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Abstract—This is by far the first paper considering joint
optimization of link scheduling, routing and replication for
disruption-tolerant networks (DTNs). The optimization problems
for resource allocation in DTNs are typically solved using
dynamic programming which requires knowledge of future
events such as meeting schedules and durations. This paper
defines a new notion of optimality for DTNs, called snapshot
optimality where nodes are not clairvoyant, i.e., cannot look
ahead into future events, and thus decisions are made using only
contemporarily available knowledge. Unfortunately, the optimal
solution for snapshot optimality still requires solving an NP-
hard problem of maximum weight independent set and a global
knowledge of who currently owns a copy and what their delivery
probabilities are. This paper presents a new efficient approxima-
tion algorithm, called Distributed Max-Contribution (DMC) that
performs greedy scheduling, routing and replication based only
on locally and contemporarily available information. Through a
simulation study based on real GPS traces tracking over 4000
taxies for about 30 days in a large city, DMC outperforms existing
heuristically engineered resource allocation algorithms for DTNs.

I. INTRODUCTION

Every aspect of modern mobile wireless networks is dy-
namic. As radios are now attached to moving objects which
may make planned, spontaneous, or random movements, the
mobility of these objects governs the network state and
presents diverse and highly time-varying operating condi-
tions. With increasing density and mobility, the operating
regimes of the networks exponentially widen and network
connectivity may drastically change over time. Any network
protocol operating in such regimes must adapt quickly to the
changing conditions, from highly dense networks where link
scheduling and interference mitigation are important, to sparse
networks where opportunities of contacts and their durations
are important. A network can be situated at any point in this
space-time continuum of the network design space [1] with a
varying temporal and spatial scale of changes. We call such
networks collectively space-time disruption-tolerant networks
(ST-DTNs); while DTNs are traditionally implying sparse,
disconnected networks where mobility and carry-and-forward
are the only means of communication, ST-DTNs permits
traditional senses of MANETs (Mobile Ad-hoc NETworks)
and DTNs to coexist in the form of disconnected islands in
any proportion of time and space.
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ST-DTNs need to solve performance issues arising from
varying time scales of network state changes such as discon-
nection; channel quality degradation; and information incon-
sistency caused mostly by node mobility and inherent channel
dynamics. Their network protocols must thrive in environ-
ments with partial, inconsistent, incorrect and sometimes no
information about the network states and adapt to any point in
the space-time design space. The information about the state of
the networks, called metadata, includes routing tables, routing
metrics, past history of meeting or contacting nodes, loca-
tion information, files, and packets/bundles-in-flight. As these
protocols can work well even with inconsistent, outdated and
incomplete information, these protocols relieve the network of
the burden to maintain consistent information; the network can
now opt for “best-effort” information sharing - changing its
mode of operation to “whenever convenient” from “however
possible at all cost.”

Traditional DTN studies for resource allocation have fo-
cused on routing, forwarding and replication in sparse net-
works [2]–[8] whereas studies for resource allocation in tradi-
tional MANET have focused on interference, link scheduling
and routing in dense networks with no provisioning for discon-
nected islands. ST-DTNs jointly consider all these notions of
resources, and its resource allocation must be adaptive to the
availability of specific types of resources in time and space.

In this paper, we study a joint optimization problem of link
scheduling, routing and replications for a type of ST-DTNs
where resources such as link budgets and opportunities of
meetings and their durations are critical resources, but each
node may have enough storage and battery power to allow
liberal replications and exchange of packets and metadata
whenever and where-ever the critical resources are left unused.
Such networks are typically driven by vehicles, e.g., taxies and
buses, in a large city. The information dissemination networks
of taxies in Shanghai in China [9] and BuCheon in South
Korea [10] are key examples of such networks.

DTN resource allocation has traditionally considered only
routing [7], [11] and/or replications [2], [8] but have not tack-
led the issues of interference and link scheduling. Therefore,
when the network state changes to MANET-like environments
with a dense population of nodes, such schemes produce
sub-optimal performance or are not even functional. Joint
optimization of link scheduling and routing can produce more
adaptive ST-DTNs. Dynamic programming has been the main
means of solving optimal resource allocation for DTNs (e.g.,
[12], [13]). Unfortunately, dynamic programming requires
nodes to be clairvoyant – assumes knowledge of future events
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such as contacts and their durations, therefore precluding
on-line solutions. The complexity of dynamic programming
and lack of on-line efficient algorithms make such solutions
impractical.

In this paper, we present more realistic optimality, called
snapshot optimality, in ST-DTNs whose solutions perform
close to the “clairvoyant optimal solutions” but rely only on
contemporarily available knowledge of the networks. Snapshot
optimality dictates to maximize the “contribution” of a packet
being scheduled at the current instance, to improve the global
utility. This notion of optimality was considered in the name of
per-packet marginal utility in DTNs [14], but not in the context
of link scheduling. However, even maximizing contribution
alone requires global knowledge of who owns a copy of a
packet (as multiple copies are permitted) and their delivery
statistics, and also solving an NP-hard problem of maximum
weight independent set for link scheduling. Therefore, more
practical, approximating solutions that leverage only contem-
porary and local information are vital.

To construct a theoretically engineered, highly practical
approximation solution for snapshot optimality, we apply a
form of distributed greedy resource allocation that performs
link scheduling, routing and replication decisions based only
on contemporarily and locally available metadata. The result
is a distributed approximation of maximizing contribution, so
called Distributed Max-Contribution (DMC) that employs var-
ious techniques to improve the global utility using local views
and operations. These techniques include metadata fusions and
broadcast-based opportunistic routing.

Our simulation studies are based on detailed GPS (Global
Positioning System) traces of tracking the movements of over
4000 taxies, each equipped with GPS in Shanghai [9] for about
30 days, by far the largest traces of vehicle-based networks. In
the traces, taxies usually meet at intersections and each taxi has
3 to 4 interfering taxies on average with the maximum of 20,
forming interference-rich, but frequently-disconnected islands
of networks. As taxies move according to the destinations
of passengers, there are no pre-defined schedules of taxi
movement. However, we found that they have some notion of
locality and hotspots which can be exploited to enable effective
routing. Our trace-driven simulation study demonstrates that
DMC outperforms existing DTN routing protocols that do not
consider link scheduling or snapshot optimality.

II. OPTIMAL RESOURCE ALLOCATION

A. System Model

Network and traffic model. We consider a network consisting
of a set N of n nodes that move and meet intermittently. Two
nodes v and w is said to meet if v is within the communication
range of w, and vice versa. Every node is equipped with an
infinite-size queue to store packets. A node v can copy packets
from its queue to the node that v meets1. There is a set F

1We also use the word ‘packet’ to refer to the copies of the original packet,
unless explicitly specified otherwise.

of F sessions (flows) that are identified by a pair of source-
destination nodes. Associated with each session f is a file
consisting of a set Gf of equal-sized packets. We use the
packet-company m to refer to the original packet m and its
copies together. The source of a session f is responsible for
transferring the packets in Gf to its destination with some QoS
constraints.
Resource model. Time is assumed to be slotted, indexed by
t = 0, 1, . . . . The length of a time-slot is suitably chosen to
schedule one packet and nodes are stationary. Then, network
resources are represented by a finite set S(t) ⊂ {0, 1}L of
feasible link schedules, where L is the number of all possible
links. A feasible link schedule, S = (Sl ∈ {0, 1} : l =
1, . . . , L) is a vector representing a set of schedulable links
without interference where Sl = 1 if the link l is scheduled,
and 0 otherwise. We also use notation l ∈ S when Sl = 1.
Denote by Π(t) ⊂ GL, a set of feasible copy schedules where
G = ∪f∈FGf . A feasible copy schedule is a vector whose l-th
element represents a packet that can be potentially copied if
link l is scheduled. Note that a packet m can be copied from
v ∈ N to w ∈ N when v holds m but w does not. Note that
in a feasible copy schedule, two different packets belonging
to a single packet-company can be scheduled over different
links.
Interference and resource allocation. A set S(t) depends
on interference patterns among links. We generally model
interference by a L × L symmetric matrix I = [Iij ], where
Iij = 1 means that links i and j interfere with each other. The
matrix I is able to model various wireless systems, ranging
from FH-CDMA (one-hop interference) to 802.11 (two-hop
interference2). For ease of presentation, we assume that when
a link is established by the meeting between two nodes,
the link is configured to have a unit capacity, but it can be
readily extended to more general cases. Resource allocation
at each slot t consists of two parts: (i) link scheduling and
(ii) copy scheduling where a copy schedule π ∈ Π(t) and a
link schedule S ∈ S(t) are selected. Then, the element-wise
multiplication of two vectors, π×S, represents which packets
are served and copied over the links.
Objectives. The primary objectives of resource allocation are
delivery ratio maximization or delay minimization. Denote by
the random variable, Nf (t, tdl), the total aggregate number of
delivered packets in flow f to its destination over an interval
[t, tdl], where tdl is a given deadline (we henceforth omit tdl
and just use Nf (t) in all notations unless confusion arises).
We also denote by Df (t) the total aggregate remaining time
in flow f from t to the delivery. Then, Nf (0) and Df (0)
correspond to the aggregate delivery ratio (until the deadline)
and the total delay of flow f, respectively. The following four
objectives are mainly considered.

R1. Max-Delivery max
∑

f∈F E[Nf (0)]

R2. Fair-Delivery maxminf∈F E[Nf (0)]

2In the K-hop interference model, two links that are within K-hops interfere
with each other.
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D1. Min-Delay min
∑

f∈F E[Df (0)]

D2. Fair-Delay minmaxf∈F E[Df (0)].

B. Snapshot Optimality

Hardness of full optimality. Solving the optimization prob-
lems in R1, R2, D1, and D2 via practical, on-line, decen-
tralized algorithms is hard. It can be formulated by a dynamic
programming (DP), often requiring a large dimensional search
(i.e., curse of dimensionality) and knowledge of the future.
There are studies that use DP to develop optimal solutions.
However, they have been done in much simpler models
and assumptions, e.g., a model without consideration of link
scheduling [12], [13]. Our main interest lies in practical, on-
line algorithms. To that end, rather than pursuing the “full”-
optimality based on DP, we adopt a temporal approximation
where implementable algorithms may be temporally restricted
in terms of available information. In other words, we only look
at system states available contemporarily and try to optimize
a certain objective naturally interpreted as a snapshot-optimal
approximation to the original problem. It is possible simply by
temporally stretching the original optimization problems over
the entire slots, and look at what needs to be optimized just
using the information available at time t.

Objective functions. We now elaborate the snapshot-optimal
problems for various objectives introduced in the subsec-
tion II-A.

(a) Max-delivery. We stretch the objective function over the
entire time-interval [0, tdl]. Then we have

max
∑
f∈F

E[Nf (0)]=maxE
[∑
f∈F

(
Nf (t)+

t−1∑
i=1

∆Nf (i)
)]

, (1)

where ∆Nf (t),Nf (t−1)−Nf (t) corresponds to the number
of packets in f delivered over the interval [t−1,t]. Recall that
Nf (t) is decreasing in t. In Eq. (1), the “max” operation is
taken over a set of a sequence of copy and link schedules
over the entire time. From (1), what we can do, given the
available information at slot t, is to maximize E[

∑
f∆Nf (t)]

i.e., maximize the average increase in the total number of
delivered packets over [t−1,t] across all sessions.

(b) Fair-delivery. Similarly to the above, we get

maxmin
f∈F

E[Nf (0)]=maxmin
f∈F

(
E[Nf (t)]+

t−1∑
i=1

E[∆Nf (i)]
)
. (2)

In contrast to max-delivery, we give higher priority to the
flows with the less average number of delivered packets.
Again, since only (E[Nf (t)],f∈F) is available to resource
allocation at slot t, we first choose a session f⋆ such
that f⋆=f⋆(t)=argminf∈FE[Nf (t)], and allocate resource to
maximize ∆Nf⋆(t).

(c) Min-delay. The structure of minimizing delay is similar to
maximizing that of the delivery ratio. Similarly to ∆Nf (t), we
define ∆Df (t),Df (t− 1)−Df (t) to be a marginal decrease
in delay of flow f over interval [t− 1, t]. Note that this delay

decrease is possible by copying the packet in question to other
nodes.

min
∑
f∈F

E[Df (0)]=minE
[∑
f∈F

inf
s
{Df (s)=0}

]
=minE

[∑
f∈F

inf
s
{Df (0)=

s∑
i=1

∆Df (i)}
]
. (3)

At slot t, the first step to approximate the above using the
snapshot information, is to maximize ∆Df (t). Recall that
∆Df (t) is random in terms of random mobility. It means
that the maximization of ∆Df (t) is feasible (in the sample-
path sense) only if the full information about mobility (even
including future) were given to nodes, which is impossible
due to limited knowledge of mobility in the future. Thus, an
alternative approach is to take the expectation of ∆Df (t), i.e.,
E[∆Df (t)], which we maximize at the snapshot. Thus, our
snapshot optimization problem is max

∑
f∈FE[∆Df (t)].

(d) Fair-delay. Similarly to fair-delivery, we have:

minmax
f∈F

E[Df (0)] = minmax
f∈F

E
[
inf
s
{Df (s) = 0}

]
= minmax

f∈F
E
[
inf
s
{Df (0) =

s∑
i=1

∆Df (i)}
]
. (4)

However, the issues of approximating sample-paths with the
expectation exist, which we handle similarly to min-delay.
Thus, our snapshot objective is to maximize ∆Df⋆(t) where
f⋆,f⋆(t) = argmaxf∈F E[Df (t)].

For space saving and ease of presentation, we henceforth
focus mainly on objective R1. Discussions of other three
objectives will be handled in the technical report [15].

III. SNAPSHOT OPTIMALITY: HARDNESS AND
MAX-CONTRIBUTION

Towards practical, distributed algorithms, we take a multi-
step systematic approach. First, we develop an algorithm,
called OPT, that is provably snapshot optimal. We will show
that OPT requires centralized, intractable computations and
the global knowledge of network state. Next, we develop
a centralized approximation heuristic to OPT, called, Max-
Contribution (MC) which provides an insight to the develop-
ment of a distributed approximation to OPT, called Distributed
Max-Contribution (DMC) presented in Section IV.

A. Value and Contribution

We first introduce a notion of value. Associated with each
packet-company m is a value vm. A packet value quantifies
a per-packet metric defined according to the target objective.
For a given objective, the value of a packet-company at a time
slot is time-varying over slots and depends on the mobility
patterns of the nodes holding the copies of the packet at that
slot. For max-delivery (R1), the value of a packet-company
m is defined as the delivery probability of any packet in m
to be delivered to its destination. Since all packets in the
same company share the same value, we interchangeably use
the value of a packet and the value of packet company that
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the packet belongs to. As a measure of the improvement in
the value incurred by packet forwarding and replication, we
introduce the notion of contribution of a packet m, ∆vm to
be the increased amount of vm when m is forwarded and
copied in the network. Note that when multiple packets in a
packet-company are copied at the same time in the network,
the contribution is the sum of all the contributions that each
copy makes.

B. OPT: A Snapshot Optimal Algorithm

We now describe the generic algorithm, OPT, that is
snapshot-optimal for the four objectives, when value vm is
suitably defined. The key idea of OPT is to make link/copy
scheduling decisions (over slots) that maximize the expectation
of the total increase in the packet values over the entire
network.

OPT

At each slot t, copy packets according to (π⋆, S⋆), which is
the optimal solution of

max
π∈Π(t),S∈S(t)

∑
m∈G(π,S)

∆vm(t), (5)

where G(π, S) is the set of all packet-companies scheduled by
a pair of copy and link schedule (π, S).

Note that G(π, S) is a set. Thus, even in the case when the
packets in the same company m are scheduled over different
links, only the company index m is in G(π, S). As an example,
we now explain that OPT with vm = pm is snapshot-optimal
for the max-delivery objective, R1, where pm is the probability
that at least one packet in the packet-company m is delivered
to the destination. Recall that the snapshot objective for R1 is
to maxπ,S

∑
f E[∆Nf (t)].

Example 3.1 (R1. Max-Delivery): First, denote by Im(t) is
an indicator random variable recording whether at least one
packet in company m is delivered over [t − 1, t] or not. Let
∆pm(t) = pm(t−1)−pm(t). Then, remarking that ∆Nf (t) =∑

m∈Gf
Im(t), we get

max
π,S

∑
f

E[∆Nf (t)]

=max
π,S

∑
f

E
[ ∑
m∈Gf

Im(t)
]
= max

π,S

∑
m∈∪fGf

pm(t)

=max
π,S

∑
m∈∪fGf

(
pm(t)−pm(t−1)+pm(t−1)

)
=max

π,S

( ∑
m∈G(π,S)

∆pm(t)+
∑

m∈∪fGf\G(π,S)

∆pm(t)
)

+
∑

m∈∪fGf

pm(t−1) (6)

=max
π,S

∑
m∈G(π,S)

∆pm(t)+K1(t)+K2(t−1), (7)

where in (6) we divide the packet-companies into ones that are
scheduled and not by (π,S). K1(t) and K2(t−1) correspond

to the second and third term in (6). For a fixed t, K1(t) is a
constant as the packet-companies that are not scheduled do not
depend on (π,S). K2(t−1) is also a constant at time t. Finally,
from ∆vm(t)=∆pm(t) by definition, the result follows.

The OPT algorithm is impractical for the following reasons:
1) Coupling between copy and link scheduling. vm jointly

depends on both copy and link schedules. For R1, when
two different packets in the same packet-company m
are scheduled over different links, the contribution of m
should jointly consider the two copies because its delivery
probability pm is determined by any copy in m.

2) Global knowledge of values. All nodes holding any packet
in a packet-company m need to have the same value vm,
which is hard to achieve in a distributed environment. A
vanilla method is to flood the value change event, requiring
heavy message passing, thereby wasting resources.

3) Computational intractability. The OPT algorithm requires
the exhaustive search to find a solution in the large-
scale search space. Formally, the problem can generally be
formulated by an integer programming with an exponential
size of search space. In fact, for a fixed π, the inner
maximization of Eq. (5) over all feasible schedules is a
variant of an NP-hard wireless scheduling problem (see
[16] for details) that can be reduced to the NP-hard MWIS
(Maximum Weight Independent Set) problem3.

C. Link/Copy Scheduling Decomposition: Max-Contribution

Complex coupling between copy and link scheduling hap-
pens when multiple copies of the same packet are scheduled
over different links simultaneously. To develop a practical
approximation algorithm, we propose Max-Contribution that
decouples link and copy scheduling. In Max-Contribution,
OPT is solved with the set Π′(t) of copy schedules, where

Π′(t) = {π ∈ Π(t) | πi ̸= πj ,∀i, j}.

Since Π′(t) ⊂ Π(t) for all t, it is clear that the contribution
computed from OPT is no less than that from MC. We trans-
form the original optimization problem into one over a reduced
constraint set. Then, as we discussed, the optimal algorithm
becomes much simpler, which we in turn use to develop
practical, on-line, distributed algorithms later in Section IV.

From the use of Π′(t) instead of Π(t), the contributions do
not depend on the entire schedule, but only on the correspond-
ing link l (more precisely, its receiver node, rx(l)), because
only node, say v, changes the contribution of a packet that
it holds. This approximation enables us to decompose copy
scheduling from link scheduling, and first solve the outer-
maximization by, for each link l, selecting the packet-company
m⋆

l that has the maximum contribution. For clarity, we now
use a notation ∆vlm to refer to the contribution of a packet in
packet company m when it is copied over link l. Note that
|Π′(t)| gets closer to |Π(t)| as |∪fGf |/|S(t)| gets larger. Thus,
MC is near-optimal when the offered load in the network is
high compared to the number of schedulable links.

3Due to space limitations, we omit the proof.
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Max-Contribution

At each slot t,
Step 1. Contribution computation.

Each node computes the contributions of the packets
(or copies) in its buffer over its connected links.

Step 2. Copy scheduling.
On each link l ∈ S(t), set the weight Wl(t) of the
link l to be maxm ∆vlm(t), and let

m⋆
l = argmax

m
∆vlm(t)

Step 3. Link scheduling.
Select the schedule S⋆(t) that satisfies

S⋆(t) = arg max
S∈S(t)

∑
l∈S

Wl(t), (8)

Step 4. Packet copying.
Replicate the packet (or the copy) m⋆

l over the link
l, for all l ∈ S⋆(t).

Unfortunately, Max-Contribution is still expensive to imple-
ment even with decoupling between link and copy scheduling.
The need to have global knowledge of vm remains, and the link
scheduling problem maximizing the sum weights of links is
NP-hard, which, again, can be reduced to the MWIS problem4.

IV. DISTRIBUTED MAX-CONTRIBUTION AND EXTENSION

A. Distributed Max-Contribution (DMC)
Copy scheduling. The main difficulty of MC is its requirement
that all nodes holding a copy of a packet company m have to
have the same value of vm. DMC approximates this process
through a technique called fusion which is used to maintain
the set of nodes that currently own a copy of a packet m. Each
node i keeps track of a set of other nodes, Nm,i, that have
a copy of each packet m it currently holds. Nm,i is called
a node set of i for m. Along with a node set for m, node
i maintains the delivery probability of each member in the
set. It is initially empty and adds another node j when node
i forwards a copy of m to j. After the forwarding happens,
node j sets Nm,j = Nm,i. When node i meets a node k with
the same copy m, then nodes i and k synchronize their node
sets for m by taking union of Nm,i and Nm,k. Whenever
Nm,i is updated either by forwarding the copy or by meeting
another node with the same copy, node i recomputes vm. If
the global performance objective is R1, vm is equal to the
probability, pm that any node holding any copy of m meets
the destination of m and delivers m. vm is recomputed in the
following manner. Denote the value of packet m at node i by
vm,i and the delivery probability (i.e., meeting probability) of
i with the destination of m by qm,i. Then

vm,i(t) = pm,i(t) = 1−
∏

k∈Nm,i

(1− qm,k(t)). (9)

4Under one-hop interference model, the link scheduling problem is reduced
to Maximum Weight Matching (MWM) whose complexity is O(L3).

To make a copy schedule at time t, DMC performs the
following operations. When a node i with a packet m meets
other nodes, they first exchange the IDs of packets whose copy
they currently hold and then perform fusion by synchronizing
their node sets and corresponding value information (i.e.,
delivery probabilities) and recomputing packet values. After
this process, a node performs copy scheduling. For each packet
m, node i computes the marginal increase of packet value of
m when i is copied to each neighbor j. If j is already holding
m, then the marginal increase is zero. If it is not, then the
marginal increase is the difference between the current value of
m and the new value of m if m is copied to j (i.e., recomputed
value after adding j to Nm,i). Node i picks the packet with the
biggest marginal value increase for scheduling. Denote such
a packet by m⋆

i,j where m is scheduled for copy for a link
between nodes i and j. We call m⋆

i,j(t) the candidate copy of
node i at time t.

Link scheduling. The scheduling algorithm that solves Eq. (8),

referred to as Max-Weight scheduling, has been extensively
studied to provide provable throughput guarantee. Recent
efforts on distributed scheduling can provide us an array
of candidate, low-cost algorithm to Max-Weight. Examples
include greedy, locally-greedy, random pick-and-compare (see
[16] and the references therein for details). Such algorithms
provide (partial) throughput performance guarantee, where
throughput is defined by the achieved stability region. We
can also adopt one of them in our framework as a distributed
heuristic. For our simulation, we use a locally greedy algo-
rithm which schedules, at each time t, the transmission of a
packet whose marginal value increase is biggest among all
candidate copies of nodes that are in an interference region at
time t.

B. Extension

Exploiting physical broadcast. We have so far considered
only unicast transmissions. Physical transmission in wireless
networks is broadcast. We can improve the performance of
DMC by exploiting overhearing through broadcast. When a
node i transmits a copy m to node j, then another neighboring
node k can overhear m. Then we allow node k to carry the
packet and performs DMC with that. In this case, node i does
not know whether node k has received that packet or not (as
no acknowledgement is sent). Thus, node i does not update its
packet value for the reception of m by k. However, this has a
tendency of improving the performance for a given objective.

Cost and efficiency: Tradeoff. In networks, the number of
packets is an important concern especially when transmitting
a packet can be costly in terms of energy consumption and
storage. In such cases, DMC can be adapted to keep the
the number of copies in the network in check. One way to
accomplish it is to set a threshold T such that a node does not
schedule a packet to a node whose delivery probability is less
than T (meaning that the node is not qualified for efficient
delivery).
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Fig. 1. Snapshot distribution of taxies in Shanghai. Each dot indicates the
location of a taxi during one hour at 11/28/2006. Circles indicate the candidate
locations of sources and destinations.

Delegation Forwarding (DF) [17] is known to efficiently
save cost while maintaining reasonable delivery ratio (note
that scheduling is not considered in DF). DMC is versatile
enough to approximate DF. We can set the threshold value of
DMC that equalizes the asymptotic number of copies in DMC
with that in DF as follows.

T = θ(pm,i) = 1− a(1− pm,i)
C , (10)

where

C =
log(2/a)−

√
(log(2/a))2 − 4 log (1− pm,i) log 2

2 log (1− pm,i)
,

and a is any positive constant satisfying C ≥ 0.
Our simulation comparing the costs of DMC-with-threshold

to DF shows that the cost is indeed the same although DMC
shows better delivery ratio. The formal derivation of the
threshold function is presented in Appendix.

V. PERFORMANCE EVALUATION

A. Node Delivery Probability from Shanghai Trace

For performance evaluation, we use GPS traces of over 4000
Shanghai taxies [9], by far, the largest vehicular GPS traces
publicly available. The location information of each taxi is
recorded at every 40 seconds within an area of 102km2 for 28
days (4 weeks). We consider a DTN application where many
infostations are randomly scattered around the city in a uni-
form manner and using a mobile network of taxies equipped
with WiFi, data from one infostation (i.e., source) is moved
to another infostation (i.e., destination). The infostations do
not have an access to infrastructure and they simply upload
data in units of packets to passing-by taxies. These infostations
are like public bulletin boards or street advertisement boards.
Daily updated content from one location is delivered to a set of
destination infostations for display. In this paper, we consider
only unicast scenarios and defer multicast scenarios to future
work.

People do not move randomly. Any mobile networks whose
constituent members are humans or vehicles driven by them

cannot be described as random movement and there exists
some regularity or periodicity in their mobility [18], [19].
From the taxi traces, we also find some regularity (1) in
the patterns of locations each taxi visits daily and (2) in the
patterns of meetings among taxies. Further, we find that taxies
exhibit some biases in choosing locations they visit and thus
other taxies they meet and that different taxies tend to have
different biases. These regularities are essential in extracting
information required to run DMC. To illustrate this, we plot
the CCDF (complementary CDF) of the inter-contact times
(ICT) and inter-visit times (IVT) of taxies in the traces, in
Figure 2. The distributions are best fitted with exponential
distributions. This is quite different from the human mobility
pattern which shows truncated power-law inter-contact time
distributions. Figure 3 plots the individual intensity values
(λIV T and λICT ) of IVT and ICT exponential distributions
of randomly chosen 100 taxies. For better readability of the
graph, we plotted 100 taxies instead of whole taxies. IVT is
plotted for 100 destination locations. From the plots, we find
that different taxies show different biases in the locations they
visit and in the set of taxies they meet daily.

These characteristics of the Shanghai taxi network allow
us to extract scheduling metadata. In particular, from the
exponential distributions we fitted to each individual taxi’s
IVT and ICT, we can derive the node delivery probability,
qm,i of a node i to the destination location, d(m) of a packet
m which implies the maximum potential delivery probability.
More precisely,

qm,i(t) = max{q1m,i(t), q
2
m,i(t), q

3
m,i(t), ...}, (11)

where qkm,i denotes the delivery probability through k hops.
For example, 1-hop probability, q1m,i(t) is the probability that
node i directly meets the destination location, d(m) during
the interval [t, tdl]. For 2-hops or more, we find the path
(sequence of nodes) with the maximum delivery probability
by comparing all combinations of the intermediate nodes.
Thus, the k-hop delivery probability is defined as follows
(note that nk denotes the k-th hop node and we replace
n1 = i, nk+1 = d(m) for the ease of expression).

qkm,i(t) =

max
{n2,...,nk}∈Nk−1

{∫ td−t

tnk−1,nk

· · ·
∫ td−t

0

P[Tn1,n2
= tn1,n2

]

k−1∏
j=2

P[Tnj ,nj+1 = tnj ,nj+1 − tnj−1,nj ]

P[Tnk,nk+1
≤ (td − t)− tnk−1,nk

]dtn1,n2 · · · dtnk−1,nk

}
(12)

where N k and Tnj ,nj+1 denote the k-combinations of node
sequences from the node set N excluding the node i itself
and a random variable indicating the inter-contact time or the
inter-visit time between the j-th node and the (j+1)-th node
(or location).
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Fig. 2. Inter-visit time (IVT) distribution and inter-contact time (ICT) distribution of a taxi to locations and other taxies. They are fitted by maximum
likelihood estimation (MLE) to exponential distributions. The maximum and minimum intensity of the best fitting exponential distributions are λmin and
λmax, respectively.
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Fig. 3. We plot the individual intensity values (λIV T and λICT ) of IVT and ICT exponential distributions of randomly chosen 100 taxies for better
readability. IVT is plotted for the 100 destination locations. A high intensity value of a particular location by a particular taxi implies that a taxi has a high
rate of visit to a particular location. Likewise, a high intensity value of a taxi with respect to another taxi meets they tend to meet very often. From the plots,
we find that different taxies show different biases in the locations they visit and in the set of taxies they meet daily.

B. Setup, Metric and Tested Algorithms
We implemented a resource allocation simulator for a DTN

using MATLAB. Among over 4000 taxies, we selected rela-
tively reliable 1486 taxies that show less than 30% of unclear
GPS coordinates in a day(included in the traces) before per-
forming interpolation. By default, we use the communication
range of WiFi, 300 meters. Also, we selected 100 candidate
locations (uniformly distributed) and 32 random pairs of S-
D (source,destination) in the 100 candidate locations for our
simulation. We also vary the number of packets per S-D pair
to see the performance for different traffic loads. We set the
deadline (i.e., tdl) to be 24 hours. We make resource allocation
decisions every 30 seconds. We also tested other intervals, and
observed similar trends. We repeated ten simulations; each
time, we vary S-D pairs randomly with different seeds.

We present the results for the max-delivery objective. Two
performance metrics are considered: (i) delivery ratio and (ii)
efficiency. Delivery ratio is the ratio of the total delivered
packets (counting only original packets) within a designated
time deadline to the total number of packets that sources
initially have. Efficiency is the delivery ratio per unit cost
where cost is simply the total number of transmissions by
transmitters.

We evaluate seven algorithms summarized in Table I. MC-

TABLE I
TESTED ALGORITHMS (⋆ CORRESPONDS TO THE ITEMS THAT WE ADDED

FOR FAIR COMPARISON)

Algorithm Link Copy Value
scheduling scheduling update

Random random random ×
DF [17] ⋆greedy ⋆difference. delegation

RAPID [14] ⋆random contribution global
MC-Global greedy contribution global

DMC greedy contribution fusion
DMC-Threshold greedy contribution fusion

with threshold
DMC-Broadcast greedy contribution fusion

with broadcast

Global uses the global view of packet values, but solves link
scheduling using local greedy link scheduling of DMC. This is
because solving the MWIS problem for link scheduling at the
scale of our network is too time consuming. Some protocols
do not have in their design the specifications for link/copy
scheduling and value updates. Thus, for fair comparison, we
additionally implemented the absent features. For example,
link scheduling has not been considered in DF and RAPID
in their papers. In random scheduling and forwarding, links
and packets are randomly selected out of the connected links
and packets that exist in either of two nodes that meets. In DF,
link scheduling requires prioritizing the packets to copy, for
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which we apply the differences of packet delivery probabilities
(that are originally used in DF for reducing cost based on
thresholds). We used “delegation” originally proposed in DF
for value updates, i.e., when a packet m is copied from v
to w, the delivery probability of w for m is also copied to v.
We intentionally use random (e.g., CSMA) for link scheduling
at RAPID to quantify the impact of the joint copy and
link scheduling. DMC-threshold and DMC-Broadcast use the
features of thresholding and broadcast described in Section III.

C. Simulation Results

Fig. 4 shows the delivery ratio and efficiency of scheduling
algorithms against the offered load (the number of packets).
The delivery ratio decreases as the offered load (the number
of input packets) increases. MC-Global, DMC and DMC-
Broadcast show better deliver ratios than any other protocols.
DMC shows almost as good delivery ratio as MC-Global. This
indicates that the localized information update, Fusion, can
efficiently replace the expensive global knowledge update used
in MC and also in RAPID. The main performance difference
between DMC and RAPID is about 10% to 15% under high
load and arises from use of more intelligent link scheduling
for DMC. We believe this effect will be more resounding when
the network density increases. DMC-Broadcast shows the best
delivery ratio in all offered loads. Under 1500 packets, the
offered load is much higher than the capacity of the network
leaving many packets to miss the deadline. All protocols suffer
their performance. However, DMC-Broadcast still outperforms
by about 20-30% over DMC and 45% over RAPID. Clearly
opportunistic copying using broadcast improves the perfor-
mance substantially. DMC-Threshold always does better than
DF in efficiency which is known to achieve good balance
of the delivery ratio and the cost. We confirm that the cost
of DMC-Threshold and DF is very similar, which is why
DMC-Threshold shows better efficiency. Among all tested
algorithms, Random shows the worst performance in all cases.
It was expected as it does not exploit the characteristics of IVT
and ICT as shown in Figs 2 and 3.

Figs 4 (a) and (b) are obtained when the radio range is 300
meter. We now modify the radio range from 300 meters to
500 meters to test the performance of various protocols under
high density environments. We are interested in studying the
effect of more intelligent (but practical) link scheduling on the
performance. Fig. 4 (c) compares the delivery ratios of DMC
and RAPID as these two protocols are essentially different
in two points: (1) DMC uses more lightweight metadata
dissemination called Fusion than RAPID which uses flooding
and (2) DMC uses greedy link scheduling while RAPID uses
random link scheduling. In general, the effect of the first point
is minimal because the performance of DMC and MC-Global
is not much different. Therefore, the performance difference
between them most likely comes from the effect of the second
point. As the density of the network increases, the interference
becomes larger. Thus, we can observe from the figure that
the performance gap between the two protocols get bigger by
about two times. The performance of DMC improves with the

increased radio range because of higher chance of meeting
other nodes.

VI. RELATED WORKS

A common assumption in DTN research is that nodes
are sparsely distributed and packet delivery is instantaneous.
This assumption greatly simplifies the problem. Many popular
DTN routing algorithms are heuristically developed under this
assumption (e.g., Epidemic routing [2], Prioritized epidemic
routing [3], DREAM [4], PRoPHET [5], Knowledge-based
forwarding [6], Last encounter-Time based forwarding [7],
Spray and wait [8]). Under the same assumption, there have
been some theoretical work [12], [13] for maximizing the
delivery ratio as well as minimizing energy consumption by
controlling the number of copies. Their solutions use dynamic
programming. However, dynamic programming has limitations
in producing an on-line solution because of its complexity and
also the requirement to know the future events.

Some recent work [14], [20] considers the case where link
bandwidth could be limited at the time of contacts and apply
some concept of packet scheduling (i.e., copy schedules). They
model the DTN as a resource allocation problem and provide
a heuristic packet scheduling based on per-packet marginal
utility where utility is defined as the average delay or the ratio
of packets which missed a deadline. Along the similar line
of research, [21] adds an optimal drop policy for a limited
buffer which drops packets in consideration of the per-packet
marginal utility. By far, no other work has considered the joint
constraints of interference and link and copy schedules.

VII. CONCLUSION

The main contributions of this paper are three-folds. First,
we consider resource allocation for jointly optimizing link
scheduling, routing and replication. This framework allows the
developed solutions to be adaptive to various conditions of net-
works whether they are dense with high interference or sparse
with high rates of disconnections. Second, optimal resource
allocation for jointly optimizing link schedule and replication-
based routing is a hard problem in ST-DTNs because of
dynamic links and various control knobs of improvement for
forwarding and replications. Many existing techniques try to
focus on one or two knobs for improved performance by
applying intuition-driven heuristics. In this paper, we sys-
tematically approach the problem; we theoretically solve the
optimal solution for snapshot optimality which restricts nodes
to use only contemporarily available knowledge, and then
approximate various components of the optimal solution to
reduce its complexity without much loss in the performance.
Our theory-driven approach clearly shows how we derive
our heuristic solutions and provides some confidence over
the expected performance. Finally, we demonstrate how our
solutions can be applied to solving real world problems, such
as information dissemination over a network of over 1000
taxies, each equipped with a WiFi radio, which is by far the
biggest DTN network being simulated using real traces. From
the traces, we extract statistical properties of taxi movements



9

200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

Amount of Packets per SD pair

D
el

iv
er

y 
R

at
io

 

 

Random
DF
RAPID
MC−Global
DMC
DMC−Threshold
DMC−Broadcast

(a) Delivery Ratio

200 400 600 800 1000 1200 1400
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Amount of Packets per SD pair

E
ff

ic
ie

nc
y

 

 

(b) Efficiency

60

70

80

90

100

D
el

iv
er

y 
R

at
io

 (
%

)

 

 

DMC
RAPID

Range = 500mRange = 300m

(c) Delivery Ratio under different radio ranges

Fig. 4. (a) and (b) The Delivery ratio and Efficiency of algorithms listed in Table I against the offered load to 32 S-D pairs. Each value shows 95% confidence
interval. We do not show cost as it is implied in the efficiency. (c) The delivery ratio of RAPID and DMC under different radio ranges. The input load is set
to 700 packets.

and apply them to formulate parameter values to the input
of our algorithms. This work clearly demonstrates how our
solutions would perform in real network settings.

APPENDIX

A. Derivation of Eq. (10)

We borrow the technique from [17]. The main interest is
to study how fast the threshold increases, resulting in the
asymptotic number of copies in the network. Assuming that the
delivery probability of nodes is uniform over [0, 1] for simplic-
ity, whenever a node v (holding the packet m) meets another
node whose delivery probability is above G(t),1−θ(pm,v(t)),
the node v copies packet m, and then fuse its probability to
update pm,v(t + 1) The quantity that we are interested in
is E[G(t + 1)|G(t)] that states the increasing speed of the
threshold.

E[G(t+ 1)|G(t)] = 1− E[θ(pm,v(t+ 1))|pm,v(t)]

= 1− θ(
1 +min(pm,v(t+ 1))

2
).

(13)

Then, in DF it sets the threshold θ(pm,v(t)) = pm,v(t) as
shown in [17] and gives,

E[G(t+ 1) | G(t)] = (1− pm,v(t))/2. (14)

Whereas, in DMC, as the local value update follows pm,v(t+
1) = 1 − (1 − pm,v(t))(1 − qm,w(t)) when v copies m to w
with the threshold θ(pm,v(t)), by applying this to Eq. (13), it
is easy to show that:

E[G(t+1)|G(t)]=1−θ
(2−(1−pm,v(t))(1−θ(pm,v(t)))

2

)
. (15)

Then, it suffices to find a function θ(·), so that Eq. (15) is
equal to Eq. (14) of DF. We can easily check that θ(·) in Eq.
(10) can satisfy it.
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