = |C∗l′ |, and

Γ∗(CPaS(t− 1)) = Γ∗(Gl′ , C
PaS
l′ (t− 1))

= min
Cl′⊂Vl′ :|Cl′ |≤|C

PaS
l′ (t−1)|

Γ∗(Gl′ , Cl′ ∪ V0)

= min
Cl′⊂Vl′ :|Cl′ |≤|C

∗
l′ |

Γ∗(Gl′ , Cl′ ∪ V0) (33)

where CPaS(t − 1) denotes the intermediate seed set at the end of
the (t − 1)-th iteration of the seeding phase. Therefore, it follows
that

Γ∗(CPaS)
(a)

≤ Γ∗(CPaS(t′ − 1))

(b)
= min

Cl′⊂Vl′ :|Cl′ |≤|C
∗
l′ |

Γ∗(Gl′ , Cl′ ∪ V0)

≤ Γ∗(Gl′ , C
∗
l′ ∪ V0)

≤ max
1≤l≤m

Γ∗(Gl, C
∗
l ∪ V0)

(c)
= Γ∗(C∗),

where (a) is from the fact that the PaS algorithm keeps reducing Γ∗

at every iteration, (b) is due to (33), and (c) uses Lemma 4.3. This
conflicts to (31), and completes the proof of Lemma 4.4.

6. SIMULATION RESULTS
In this section, we perform simulations using a real social net-

work graph and show how our theoretical findings can be applied
to the diffusion speed maximization in practice. Guided by the
implications drawn from the analytic results based on three graph
classes, we propose a practical, heuristic seeding algorithm and
show how it performs, compared to other seeding algorithms.

6.1 Setup
A real-world social network. We use a topology data set of the
social network extracted from 10 ego networks among Facebook
users originally used in [30]. The network is an undirected graph
consisting of 4039 nodes and 88234 edges where each node corre-
sponds to a Facebook account and an edge corresponds to a social
relationship (called “FriendList”) in Facebook. Figure 2(a) depicts
a blueprint of the network, where we observe that there exist about
10 giant clusters, corresponding to 10 ego networks. Figure 2(b)
presents the adjacency matrix of the graph with partitioning, show-
ing 90 clusters that is obtained from the partitioning scheme in [41]
(we use this for our seeding algorithm, as will be described shortly).
We use β = 10 for the degree of rationality and vary h from 0 to
1 to investigate the impact of the difference between new and old
technologies. We are interested in the regime of users are suffi-
ciently rational and hence we tested various values of β larger than



(a) A blueprint of the Facebook ego networks consist-
ing of 4039 users and 88234 edges.
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(b) The adjacency matrix of the Facebook ego
networks

Figure 2: The Facebook ego networks used for our simulation.

10. They resulted in a similar trend and thus we just report the case
of β = 10 in this paper due to space limitation.
Tested seeding algorithms. We compare the performance of the
following four algorithms for comparison, each of which is de-
scribed in what follows.
◦ Degree. This choose k nodes in the order of their degrees.

◦ GreedyCut. This runs k iterations where at each iteration a node
with the maximum number of edges is selected, and then re-
moved from the seed candidates.

◦ Random. This selects k nodes uniformly at random.

◦ PrPaS. This first identifies the partition, say {V1, ..., Vm}, from
the given graph using the random-walk based approach [41], and
then generates a seed set C whose per-cluster portion is kept
equal, i.e., |C∩Vl|/|Vl| = k/n for l = 1, ...,m. In each cluster,
seeds are selected uniformly at random.
PrPaS (Practical PaS) is the algorithm that is motivated by our

theoretical findings. According to our analysis, we prefer a “good”
partition consisting of locally well-connected clusters. We employ
the random walk based partitioning scheme, borrowed from [41].
Then, with the resulting partition, we just balance the fraction of
seeds in each cluster, so that the entire seed budget is allocated in
proportion to the cluster size. This can be regarded as a practical
version of PaS in Section 3.3 in the sense that (i) it works with-
out explicit knowledge of h, which may be hard to be quantified
in practice, and (ii) partitioning based on simple random walks is
scalable and applicable to large-scale social networks. We assume
the case when h is unknown, thus exact computation of Γ? inside
each cluster is infeasible, which is reason why we use per-cluster
random seeding.

6.2 Results
We compare the algorithms by the minimum seed budget with

which the system hits the state +1 in a reasonable time. For conve-
nience, we call this minimum seed budget for a given hitting time
x, threshold (x).

We first understand how hitting time changes with varying seed
budgets. As shown in Figure 3(a), we observe that there exists a
phase transition that the hitting time blows up after some seed bud-
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(b) Threshold (20) with varying h for different algo-
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Figure 3: Simulation results for the Facebook ego networks.

get, which differs across the algorithms. Due to space limitations
we omit the results for other h values, where we observe a simi-
lar behavior with different seed budget leading to the hitting time
blow-up. This phase transition is due to the existence of “bottle-
neck clusters”, without which diffusion would become fast. Hence,
the seeding quality can be evaluated by how efficiently such bot-
tleneck clusters are removed by the seeding. In our setting, we see
that time 20 (a horizontal line in Figure 3(a)) can be a reasonable



required hitting time to differentiate the tested algorithms. Hitting
time 20 may or may not be the required time by seeders, because
the absolute time should be computed by the duration of unit time
and unit time can be different how actively individuals interact with
each other over the given social network.

To investigate how the tested algorithms perform, we choose the
time 20 as a given hitting time, and compare threshold (20) for all
tested algorithms with varying h, whose results are shown in Fig-
ure 3(b). We first observe that across all ranges of h, PrPaS has the
lowest threshold budget, performing significantly better than oth-
ers by more than 100% difference. It is natural that for significantly
high h (e.g., larger than 0.7) the performance difference is marginal
because diffusion should occur very fast irrespective of the quality
of seeding . Degree and GreedyCut do not perform well. Those
algorithms are known to generate good seeds in epidemic-based
diffusion models. This is because in epidemic-based diffusion just
a contact is an efficient way of infecting neighbors, whereas in
game-based models local interaction becomes much more compli-
cated due to individuals’ rational decisions. Similar phenomenon
was also studied in [33] which proves that the hitting time becomes
slower as individuals are connected better. Random significantly
outperforms Degree and GreedyCut, because uniformly random
seed selection allocates more seeds in larger clusters in the aver-
age sense. PrPaS performs much better than Random because
PrPaS performs further optimization by considering the clustering
and connectivity structure of the underlying graph.

7. CONCLUSION
In this paper, we have studied the question on how the diffu-

sion speed of a new innovation can be maximized under a noisy
game-based model, by seeding a subset of individuals (within a
give budget), i.e., convincing them to pre-adopt a new innovation.
By analyzing three representative graph classes, i.e., Erdős-Rényi,
planted partition and geometrically structured graphs, we obtain
new topological insights for the question, which does not exists in
the literature for popular epidemic-based models. Our results first
implies that for globally well-connected graphs, a careful seeding
is not necessary. On the other hand, for locally well-connected
graphs, their clustering characteristics should be understood for
good seeding, where seeding inside and cross clusters are impor-
tant for such graphs having big and small clusters, respectively. We
believe that these new insights will provide useful tools to under-
stand and control the sociological evolution of innovations spread
over large-scale social networks.
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APPENDIX
A. EXAMPLE IN SECTION 2.3

Consider a graph G consisting of two disconnected complete
graphs G1 and G2, both of which has n nodes. Then, it is easy
to show that for any seed set C in G1, Γ?(G1, C) = 0 (we explic-
itly express the parameter G1 if needed, but omit it for the graph
G for notational simplicity), when |C| ≥ 1−h

2
n, similarly applied

to G2, also. Note that Γ?(G1, ∅) = Γ?(G2, ∅), which corresponds
to the diffusion exponent without any seeding. First, observe that
Γ?(∅) = Γ?(G1, ∅) = Γ?(G2, ∅) due to symmetry and discon-
nectedness of G1 and G2. We now consider a seed set C1 and C2

in G1, G2, respectively, where |C1| = |C2| = 1−h
2
n+ 1 (thus the

diffusion exponent of both subgraphs is 0). Then, we have:

Γ∗(C2)− Γ∗(∅) > Γ∗(C1 ∪ C2)− Γ∗(C1),

since in LHS Γ∗(C2) = Γ?(∅) = Γ?(G1, ∅), and in RHS Γ∗(C1∪
C2) = 0 and Γ∗(C1) = Γ?(G2, ∅) > 0. This disproves super-
modularity of Γ?(·). Also, to disprove submodularity of Γ?(·), we
additionally consider two seed sets C′1, C′2 in G1, G2, respectively,
such that Cl ∩ C′l = ∅ with |Cl| = |C′l | for l = 1, 2 (note that we
can do this for sufficiently large n since 1−h

2
< 1

2
). Then, we have:

Γ∗(C′1 ∪ C′2)− Γ∗(∅) < Γ∗(C′1 ∪ C′2 ∪ C1 ∪ C2)− Γ∗(C1 ∪ C2),

since, in the above, every term except Γ∗(∅) (which is positive) is
0. This also disproves submodularity of Γ?(·).

B. PROOF OF PROPOSITION 5.1
For notational convenience, we will use the following defini-

tions: for subset S0 ⊂ V and monotone sequence of set S ∈ S0 →
V , we define

Γ(G,S) = max
t≤|S|

[H(G,St)−H(G,S0)] (34)

Γ̃(G,S0) = min
S:S0→V

Γ(G,S).

Then, from the definition of Γ∗, we can write

Γ∗(G,C) = max
C⊂S0⊂V

Γ̃(G,S0) = max
C⊂S0⊂V

min
S:S0→V

Γ(G,S).

With the given partition, the following simple equality can be de-
rived using (23) for any subset S such that V0 ⊂ S,

H(S) = H(G1, S ∩W1) +H(G2, S ∩W2). (35)

where we let W1 = V1 ∪ V0 and W2 = V2 ∪ V0.
Let C denote a seed set such that V0 ⊂ C ⊂ V . Also, let

C1 = C ∩ V1 and C2 = C ∩ V2. To complete the proof of this
proposition, we will show that the followings hold:

max
l=1,2

Γ∗(Gl, Cl ∪ V0) ≤ Γ∗(C), (36)

Γ∗(C) ≤ max
l=1,2

Γ∗(Gl, Cl ∪ V0). (37)

Proof of (36). For a subset X ⊂ V such that C ⊂ X , define

Pl(X) = {S′ : X ∩Wl →Wl},
Ql(X) = {S : X ∪Wl → V }.

Then, we have

Γ̃(X ∪W2)

= min
S∈Q2(X)

max
t≤|S|

[(H(St)−H(S0))]

= min
S∈Q2(X)

max
t≤|S|

[(H(G1, St ∩W1) +H(G2, St ∩W2))]

− [H(G1, S0 ∩W1) +H(G2, S0 ∩W2))] (∵ (35))
(a)
= min

S∈Q2(X)
max
t≤|S|

[H(G1, St ∩W1)−H(G1, S0 ∩W1)]

(b)
= min

S′∈P1(X)
max
t≤|S′|

[H(G1, S
′
t)−H(G1, S

′
0)]

= Γ̃(G1, X ∩W1) (38)

In the above, (a) holds since H(G2, St ∩W2) = H(G2,W2) for
all t, which comes from the fact that V2 ∪ V0 ⊂ St. (b) holds since
there is a one-to-one correspondence between P1(X) andQ2(X);
i.e., S′ can be induced from S by S′ = (S0−V2, .., St−V2, ..., V −
V2(= W1)) and vice versa. Similarly, one can show that

Γ̃(X ∪W1) = Γ̃(G2, X ∩W2). (39)



Since C ⊂ X ⊂ V , it follows that

Γ∗(C) = max
C⊂S0⊂V

Γ̃(S0)

≥ max
l=1,2

Γ̃(X ∪Wl) = max
l=1,2

Γ̃(Gl, X ∩Wl)

where the last equality holds from (38) and (39).
Now by taking the maximum of maxl=1,2 Γ̃(Gl, X ∩Wl) over

all X such that C ⊂ X ⊂ V , we conclude that

Γ∗(C) ≥ max
C⊂X⊂V

max
l=1,2

Γ̃(Gl, X ∩Wl)

= max
l=1,2

max
C⊂X⊂V

Γ̃(Gl, X ∩Wl)

= max
l=1,2

Γ∗(Gl, Cl ∪ V0).

This completes the proof of (36).
Proof of (37). Let S∗0 and S∗ be an optimal subset of V and an
optimal monotone sequence of sets for G, i.e., C ⊂ S∗0 ⊂ V ,
S∗ : S∗0 → V , and

Γ∗(C) = Γ̃(S∗0 ) = Γ(S∗).

In addition, let S1 : S∗0 ∩W1 →W1 and S2 : S∗0 ∩W2 →W2 be
an optimal monotone sequences of sets for G1, G2, respectively.
Then we have

Γ∗(G1, C1) = Γ̃(G1, S
∗
0 ∩W1) = Γ(G1, S

1),

Γ∗(G2, C2) = Γ̃(G2, S
∗
0 ∩W2) = Γ(G2, S

2).

Now, construct S1∪S∗0 : S∗0 → S∗0∪V1 and S1∪S∗0 : S∗0∪V1 →
V such that

S1 ∪ S∗0 = (S1
0 ∪ S∗0 ..., S1

t ∪ S∗0 , ...S1
|S1| ∪ S

∗
0 ),

S2 ∪ V1 = (S2
0 ∪ V1..., S

2
t ∪ V1, ...S

2
|S2| ∪ V1).

Since the end of S1 ∪ S∗0 and the start of S1 ∪ S∗0 are the same
(note that S1

0 ∪ S∗0 = S∗0 , S1
|S1| ∪ S

∗
0 = S∗0 ∪ V1 = S2

0 ∪ V1 and
S2
|S2| ∪ V1 = W2 ∪ V1 = V .). and V0 ⊂ S∗0 , we can construct

a new monotone sequence of sets T : S∗0 → V by concatenating
S1 ∪ S∗0 and S2 ∪ V1:

T = (S∗0 ,S
1
1 ∪ S∗0 , S1

2 ∪ S∗0 , ..., S1
|S1| ∪ S

∗
0 ,

S2
1 ∪ V1, S

2
2 ∪ V1, ..., S

2
|S2|−1 ∪ V1, V ).

Thus, we have

Γ(T ) = max

(
max
t≤|S1|

H(S1
t ∪ S∗0 ), max

t≤|S2|
H(S2

t ∪ V1)

)
−H(S∗0 ).

Using the construction of T with (34) and (35), it is not hard to
check that

max
t≤|S1|

H(S1
t ∪ S∗0 ) = Γ(G1, S

1) +H(S∗0 ) (40)

max
t≤|S2|

H(S2
t ∪ V1) =

Γ(G2, S
2) +H(G1,W1) +H(G2, S

∗
0 ∩W2). (41)

Furthermore, using (40), (41) and (35), we have

max
t≤|S1|

H(S1
t ∪ S∗0 )−H(S∗0 ) = Γ(G1, S

1
1) (42)

max
t≤|S2|

H(S2
t ∪ V1)−H(S∗0 )

= Γ(G2, S
2) +H(G1,W1)−H(G1, S

∗
0 ∩W1). (43)

Recall that the state that all players choose +1 has the minimum
of H(·). Hence on the subgraph G1, H(G1, ·) has the minimum at
W1, i.e., H(G1,W1) = minS⊂W1 H(G1, S). Thus, we have

H(G1,W1)−H(G1, S
∗
0 ∩W1) < 0.

Combining (42) and (43) leads us to:

Γ(T ) ≤ max(Γ(G1, S
1),Γ(G2, S

2))

= max(Γ̃(G1, S
∗
0 ∩W1), Γ̃(G2, S

∗
0 ∩W2))

≤ max(Γ∗(G1, C1 ∪ V0),Γ∗(G2, C2 ∪ V0)),

where the last inequality is due to C ⊂ S∗0 . Since T and S∗ are
monotone sequences of sets from S∗0 → V , we have

Γ(S∗) ≤ Γ(T ) ≤ max
l=1,2

Γ∗(Gl, Cl ∪ V0),

where the first equality holds by the definition of S∗. This com-
pletes the proof of (37) and hence completes the proof of Proposi-
tion 5.1.


