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ABSTRACT
This paper presents a quantitative study on the performance
of 3G mobile data offloading throughWiFi networks. We re-
cruited about 100 iPhone users from metropolitan areas and
collected statistics on their WiFi connectivity during about a
two and half week period in February 2010. Our trace-driven
simulation using the acquired traces indicates that WiFi al-
ready offloads about 65% of the total mobile data traffic and
saves 55% of battery power without using any delayed trans-
mission. If data transfers can be delayed with some dead-
line until users enter a WiFi zone, substantial gains can be
achieved only when the deadline is fairly larger than tens
of minutes. With 100 second delays, the achievable gain is
less than only 2-3%. But with 1 hour or longer deadline,
traffic and energy saving gains increase beyond 29% and
20%, respectively. These results are in stark contrast to the
substantial gain (20 to 33%) reported by the existing work
even for 100 second delayed transmission using traces taken
from transit buses or war-driving. The major performance
difference comes from traces: while bus and war-driving
traces contain much shorter connection and inter-connection
times, our traces reflects the daily mobility patterns of aver-
age users more accurately.

1. INTRODUCTION
Mobile data traffic is growing at an unprecedented rate.

Many researchers from networking and financial sectors [2,
3, 13, 17] forecast that by 2014, an average broadband mo-
bile user will consume 7GB of traffic per month which is 5.4
times more than today’s average user consumes per month,
and the total mobile data traffic throughout the world will
reach about 3.6 exabytes per month, 39 times increase from
2009 at a compound annual rate of 108%. It is also predicted
that about 66% of this traffic is mobile video data. The main
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drive behind this explosive growth is the increase in smart
mobile devices that offer ubiquitous Internet access and di-
verse multimedia authoring and playback capabilities.
There are several solutions to this explosive traffic growth

problem. The first is to scale the network capacity by build-
ing out more cell towers and base stations of smaller cell
sizes (e.g., picocell, femtocell) or upgrading the network to
the next generation networks such as LTE (Long Term Evo-
lution) and WiMax. However, this is not a winning strategy
especially under a flat price structure where revenue is inde-
pendent of data usage. It is interesting to note that most of
these data consumptions come from a small percentage of
mobile users: while smartphone users constitute about 3%
of the total users in AT&T, they consume about 40% of the
network traffic as of the end of 2009 [13]. Besides, expand-
ing the network capacity may even exacerbate the problem
by encouraging more data usages since the first deployment
of the 4G networks is likely targeting the densely populated
metropolitan areas like Manhattan or San Francisco. The
second is to adopt a usage based price plan which limits
heavy data usages. While price restructuring is rather in-
evitable, pure usage based plans are likely to backfire by sin-
gling out a particular sector of user groups, e.g., smartphone
users, which have the highest potential for future revenue
growth.
WiFi offloading seems the most viable solution at the mo-

ment. Building more WiFi hot spots is significantly cheaper
than network upgrades and build-out. Many users are also
installing their own WiFi APs at homes and work. If a ma-
jority of data traffic is redirected throughWiFi networks, car-
riers can accommodate the traffic growth only at a far lower
cost. Given that there are already a wide-spread deployment
of WiFi networks, WiFi offloading addresses the “time-to-
capacity” issue for the currently pressing need of additional
network capacity.
There are two types of offloading: on-the-spot and de-

layed. On-the-spot offloading is to use spontaneous connec-
tivity to WiFi and transfer data on the spot; when users move
out of the WiFi coverage, they discontinue the offloading
and all the unfinished transfers are transmitted through cel-
lular networks. Most of the smart-phones which give prior-
ity to WiFi over the cellular interface in data transmissions



can be expected to currently achieve on-the-spot offloading.
In delayed offloading, each data transfer is associated with
a deadline and as users come in and out of WiFi coverage
areas, it repeatedly resumes data transfer until the transfer
is complete. If the data transfer does not finish within its
deadline, cellular networks finally complete the transfer.
Most smartphones with WiFi are already performing on-

the-spot offloading by default. But delayed offloading is rel-
atively new. Its notion is very close to that of delay-tolerant
networks where applications can tolerate some amount of
delays. Our philosophy is that many data transfers can tol-
erate delays. It is true that users want to have data imme-
diately. But if network carriers provide more incentives in
price for users to use transfers with longer deadlines, it will
create demands for them because users will select more ju-
diciously their transfer deadlines based on their own needs.
Several usage scenarios are possible. (1) Alice records video
of a family outing at a park using her cell phone and wants
to archive it in her data storage in the Internet. She does
not need the video immediately until she comes home after
a few hours. (2) Bob wants to email Alice a roll of pictures
that he took last week, but it does not have to be available
immediately and besides the carrier charges less if he opts to
have it delivered within thirty minutes. (3) Bob is traveling
this afternoon from New York to Los Angeles and he just
realizes that he can use some entertainment during the long
flight. As he has several hours before the trip, he schedules
to download a couple of movies on his cell phones. (4) Alice
wanted to download an e-book on her iPad, but as the carrier
charges less for a two-hour download than immediate down-
load, she opted for that service. But she found out later the
book was actually delivered in thirty minutes as she stopped
by a coffee shop that provided a free WiFi connectivity. The
first scenario is in fact currently implemented in the Urban
Tomography project [1].
There is no doubt that both on-the-spot and delayed of-

floading reduce the load on 3G networks. But an important,
yet under-addressed question is how much benefits offload-
ing can bring to network providers and users. Network carri-
ers are interested in knowing how much traffic load WiFi of-
floading takes away from cellular networks under a given or
future WiFi network deployment. On-the-spot offloading is
currently being offered through smartphones. Since carriers
do not have control over WiFi networks that users connect
to, they have no idea how much on-the-spot offloading helps
them even now letting along the future. How much does
the new notion of delayed offloading help reduce their traffic
given the projected amount of data growth in the future? The
answers to these questions can provide clues on their price
and cost restructuring strategies. Users are also interested
in offloading because of economic reasons, e.g., a potential
decrease of subscription fees or better service with the same
fees. The average delays of offloaded data are also important
to users. If they can predict in advance how long the actual
data transfers will take on average based on their own mo-
bility patterns, they can use that information in choosing the

right price and deadlines for their transfer services. Users are
also interested in actual energy saving that delayed offload-
ing can achieve. All the above questions are fundamentally
tied to the mobility patterns of users as users may come in
and out of WiFi coverage. In this paper, we offer rough and
rule-of-thumb answers to these questions.
There have been several recent studies [6,7,15,16] on the

related topic. Some [7, 15, 16] have studied in the context of
energy saving with assumption that data can tolerate a de-
lay of one minute to a few hours and the other [6, 15] in the
context of on-the-spot or short delayed (up to 100 seconds)
offloading. None of them have looked at the benefits of the
full scale delayed offloading. Most important, the data sets
used in these studies are highly limited. In [6], the authors
use several traces of a war driving around a city using their
own vehicles and also 20 city transit buses. These data sets
are very limited for answering our questions as they do not
account for the temporal coverage of actual users in their
daily lives (i.e., they do not necessarily ride buses or cars all
the time) and their characteristics, e.g., how often and long
users enter and leave a WiFi zone and what data rate they
experience when they stay in a zone. Their results are mean-
ingful only if mobile data are generated in a city transit bus
or in their war driving scenarios. The authors report about 10
to 30% of the total traffic can be offloaded using on-the-spot
offloading and with up to 100 second delays, delayed of-
floading can achieve about 20 to 33% additional gains over
on-the-spot offloading. In [16], the authors study energy sav-
ing efficiency using a set of walk traces, each walk taking
a few hours with an instrumented mobile device. For our
study, this data is of limited use because each trace is too
short to account for the daily life patterns of users. More
details on related work can be found in Section 4.
We offer, to the best of our knowledge, the first quan-

titative answers to some of these questions by conducting
an extensive measurement study in South Korea. For our
measurement study, we first designed and implemented an
iPhone application that tracks WiFi connectivity. We re-
cruited about 100 iPhone users from the Internt who down-
loaded our application to their phones and used it for about
a two and half week period in February 2010. About 55%
of the users live in Seoul and the others in the other major
cities in Korea. None of the users, to our knowledge, are re-
lated to the authors. We briefed the users about the types of
the measured data and their objectives. The phone is config-
ured to connect to various WiFi networks as the users travel
including its carrier’s WiFi network. The application runs
in the background to record the locations of WiFi stations
to which each user connects, the connection times and dura-
tions, and the data transfer rates between WiFi stations and
mobile phones, and then periodically upload the recorded
data to our server. These data are used to carry out trace-
driven simulation of offloading with diverse data traffic and
WiFi deployment scenarios.
From our data, we find that users are in a WiFi coverage

zone for 70% of their time on average (63% during the day



time). They stay in a coverage area for about 2 hours on
average, and after leaving the area, they return to an WiFi
area within 40 minutes (this time interval is called inter-
connection times). The distributions of these statistics have
a strong heavy-tail tendency. Data rates from the phone to
our measurement server in the Internet are about 1.26 Mbps
on average during the daytime and 2.76 Mbps the nighttime.
The full analysis is presented in Section 2.2.
Using the data traces we obtained from the experiments,

we run a trace-driven simulation to measure the efficiency of
on-the-spot and delayed offloading. Our simulation uses the
measured data rates from our traces and each data transfer by
a user in a WiFi zone is assumed to run at the actual trans-
fer rate experienced by the user in our trace. This ignores
the effect of changed load (e.g., contention) on the network
bandwidth in the future. The same simulation strategy is
used in [6]. The results below must be interpreted as upper-
bounds if the carriers can sustain the measured data rates
through additional WiFi resource provisioning in the future.
The followings are the key findings from our simulation.

1. On-the-spot offloading can offload about 65% of the
total traffic load. This is achieved without using any
delayed transfer. When delayed offloading is used with
100 second delay deadlines, the achievable gain over
on-the-spot is very insignificant: 2-5%. This result is
in stark contrast to the result from [6] which reports 10
times bigger gains with the same deadline. Our anal-
ysis indicates that in order for delayed offloading to
get significant gains, the deadline must be much longer
than 100 seconds because of long inter-connection times.
When data transfers are opted by users for delayed
transfers with a deadline of one hour and longer, the
gain over on-the-spot becomes larger than about 29%.

2. On-the-spot offloading alone (without any delayed trans-
fer) can achieve about 55% energy saving for mobile
devices because WiFi offloading can reduce the trans-
mission time of mobile devices substantially. How-
ever, for delayed transfers with very short deadlines
like 100 seconds, the achievable energy saving gain
over on-the-spot offloading is highly limited to about
3%. But with one hour delay, the achievable energy
saving gain increase to around 20%.

3. For a prediction-based offloading strategy like Bread-
crumbs [6,15] to be useful, it has to predict over several
tens of minutes since the inter-connection time has an
average of 40 minutes. Because of the heavy-tail ten-
dency of the interconnection times, this prediction will
be even harder.

4. The average completion time of data transfers is much
shorter than their delay deadlines. While on-the-spot
offloading obviously achieves faster transfer than us-
ing 3G networks only, it is surprising that video file
transfers of size larger than 30MBwith one-hour dead-

Figure 1: An iPhone App, DTap for measuring WiFi
availability.

line are consistently faster than no offloading. Further-
more, the 3G network usage reduction gain of these
transfers is more than 50% over on-the-spot offloading
and more than 80% over no offloading, which implies
50% or more cost reduction for the carriers to deliver
such transfers and translates directly into price reduc-
tions for users.

More detailed analysis of our simulation can be found in
Sections 3. We present some discussions on the limitations
of our work and future work in Section 5.

2. MEASUREMENT STUDY

2.1 Experimental Setup
The performance of offloading highly depends on the pat-

terns of WiFi coverage and user mobility. Accurate model-
ing of offloading performance calls for a measurement study.
We first develop an Apple’s iPhone application, called DTap
(Delay Tolerant APplication) that records the statistics of
WiFi connectivity in the background and periodically sends
the recorded statistics to a server (see Figure 1 for a screen-
shot). Running in background, DTap scans for WiFi connec-
tivity at every three minute interval. As scanning for WiFi,
iPhone connects to the AP, if any, with the strongest sig-
nal strength among those to which it has a past history of
connections. Note that the captured WiFi APs include the
private APs at home and work, commercial APs installed by
the carrier of the mobile phone and the third party compa-
nies (e.g., Boingo). As our participants are actively using
their iPhones, these APs are mostly included in their past
histories. After connecting to a WiFi network, it measures
data throughput and round trip times by pinging the server
with a 100 byte packet ten times. This measures the end-to-
end data rate between the client phone and our server. This
is obviously not the most accurate measurement method but
it is reasonable under the constraint that DTap should min-
imally consume the bandwidth as well as the battery of a
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Figure 2: Number of valid experimental days for each
user.

user. DTap records in a log file the GPS location where the
connection occurs, and the duration, data rate and time of
the connection.
DTap does not perform offloading. This is because per-

forming offloading directly in client’s phones for arbitrar-
ily generated data drains too much battery power, which
faces strong resistance from volunteers. Even with just the
WiFi scanning and pinging tests, the phone drains the battery
power very quickly. Instead, we take an approach of collect-
ing detailed traces of WiFi connectivity for a fixed period of
time and later using the traces to simulate offloading under
diverse traffic patterns.
The log files are uploaded to our server using ftp connec-

tions daily between 4:00 AM to 4:30 AM. The daily log file
size is typically less than 1 MB. DTap runs with customized
parameters which are contained in an XML configuration
file automatically updated to client phones daily. Each row
of the log file contains the following tuple: (device id, time
stamp, event name, field 1, ... field n). The device id is
the unique id of a phone. The time stamp is the time when
the corresponding tuple is recorded. Multiple event names
are used in our experiment, depending on which, the num-
ber and the values of associated fields are decided. They are
summarized in Table 1. The AP list represents all the APs
that the phone can currently detect. GPS location is associ-
ated with the location accuracy information provided by the
phone.

Table 1: Event names and associated fields in the log file
Event Name Associated Fields

WiFi connectivity 0 or 1
AP Lists SSID1, . . . , SSIDn
GPS latitude, longitude, accuracy

Data rate rate

We recruited 97 volunteers who own iPhone 3G/3GS from
an iPhone user community in Korea and asked them to install
DTap in their phones for a period of 18 days in January and
February 2010. The volunteers come from diverse occupa-
tional backgrounds and various major cities in Korea (60%
from Seoul). For data integrity, we have excluded a very
small number of daily traces which show no movement (as
users might have forgotten to carry their phones). Figure 2
shows the number of experimental days for each participant.

(a) Temporal coverage of users.
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(b) Percentage of users with WiFi access from 9:00 AM, Feb. 2nd
to 9:00 AM, Feb. 12th.
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(c) Temporal coverage for hourly mobility

Figure 3: Temporal coverages per user, time and hourly
mobility

The total number of valid daily traces we collect is 705.

2.2 Key Observations
We measure the following statistics relevant to offloading:

the total time duration of WiFi connectivity, the data rate
during connections, the distributions of connection times and
inter-connection times and the correlations of the total travel
lengths with the data rate and time ofWiFi connectivity time.

Temporal coverage

The performance of offloading highly depends on the time
duration that a user stays in a WiFi coverage area which is
defined as temporal coverage. Figure 3(a) shows the daily
average temporal coverage recorded by each participant. It
also plots the coverage recorded during the daytime. The av-
erages across all the users are 70% for all day and 63% for
the daytime only. Difference between all day and day time
averages arises because most participants are likely to have
WiFi connectivity at home. Figure 3(b) shows the percent-
age of users that have WiFi connectivity at any given time
averaged over one second and hour periods respectively. It
indicates that at any time, about 70% of users stay in a WiFi



Figure 4: Locations of WiFi APs detected by the partic-
ipants in a 3km by 3km area with the most dense WiFi
deployment inside Seoul (more visible in color).

coverage area.
There is a substantial difference between the data from [6]

that reports only 11% temporal coverage. This difference
comes from the fact that their measurements are done using
war-driving or in transit buses. They do not account for the
natural mobility of users and their natural sojourn times in a
WiFi zone. Typically users spend most of time in office and
home. This type of information is missing as average users
are not likely to spend most of their time only inside a car or
bus. To verify our conjecture, we also record the traveling
distances of each user for each hour. This can be calculated
as the log contains GPS data. We map the temporal coverage
during each hour to the travel distance that the user makes
during that time period. Figure 3(c) shows the results. The
results indicate that users with high mobility (i.e., including
those moving in a car) have very low temporal coverage.
We measure spatial coverage which is defined to be the

fraction of an area that is under any WiFi coverage. Our
traces give only a rough estimation of spatial coverage since
they do not capture all possible WiFi APs located in the
city because the walkabouts of participants do not cover the
whole area. But it certainly gives a lower bound. Figure 4
shows the locations of WiFi APs that the users visit in a 3
km by 3 km area of the city where the users visit most. We
measure the spatial coverage by drawing 50 m radius circles,
a typical WiFi range, around each WiFi detected AP and to-
taling the areas of the drawn circles. Our analysis shows that
the spatial coverage is about 8.3% (20.6% for 100m radius
circles).
Our data shows that the temporal coverage is about 3.5∼8

times larger than the spatial coverage for a given region, in-
dicating that most users stay inside aWiFi network for a long
time once they connect to a WiFi network. Figure 5 shows
the CCDF (Complementary Cumulative Density Function)
of the stay time (called connection times). The average con-
nection times is about 2 hours for all day and 52 minutes for

Figure 5: The CCDF of connection duration. The aver-
age connection duration is 122 minutes. The distribution
fits well with a Weibull distribution with k = 0.31 for all
day and k = 0.52 for daytime. α parameter is also given
in the bracket.

Figure 6: The CCDF of inter-connection times. The
average is 41 minutes. The distribution fits well with
a Weibull distribution with k = 0.39 for all day and
k = 0.51 for daytime. α parameter is also given in the
bracket.

daytime only. Figure 6 shows the CCDF of inter-connection
times, the time duration after a user leaves a coverage area,
until it returns to a coverage area. The average is about
40 minutes for all day and 25 minutes for daytime. An
interesting observation from our trace is that both CCDFs
show a heavy-tailed tendency and, in particular, fit very well
with Weibull distributions1 using MLE (Maximum Likeli-
hood Estimation). The Weibull distribution has two param-
eters k and α in its PDF (Probability Density Function) and
when k is less than one, the distribution is heavy-tailed and
as k gets smaller, it becomes more heavy-tailed. The mea-
sured statistics fit very well with k = 0.31 ∼ 0.52 for con-
nection and inter-connection times. It is interesting to see
that the inter-connection time distribution shows similar pat-

1The PDF of the Weibull distribution with the parametersα and
k is k

α
( x
λ
)k−1 exp[−( x

α
)k].



tern to the inter-contact time distribution observed from hu-
man mobility which is known to be heavy-tailed [9, 14, 18].
The heavy-tail tendency of inter-connection times with a

large average (25 to 40 minutes) implies that the prediction-
based offloading strategies like Breadcrumbs [6,15] may not
be so effective. These strategies use past history of user mo-
bility and predict whether users will be entering a WiFi zone
with fast transmission rates within a given deadline. Typi-
cally these algorithms use 100 seconds for look-ahead times.
However, the large average value of inter-connection times
requires these algorithms to look ahead farther beyond 100
seconds. Furthermore, because of the heavy-tail tendency of
inter-connection times, this prediction may not be so accu-
rate.

End-to-end rates

Figure 7(a) shows the cumulative distributions of end-to-
end data rates reported by users. It shows a variety of ex-
perienced rates with their average being around 1.97Mbps.
This average is highly skewed by the data rate during the
night time. Figure 7(b) shows the data rates averaged across
users for each time period. It can be seen that the high data
rates during the night time are around 2.76Mbps and on av-
erage, users are experiencing around 1.26Mbps during the
daytime. During the night time, users are likely connecting
to their home APs. This data shows that offloading during
the night time is going to be very effective if users can tol-
erate large delays. We also map the measured data rate per
hour for each user to their hourly traveling distance (Fig-
ure 3). It is shown that user mobility has weaker correlation
with data rate than temporal coverage.

3. OFFLOADING EFFICIENCY
In this section, we report the simulation results using the

traces we discussed in Section 2. Since we have detailed
records of user connectivity and data rates during the con-
nectivity for every three minute interval, they can be used to
simulate the offloading of input traffic with diverse patterns.

3.1 Simulation Method
For each user, we generate input data traffic with spe-

cific arrival and size patterns. A data file for uploads ar-
rives during typical active hours (9:00∼ 24:00) to the phone
of the user with a random inter-arrival time and a random
size selected from input distributions (typically exponential
or Weibull) of a mean a for inter-arrival times and a mean b
for file sizes. We say that b/a is traffic intensity. Each file is
associated with a deadline typically assigned by its user or
application program. Upon arrival, each file is scheduled for
uploads in a FIFO manner. The transmission time of a data
transfer is determined by the measured data rate experienced
by the user at the time of the transfer (this is taken from the
user log trace). If the transfer cannot be finished before its
deadline, the file is assumed to be uploaded through 3G net-
works and is simply removed from the queue. We develop a
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(b) User-averaged end-to-end data rates from 9:00 AM, Feb. 2nd
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Figure 7: End-to-end data rates per user, day and hourly
mobility.

Connection to WiFi Inter-Connection Inter-Connection

File Arrivals

Connect

Drop from queue due to reneging deadline
(Transmit through cellular network interface)

Files
Arrivals

ON ON
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Figure 8: A simulation model of a user. The data in the
user queue is serviced only when a mobile phone is con-
nected to a WiFi network. When the delay deadline of
the file in the queue expires, the file is removed from the
queue and uploaded through 3G networks.

MATLAB simulator which follows a simulation model de-
picted in Figure 8.
We define offloading efficiency to be the total bytes trans-



Table 2: Input data to the experiment for Figure 9. We
use the projection from [2] on the amount of mobile
data traffic, their constituent types and proportion mo-
bile data traffic in year 2014. We assign artificial dead-
lines to different types of data from short to long dead-
lines. The mean inter-arrival times are estimated from
the estimated monthly volumes. DL : Deadline.

Video Data P2P Audio (VoIP) Total

Ratio [2] 64.0 % 18.3 % 10.6 % 7.1 % 100 %
Data/month 4.48 GB 1.28 GB 740 MB 500 MB 7 GB
Avg. IAT 1 hour 2 hours 2 hours 1 hour -
Traffic vol. 10 MB 5.7 MB 3.3 MB 1.1 MB -
Traffic dist. Weibull (k=0.5) ← ← Exponential -

On-the-spot 0 sec. 0 sec. 0 sec. 0 sec. -
DL:short 30 min. 30 min. 0 sec. 0 sec. -
DL:medium 1 hour 1 hour 0 sec. 0 sec. -
DL:long 6 hours 6 hours 0 sec. 0 sec. -

on−the−spot 100 sec short medium long
0.4

0.5

0.6

0.7

0.8

0.9

1

deadline

of
flo

ad
in

g 
ef

fic
ie

nc
y

64.7% 66.4%

75.2%
78.4%

87.5%

Figure 9: Offloading efficiency of delayed transfers with
various deadlines when all the transfers are opted for de-
layed transfers.
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Figure 10: Offloading efficiency gains over on-the-spot
offloading achieved by delayed transfers as the delayed
transfer ratio varies.

ferred through WiFi divided by the total bytes generated.

3.2 Traffic Model
To understand the impact of offloading in relieving the

future traffic demands, we use the projection data released
from CISCO [2] on the amount of mobile traffic demands

by year 2014. It is predicted that an average user consumes
about 7GB per month and the contribution of various data
types to this traffic is summarized in Table 2. We assign
three different types of offloading deadlines to each data type
from short to long deadlines. The short deadline is 30 min-
utes while long deadline is 6 hours. Note that as we shall see
later in Section 3.4, most transfers finish well before their
deadlines. We assume that the inter-arrival time distribution
is exponential and the distributions of the arrival traffic vol-
umes of video, text and data areWeibull and that of the audio
(VoIP) data is exponential. The means of all the distributions
are deduced from the estimated monthly traffic of each type.
Audio and P2P (e.g., data sharing in the proximity) data are
assumed to be not delay-tolerant so zero delay deadlines are
assigned to them.

3.3 3G Network Traffic Reduction
In this section, we measure the amount of traffic offload-

ing to WiFi from 3G networks. Figure 9 shows the offload-
ing efficiency of on-the-spot and delayed offloading. We
added the results using 100 second delay deadlines for com-
parison with the results in [6]. In this experiment, we as-
sume that all transfers of video and data use delayed trans-
fers. It is surprising that on-the-spot offloading (without
any delays) can achieve extremely high offloading efficiency
already. Note that on-the-spot offloading is what is cur-
rently being performed by smartphones today. If most of
mobile data volume comes from smartphones, WiFi can of-
fload more than 65% of traffic even today. This is much
larger than 10 to 30% on-the-spot offloading efficiency re-
ported by [6]. This difference is because average users in
our traces spend much more time in WiFi zones than those
from bus or war-driving traces in [6] as we discussed it in
Section 2.2.
As we increase delay deadlines, offloading efficiency in-

creases substantially. For long deadlines, the efficiency in-
creases to 88% indicating most of mobile data can be of-
floaded to WiFi. With 100 second or less deadlines used
in [6], the additional gain of delayed transfers over on-the-
spot is only 5%. That is substantially smaller than 20 to 33%
gain reported by [6]. This difference also comes from that
their traces contain much shorter inter-connection times as
buses and cars travel much faster than average users on the
street or offices. To have substantial gain using short delays,
users must need to experience very short inter-connection
times (as if they are in a car).
The offloading efficiency of 88% for long deadlines is cer-

tainly unrealistic. It is not true that all transfers of video and
data in Table 2 are opted for delayed transfers with such a
long delay (6 hours). It is possible that despite pricing incen-
tives, users may opt for on-the-spot offloading only. To see
the effect of this, we measure the performance as the ratio
of delayed transfers over the total data traffic (called delayed
transfer ratio) is varied. In this plot, we are interested in the
gain achieved by delayed transfers over on-the-spot. Again
the gain achieved by 100 second deadlines is very minimal
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Figure 11: Comparison of average completion times of
offloading methods for various types of applications nor-
malized to the time taken using only cellular networks.
Parameters in the bracket show the size of files and ap-
plied deadlines (more visible in color).

from 2 to 3% for 30 to 50% delayed transfer ratios. The
gain for one hour deadline is about 13 to 21% with 30 to
50% delayed transfer. This result indicates that since on-the-
spot offloading is already very good, for delayed transfers to
achieve substantial gain, their deadlines must be fairly long
(e.g., longer than several tens of minutes).

3.4 Completion Time
Deadlines of 30 minutes or one hour seem very long for

some applications. However, our results indicate that most
transfers finish well before these deadlines. In Figure 11, we
measure the average completion times of transfers with var-
ious traffic types. For this experiment, we set the data rate
of 3G networks to 200 Kbps which we typically get through
our iPhones for uplink. We measure the completion times
for (a) delayed offloading, (b) on-the-spot offloading and (c)
no offloading (3G network only). The result in each traffic
type is normalized by the completion time of no offloading.
Photo messages with 60 second deadlines finish in 26 sec-
onds on average, 6 seconds more than no offloading. The
break-even point where the completion time of delayed of-
floading becomes the same as that of no offloading, occurs
when video messages with 30 MB of one hour deadline are
transmitted. When that happens, the amount of 3G network
usage of delayed offloading is half of that of on-the-spot.
At this point, users using delayed offloading may experience
the same delay as no offloading while the cost of delivery
by the carriers is only half of that of on-the-spot and about
20% of no offloading. This happens because delayed of-
floading delays its transfer until it has a WiFi connectivity.
Since WiFi offers higher data rate, more use of WiFi leads to
shorter completion time. Although delayed offloading has a
longer completion time than on-the-spot offloading, it uses
3G network far less, which is translated into cost reduction
for carriers and price reduction for users. With larger file
sizes or longer deadlines, delayed offloading achieve faster
completion time and more cost reduction than no offloading.
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Figure 12: Normalized energy consumption of delayed
transfers of 10MB and 100MB files with one hour dead-
line. File sizes and intervals are assumed to be exponen-
tially distributed.
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Figure 13: The amount of energy saving gain over no
offloading for 1 hour delayed transfers. File sizes and
intervals are assumed to be exponentially distributed.

3.5 Energy Saving
There exists a fundamental trade-off between energy con-

sumption and delay in smartphone applications as smart-
phones have multiple radio interfaces with different trans-
mission rates and availability [15, 16]. While 3G networks
are more widely available than WiFi, their data rates are
much less than WiFi. Therefore, by delaying transmission
until WiFi is available, there are opportunities to reduce the
transmission time as we have seen it in Section 3.4. The re-
duced transmission times are directly translated into battery
power saving for smartphones because energy consumption
of WiFi per second is almost the same as 3G networks [19].
The transmission time of a transfer is different from its com-
pletion time as transmission times account for only the time
that radio interfaces are used to complete the transfer. Thus,
the transmission time is the time after subtracting the wait-
ing time from the completion time in Figure 11. We assume
that power consumption during the waiting time is negligible
using smart WiFi perception technology [5, 10, 20]
Figures 12 and 13 examine power consumed for delayed

transfers of 10 MB and 100 MB files with various delay
deadlines which is directly translated from their transmis-
sion times. The values are normalized to the energy con-
sumption of no offloading. On-the-spot offloading already
achieves 55% energy saving over no offloading because of
reduced transmission time through use of WiFi. However,



in order for delayed transfers to achieve substantial energy
saving gain over on-the-spot offloading, the deadlines must
be substantially long. With 100 second deadlines, the saving
gain over on-the-spot is extremely limited. One hour dead-
lines achieve about 20% gain.

3.6 Impact of Traffic Types
In this section, we further evaluate the detailed impact of

varying input traffic characteristics to offloading efficiency.
We especially focus on the inter-arrival time distributions of
input files and and file size distributions. To test diverse traf-
fic types, we first vary traffic intensity. For instance, traffic
intensities of text and video messages would be different.
For the same traffic intensity, we also vary traffic burstness
(i.e., 1/ inter-arrival time or simply the number of files gen-
erated per unit time) and the file size distributions. We test
deterministic, exponential, and heavy-tailed file size distri-
butions. In our simulation, we conducted simulations for the
traffic intensities 0.1, 50, 500 and 5000 KB/min. For each
traffic intensity, we test two different cases of traffic burst-
ness and file size.
Offloading efficiency for less bursty traffic, shown in the

upper three plots of Figure 14, uniformly ranges from 0.7
to 1 depending on the stringency of delay deadline, but ir-
respective of average file sizes and file size distributions.
Specifically, for the traffic generated with the average rate
of 5MB per minute, even just 2 hours of delay tolerance en-
ables us to offload about 80% of data traffic from the current
cellular network. This clearly shows a benefit of a combina-
tion of delay-tolerance and user mobility which increase the
total system capacity significantly. It is intuitive that more
bursty traffic induces lower offloading efficiency. The bot-
tom three plots of Figure 14 show such a case that the files
are generated every hour (thus, for the same traffic inten-
sity, a file with larger size is generated), where a slight de-
crease of offloading efficiency is observed. However, such
a decrease is visible only for short deadlines, and for long
deadlines, the performance difference is not considerable.
Note that heavy-tailed inter-arrival distributions are reported
to appropriately model the time interval between consecu-
tive e-mails [8]. The bottom plots of Figure 14 show the
performance for the case.
It is known that applications often generates traffic whose

file-size distributions are heavy-tailed in many cases. See [4]
for the video file size distributions in YouTube. Intuitively,
more heavy-tailed traffic leads to lower offloading efficiency
since file size far larger than the mean can be generated with
non-negligible probability. Figure 15 depicts the offloading
efficiency for a varying heavy-tail degree in the file size dis-
tribution controlled by the k value of Weibull distribution
with the mean set to 100 MB. The inter-arrival times have an
exponential distribution with one hour average. Recall that
smaller k < 1 generate more heavy-tailed traffic, and when
k = 1, it boils down to the exponential distribution. We ob-
serve that even for very heavy-tailed traffic, the offloading
efficiency is at least 20%, and over 40% of files with two

Figure 15: Offloading efficiency varying k parameter of
Weibull distribution. Mean file size is 100MB and the
traffic generation interval is 1 hour. When k = 1, Weibull
distribution is exponential. As k decreases, it is more
likely that a huge file arrives at the system.

Figure 16: Offloading efficiency of candidate applica-
tions (text, photo, video-clip messaging and multimedia
backup). Inter-arrival time, type of file size distribution
(Det: deterministic, Exp: exponential), mean file size are
denoted in the bracket.

hour deadlines can be offloaded throughWiFi except the ex-
treme case, k = 0.1.
To get more realistic offloading efficiency, we set the in-

put parameters of various application data considering the
property of the data. We set the inter-arrival time of 0.1 KB
text messages to 1 min constant, 500 KB photo messages to
an exponential distribution with a mean 60 minutes, 10 MB
video messages to a Weibull distribution with a mean 120
minutes and k = 0.5, and 100 MB of multimedia backup to
a Weibull distribution with a mean 120 minutes and k = 0.5.
Figure 16 shows the result. Text and photo messages can be
offloaded instantly at the rate of 70%. Video messages and
multimedia backup can be offloaded around 70% with dead-
lines of thirty minutes and 2 hours, respectively.

3.7 Impact of WiFi Deployment
We investigate the impact of WiFi density and deploy-

ment strategies on offloading efficiency. To test them, we
use the current deployment observed in our traces as a base-
line, and thin out density by progressively eliminating WiFi
APs according to two different strategies: activity-based and
random. In the activity-based strategy, we measure the con-
nection time of an AP which is the sum of time duration that
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Figure 14: Offloading efficiency for different traffic intensity, file size distributions, and delay deadlines. IAT (Inter-
Arrival Time) follows exponential or Weibull whose mean in the bracket determines traffic burstness. FS (File Size)
follows deterministic, exponential or Weibull distribution whose mean is specified in the file size axis in the figures.
(More visible in color)

each user spend in the coverage of the AP. The activity-based
strategy eliminates WiFi APs in the increasing order of their
connection times until a target density is reached.
We set the density of the current deployment measured

from the trace to 1. The random strategy randomly elimi-
nates APs with equal probability. Figure 17 shows the of-
floading efficiency for two considerably heterogeneous traf-
fic types, text messaging and multimedia data backup whose
traffic parameters are the same as those in Figure 11. The
activity-based strategy naturally outperforms random, but it
is interesting to see that even after reducing its density by
half the activity-based strategy reduces offloading efficiency
by only a small percentage while the random strategy has
about a 50% performance drop. It implies that careful de-
ployment plans can yield substantial improvement in the ca-
pacity even with a small increase in density. We leave the
investigation of the optimal strategy of WiFi deployment for
delayed offloading as future work.

4. RELATED WORK
Balasubramanian et al. [6] develop several techniques com-

bining 3G networks and WiFi for reducing the total cost of
data transfer. The proposed techniques are similar to Bread-
crumb [15]. The authors use a city wide measurement data
of 3G and WiFi network availability obtained from 20 tran-
sit buses in a city and war-driving in two other cities. The
work focuses on gains achieved by on-the-spot offloading
or delayed offloading with a very short delay deadline (up
to 100 seconds). Based on these traces, they report about
10 to 30% on-the-spot offloading efficiency and about 20 to
33% offloading gain of delayed offloading over on-the-spot.
Since their traces are taken during driving, they contain a
lot of short connection and inter-connection times with WiFi
which contribute to the substantial gains of delayed trans-
fers with short deadlines (also low efficiency of on-the-spot
offloading). However, their work is limited in reflecting the
achievable gains of offloading for average users with regular



(a) Random (text msg.) (b) Activity (text msg.)

(c) Random (video msg.) (d) Activity (video msg.)

Figure 17: Offloading efficiency for various amount of
WiFi deployment and different deployment strategies.
Irrespective of traffic type, activity-based deployment
which might primarily lead to install WiFi APs to users’
houses shows clearly higher offloading efficiency than
random.

mobility patterns. Especially, their traces ignore the effect
of long sojourn times that users spend at home or offices and
roaming effects through walking. These slow movements
create long connection times during which on-the-spot of-
floading can be most effective. Furthermore, they create
long inter-connection times (on average 25 minutes in our
traces) which leads to the long waiting period before WiFi
connectivity. Therefore, their results are more meaningful
for offloading during driving but less so for studying the of-
floading efficiency of average users.
There are several more measurement studies focusing on

WiFi and 3G network availability over givenmovement paths.
Han et al. [12] suggest a two-pass measurement methodol-
ogy involving rough search and detailedmeasurement phases
for WiFi APs. Gass et al. [11] present a detailed measure-
ment result by comparing the characteristics of 3G networks
and WiFi in a city. Both of these results are based on war-
driving by vehicles or by walk.
Ra et al. [16] present an online algorithm called SALSA

overmobile smartphoneswith 3G/EDGE/WiFi interfaces that
optimizes energy and delay trade-offs using a Lyapunov op-
timization framework. SALSA is tested over real 3G/EDGE/
WiFi measurement performed using 66 sample walk traces
of about one hour length in various areas including cam-
pus, shopping mall and airport. Balasubramanian et al. [7]
present a different type of energy and delay trade-offs arising
from energy the consumption characteristics of multi-modal

wireless terminal equipped with WiFi, 3G and GSM mobile
network technologies. Based on a measurement study, they
develop a energy consumption model for each technology.
The model is then used to design an algorithm that sched-
ules (i.e., delays) transmissions to minimize the overall time
spent in high energy states (i.e. energy tail) while respecting
user-specified delay-tolerance deadlines.
Nicholson et al. [15] propose a scheme that can predict

near future WiFi connectivity and quality. The scheme en-
ables mobile devices to schedule their data transfers to har-
ness higher transmission rates ofWiFi APs. It exploits users’
tendency of following regular movement patterns around the
region where static WiFi APs are deployed. The authors
show that delaying transmissions according to short-term fore-
casts can achieve higher data rate as well as lower power
consumption.

5. DISCUSSIONS AND CAVEATS
The perhaps biggest surprise in our analysis is 65% traf-

fic reduction currently achievable by on-the-spot WiFi of-
floading without use of any delay. Assuming most mobile
data demands are from smartphone users, this gain is what
the carriers are currently achieving. Roughly it implies that
about 35% of the projected 7 GB/month per-user usage in
2014 (about 2.5 GB) will be transferred through 3G net-
works. With additional incentives for delayed offloading,
this gain can quickly grow. This means that from user’s per-
spective, with a fixed price plan of 2 GB/month over 3G net-
works (what is currently adopted by AT&T for iPhone 4G),
average users do not overscribe at all. With more creative
price plans for delayed transfers, users may even opt for a
cheaper monthly data plan and can offload most of excess
data traffic.
This paper focuses only on temporal offloading. However,

allowing delays in applications also enables load balancing.
End-to-end data rates at night are much higher than daytime
because we tend to experience stable links overnight at home
as well as less congestion in the backhaul network. Delayed
transfers, especially with long delay deadlines is likely to en-
able traffic dispersion over time so as to shift the high day-
time demand for networking resources to the night time.
Our study makes a number of convenient assumptions.

First, we assume that the measured data rates of WiFi in our
traces are sustained independent of load in the network. Al-
though the measured data rates account for traffic conditions
(e.g., contention and dynamic data rates) existing at the time
of connection, we ignore the issue of increased contention in
the future as more users use WiFi offloading. Measuring and
predicting the exact data rates for the future is very challeng-
ing. This factor depends on the trade-off between capacity
and demands offered by the current WiFi technology which
is still developing, so we do not have a clear answer for how
we can incorporate the impact of the increased load on the
performance of WiFi offloading. However, our results are
still meaningful as they can be viewed as an upper-bound



on the performance gain since contention can only increase
with more usage. In the other words, our results are mean-
ingful if the carriers can provision enough WiFi resource to
sustain the current WiFi data rates.
The main focus of our study is purely performance ori-

ented. We ignore a number of technical and policy issues in
our study. First, energy consumption is high if mobile de-
vices constantly scan for WiFi connectivity. A number of
solutions (e.g., [5, 10, 20]) for this problem are being devel-
oped. Rahmati and Zhong [5] design an intelligent energy-
saving algorithm for predicting WiFi availability and device
scans for WiFi APs only in areas where WiFi is likely avail-
able. Several researchers [10, 20] are developing an energy-
efficient location tracking system for mobile phones based
on map matching and war-driving or magnetometer and ac-
celerometer sensor readings which consume only a small
fraction of power used for GPS. As users tend to maintain
regular mobility patterns daily, mobile phones can perform
scanning only when they are in a pre-recorded area of WiFi
stations.
We also do not examine issues of security and administra-

tion or billing control. As user data are diverted away from
the carriers’ network, carriers may lose control over the data
being offloaded. Despite these issues, we believe that the im-
pact of our work is significant: since our findings conclude
that offloading is an effective means for accommodating the
current and future traffic growth, our simulation tools can
offer important guidance for network providers in deploying
and upgrading their networks and also in designing success-
ful and creative price plans. Given the strong performance
advantages of WiFi offloading, we foresee that there will be
technical solutions as well as policy and price restructuring
to address these issues in near future.
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