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ABSTRACT
In this paper, we consider the problem of recovering a graph that

represents the statistical data dependency among nodes for a set of

data samples generated by nodes, which provides the basic structure

to perform an inference task, such as MAP (maximum a posteri-

ori). This problem is referred to as structure learning. When nodes

are spatially separated in different locations, running an inference

algorithm requires a non-negligible amount of message passing, in-

curring some communication cost. We inevitably have the trade-off

between the accuracy of structure learning and the cost we need

to pay to perform a given message-passing based inference task

because the learnt edge structures of data dependency and physi-

cal connectivity graph are often highly different. In this paper, we

formalize this trade-off in an optimization problem which outputs

the data dependency graph that jointly considers learning accuracy

and message-passing cost. We focus on a distributed MAP as the

target inference task due to its popularity, and consider two dif-

ferent implementations, ASYNC-MAP and SYNC-MAP that have

different message-passing mechanisms and thus different cost struc-

tures. In ASYNC-MAP, we propose a polynomial time learning

algorithm that is optimal, motivated by the problem of finding a

maximumweight spanning tree. In SYNC-MAP, we first prove that
it is NP-hard and propose a greedy heuristic. For both implementa-

tions, we then quantify how the probability that the resulting data

graphs from those learning algorithms differ from the ideal data

graph decays as the number of data samples grows, using the large

deviation principle, where the decaying rate is characterized by

some topological structures of both original data dependency and

physical connectivity graphs as well as the degree of the trade-off,

which provides some guideline on howmany samples are necessary

to obtain a certain learning accuracy. We validate our theoretical

findings through extensive simulations, which confirm that it has a

good match.

CCS CONCEPTS
•Computingmethodologies→Learning in probabilistic graph-
ical models; •Mathematics of computing→ Probabilistic infer-
ence problems; • Theory of computation → Sample complexity
and generalization bounds;
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1 INTRODUCTION
In many online/offline systems with spatially-separated agents (or

nodes), a variety of applications involve distributed in-network sta-

tistical inference tasks, which have been widely studied, exploiting

given knowledge of statistical dependencies among agents. As one

example, in sensor networks with multiple targets, each sensor

node measures the target-specific information in its coverage area

(e.g., position, direction, distance), which further has a correlation

among sensors. One well-recognized inference problem is a data

association which determines the correct match between measure-

ments of sensors and target tracks by maximum a posteriori (MAP)

estimation that is executed in a distributed fashion by exchanging

some information messages. Other examples include target track-

ing, and detection/estimation in sensor networks [23, 27, 29, 34] and

de-anonymization, rumor/infection propagation in social networks

[2, 11, 14, 19].

To solve these distributed in-network inference problems, it is

of crucial importance to understand how data from nodes are inter-

dependent. To that end, a notion of the graphical model has been
one of the powerful frameworks in machine learning for a succinct

modeling of the statistical uncertainty, where each node in the

graphical models corresponds to a random variable and each edge

specifies the statistical dependency between random variables. A

wide variety of scalable inference algorithms on graphical mod-

els via message-passing have been developed, of which examples

include belief propagation (BP) or max-product with a certain de-

gree of convergence and accuracy guarantees [15, 24, 31, 32]. This

graphical model, which we also call data dependency graph or sim-

ply data graph throughout this paper, is not given a priori, and it

should be learnt only by using a given set of data samples from

nodes. This problem, referred to as graph learning or structure learn-
ing [1, 13, 21, 25], has been an active research topic in statistical

machine learning.

In this paper, for a collection of n data sample vectors generated

by nodes, we study a problem of graph learning, which also consid-

ers the communication cost incurred by the distributed in-network

inference algorithm being applied to the learnt data graph. Physical

communication cost often becomes a critical issue, for example,

exerting a significant impact on the lifetime of networked sensors.

Clearly, there exists a trade-off between the amount of incurred cost

https://doi.org/10.1145/3209582.3209600
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(a) Physical graph (b) Data graph (c) Cost-efficient data graph

Figure 1: Network graphs with 7 sensors. (a) physical con-
nectivity, (b) exact statistical dependency graph called data
graph, (c) Data graph considering communication cost be-
tween nodes.

and the learning accuracy of the data graph. Figure 1(a) illustrates

the physical connection among 7 sensors, which differs from the

exact data dependency graph in Figure 1(b). The sensor nodes s1
and s6 have non-negligible data dependency, requiring message-

passing when performing inference, but they are three hops away

from each other, incurring a large amount of communication cost.

In this case, one may want to sacrifice the estimation accuracy a

little bit and reduce communication cost by utilizing the data graph

as shown in Figure 1(c). As done in many prior works on graph

learning [3, 8, 9, 21], we restrict our attention to tree-structured

data graphs due to its simplicity, yet a large degree of expressive

powers and other benefits, e.g., some inference algorithms such as

BP over tree-structured data graphs become optimal.

We now summarize our contributions in what follows:

(a) We first formulate an optimization problem of learning data

graph, having as an objective function the weighted sum of

learning accuracy and the amount of cost that will be incurred

by a distributed inference algorithm. Out of many possible

inference algorithms, we consider the maximum a posteriori

(MAP) estimator that is popular for many inference tasks, and

two versions for the MAP implementation: (i) asynchronous

and (ii) synchronous, which we call ASYNC-MAP and SYNC-
MAP. These implementations have different patterns of passing

messages, thus leading to different forms of communication

costs, being useful to understand how distributed algorithms’

cost affect the resulting data dependency graph.

(b) Next, for ASYNC-MAP we develop a polynomial-time algo-

rithm to find an optimal (cost-efficient) data graph that cor-

responds to simply finding a maximum weight spanning tree.

This simplicity stems from the cost structure of ASYNC-MAP
that is characterized only by the sum of all ‘localized’ edge costs.

Being in sharp contrast to ASYNC-MAP, for SYNC-MAP we

first prove that it is computationally intractable (i.e., NP-hard)
in terms of the number of nodes, by reducing it to the problem

of the Exact Cover by 3-sets. The hardness is due to the fact

that the cost structure of SYNC-MAP depends on the diameter

of the resulting tree which is the ‘global’ information involv-

ing the entire topology. As a practical solution, we propose a

polynomial-time greedy heuristic to recover a sub-optimal, but

cost-efficient data graph.

(c) Finally, for both ASYNC-MAP and SYNC-MAP, we quantify
how the probability that the resulting (cost-efficient) data graph

for a finite number of n samples differs from the ideal data

graph decays as n increases, using the large deviation principle

(LDP), as a form of exp(−n · K). The error exponent K is char-

acterized for each of ASYNC-MAP and SYNC-MAP by some

topological information of physical/data graphs, cost structure

for both inference mechanisms, and the degree of the trade-off.

We validate our theoretical findings through simulations over a

20-node graph for a variety of scenarios and show their good

match with the simulation results.

To validate our theoretical results, we perform numerical simu-

lations a pair of physical and data graphs with 20 nodes, where we

quantitatively analyze (i) how estimating a data graph considering

communication cost affects the resulting estimation for various

values of trade-off parameters between inference accuracy and cost,

(ii) how the estimation error decays as the same size increases.

1.1 Related Work
A variety of applications which involve distributed in-network sta-

tistical inference tasks among spatially inter-connected agents or

sensors have been widely studied in many online/offline systems. In

sensor networks, where the knowledge of statistical dependencies

among sensed data is given, the tasks of target tracking [7, 22, 33],

detection [6], parameter estimation [16, 27] are the examples, see

[29] for a survey. In social networks, where the underlying social

phenomenon of interest such as voting models, rumor/opinion

propagation [2] evolves over a given social interaction graph, the

inference tasks of distributed consensus-based estimation [19], de-

anonymization of community-structured social network [14] and

distributed observability [11] are studied.Message-passing has man-

ifested as an efficient procedure for inference over graphical models

that provide the framework of succinct model of the statistical un-

certainty of multi-agents. Examples include belief propagation (BP)

[24], max-product [15, 32] and references therein. They are known

to be exact and efficient when the underlying graphical model is a

tree [24, 31]. Recent research progress has been made for scalable

message-passing for general graphs, e.g., junction tree [30] and

graphs with loops [17].

In the area of structure learning, several algorithms have been

proposed in the literatures to recover the statistical dependencies

from a set of data samples [1, 13, 21, 25]. It is known that the exact

structure learning for general graphical models is NP-hard. The

research of structure learning for special graphical models includes:

maximum likelihood estimation (MLE) [8, 21] for tree graphs, ℓ1
regularized MLE for binary undirected graphs [25], convexified

MLE for Gaussian graphical models, known as Lasso [13]. Theo-

retical guarantees for the learning accuracy have been established

as the number of data samples, e.g., on tree graph [28], on binary

undirected graphs [25], on a class of Ising model [4], or on Bayesian

network [36]. Our work differs from all of the above works in that

we consider physical communication cost incurred by some target

inference algorithms when learning the data dependency graph.

There exists an array of work that addresses the trade-off be-

tween inference quality and cost in running distributed in-network

inference on the known data graph, which are summarized as two

directions: (i) developing novel inference algorithms with less com-

munication of messages or (ii) constructing a new graphical model

upon which the existing distributed in-network inference algo-

rithms are performed with less communication resources. In (i),
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the need of conserving resources requires to propose new message-

passing schemes where the messages are compressed by allowing

some approximation error in message values [10, 17, 20, 22], and/or

some messages are censored (i.e., not to be transmitted) [7]. In (ii),
most of the related works focused on constructing a junction tree

that minimizes the inference cost [23], building a data dependency

structure upon which message-passing is run energy-efficiently,

where the communications among all agents are assumed to be

done in one-hop [34], or optimizing the data dependency structure

formulated by a multi-objective problem of inference quality and

energy, assuming that the exact statistical dependencies are given

as a complete graph [35]. While the main interest of this area has

been focused on characterizing the desirable dependency structure

for given complete knowledge of accurate data dependencies, our

work is motivated by the practical situation where one can just be

able to observe a finite number of data sample vectors of nodes,

which do not provide such a complete knowledge. Therefore, our

interest lies in learning the desirable data dependencies from a finite

number of data samples.

2 MODEL AND PRELIMINARY
2.1 Model
Physical graph. We consider a (connected) physical network G =
(V ,EP ) with a set of d nodes V and links EP , where each node

corresponds to an agent such as a sensor or an individual, and each

link corresponds to a physical connectivity between two nodes.

For example, in sensor networks, when nodes have wireless radios,

then each link is established when two corresponding nodes over

the link reach each other within each radio’s communication range.

Data samples. Each node i ∈ V generates a binary data, denoted by

xi ∈ X := {0, 1}1, where we denote by x = [xi ]i ∈V the data vector

of all nodes, or simply a sample, e.g., target locations measured

by all sensors. The underlying statistical uncertainty of samples

can be represented by a joint distribution P(x) of a random vector

X := [Xi ]i ∈V ∈ Xd , called data distribution, where each random

variable Xi is associated to each node i ∈ V . We often collect n
multiple samples (x1:n = {x1,x2, . . . ,xn }) in order to infer what

happens in the network by understanding the inter-dependence of

data generated by nodes. For instance, when sensors measure the

target location, then we infer the underlying statistical correlation

among sensors from the observed samples, to estimate the true

target location.

Data graph via graphical model. The underlying statistical de-

pendency is often understood by the framework of graphical model,
which has been a popular tool for modeling uncertainty by a graph

structure, where each node corresponds to a random variable and

each edge captures the probabilistic interaction between nodes. In

particular, we model the data distribution P(x) as an undirected

graph T = (V ,ED ), which we call data graph, which consists of

the same set V of nodes as that in the physical graph and nodes’

statistical dependencies captured by an edge structure ED as: any

two non-adjacent random variables are conditionally independent

1
We assume a binary data for simplicity, and our results are readily extended to

any finite set X.

given all other variables, i.e., for any (i, j) < ED ,

P
(
xi ,x j | xV \{i, j }

)
= P

(
xi | xV \{i, j }

)
· P

(
x j | xV \{i, j }

)
. (1)

In this paper, we limit our focus on the tree-structured data

graph (thus simply data tree), for which let T and P(Xd ) be set of
all spanning trees and set of all tree data distributions over V , re-

spectively, i.e., we assumeT ∈ T and P ∈ P(Xd ). Tree data graph is
a class of graphical models that has received considerable attention

in literatures [3, 8], since it possesses the following factorization

property:

P(x) =
∏
i ∈V

Pi (xi )
∏

(i, j)∈ED

Pi, j (xi ,x j )
Pi (xi )Pj (x j )

, (2)

where Pi and Pi, j are the marginals on node i ∈ V and edge (i, j) ∈
ED , respectively. Tree-structured data graph is known to strike a

good balance between the expressive power and the computational

tractability. In particular, the distribution P in (2) is completely

specified only by the set of edges ED and their pairwise marginals.

Thus, if P has the factorization property as in (2), in other words, if

P ∈ P(Xd ), there exists a unique tree T = T (P) corresponding to

P . To abuse the notation, we henceforth denote byT (P) the unique
data tree of a tree distribution P . Figure 1 shows an example of the

physical graph and two data graphs with 7 nodes.

2.2 Goal: Cost-efficient Learning of Data Graph
Learning data graph: What and why? To understand the under-
lying data dependency (2), it is enough to learn the structure of

data graph ED from the observed samples, which is known as the

problem of (data graph) structure learning. Formally, when we are

given a set of i.i.d. n samples x1:n generated from an unknown (tree)

data distribution P ∈ P(Xd ) on a data tree T , a structure learning
algorithm is a (possibly randomized) map ϕ defined by:

ϕ : (Xd )n 7→ T .

The quality of this algorithm T̂ = ϕ(x1:n ) is evaluated by how

“close" T̂ is to the original data graph T .

Distributed inference on data graph. One of the practical goals
of estimating the data tree given a set of data samples is to per-

form an inference task based on T . Thus, in many applications,

primary interests are not focused on data itself but rather on how

to exploit the data dependency for reliable decision making, such

as target tracking, detection, estimation in sensor networks and/or

social networks, which involves statistical inference about the net-

works described by a data graph. One example of inference tasks is

the MAP (maximum a posteriori) based estimation. Distributed in-

network inference has been widely studied with the help of various

distributed algorithms on graphical models using message-passing.
In particular, for a specific inference problem, a message between

two nodes contains the information on influence that one node ex-

erts on another, which is obtained based on the value contained in

neighboring messages over an estimated data graph T̂ . One critical
issue of message-passing based inference algorithm is thatmessages
are often passed along the multi-hop path on the physical graph G,
which incurs some amount of communication cost. Then, assum-

ing that some inference algorithm would be run for the estimated

data graph T̂ , such a data graph learning must have the trade-off
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between the accuracy of the learnt graph (i.e., how close the learnt

graph is to the original data graph) and the communication cost

generated by performing the distributed inference.

Goal: Cost-efficient data graph learning. Given an observed

samples x1:n from the unknown data distribution P , our objec-
tive is to estimate a cost-efficient data tree, which captures the

trade-off between (i) inference accuracy and (ii) communication cost
for inference. For tree distributions, finding a distribution naturally

gives rise to the corresponding data tree, as mentioned earlier. Thus,

it is natural to find the tree distribution Q̂⋆(n) = Q̂⋆(x1:n ,G,Π,γ )
that is the solution of the following optimization problem: for a

constant parameter γ ≥ 0 and a fixed inference algorithm Π,

CDG(n) :Q̂⋆(n) = argmin

Q ∈P(Xd )
D(P̂(x1:n ) ∥ Q) + γC

(
T (Q);G,Π

)
,

(3)

where P̂(x1:n ) := 1

n
∑n
k=1 1{x

k = x} is the empirical distribution

of x1:n , D(· ∥ ·) is some distance metric between two distributions,

and C(T (Q);G,Π) is the communication cost paid by running an

inference algorithm Π with respect to the data tree T (Q) over the
physical graph G . Recall that T (Q) is the data tree for the tree

distribution Q . The value of γ parameterizes how much we priori-

tize the communication cost compared to the inference accuracy

D(P̂(x1:n ) ∥ Q). Note that as n → ∞, P̂(x1:n ) converges to the

original data distribution P , which requires to solve CDG(∞).

Then, this paper aims at answering the following two questions:

(a) What are good data-tree learning algorithms that compute

T (Q̂⋆(n)) by solving CDG(n)? In Section 3, we consider the

MAP estimator as an applied inference algorithm, and their two

implementations having different cost functions, for which we

propose two cost-efficient learning algorithms.

(b) How fast does Q̂⋆(n) converge to Q̂⋆(∞) as the number of sam-

plesn grows?We use the large deviation principle (LDP) to char-

acterize the decaying rate of the probability that T (Q̂⋆(n)) ,
T (Q̂⋆(∞)) for two different MAP implementations in Section 3.

In this paper, we use the popular KL divergence as a distance

metric D(·| |·) for inference accuracy, denoted by DKL, where for

two distributions P and Q , DKL(P ∥ Q) :=
∑
x ∈Xd P(x) log

P (x )
Q (x ) .

For notional simplicity, we simply denote by Q⋆
:= Q̂⋆(∞) the

solution of CDG(∞) throughout this paper.

3 COST-EFFICIENT DATA GRAPH LEARNING
ALGORITHMS

In this paper, out of many possible inference tasks, we consider

the maximum a posteriori (MAP) estimation, which is popularly

applied in many applications such as data association for a multi-

target tracking problem in sensor networks, community-structured

social network de-anonymization problem in social networks [14].

3.1 Distributed MAP and Cost

Distributed MAP on tree-structured data graph. The MAP es-

timator of some tree distribution Q ∈ P(Xd ) on its associated data

tree T (Q) = (V ,EQ ) is given by:

xMAP
:= argmax

x ∈Xd

∏
i ∈V

ψi (xi )
∏

(i, j)∈EQ
ψi, j (xi ,x j ), (4)

where we use ψi (xi ) = Qi (xi ) and ψi, j (xi ,x j ) =
Qi, j (xi ,x j )
Qi (xi )Q j (x j ) for

simplicity. A standardmessage-passing algorithm for the distributed

MAP is a max-product algorithm, which defines a messagem
(t )
i→j (·)

from node i to j at t-th iteration with (i, j) ∈ EQ . Each node ex-

changes messages with their neighbors on the data tree T (Q), and
these messages are updated over time in an iterative fashion by the

following rule: at t-th iteration,

m
(t+1)
i→j (x j ) := κ · max

xi ∈X

[
ψi (xi )ψi, j (xi ,x j )

∏
k ∈N(i)\{j }

m
(t )
k→i (xi )

]
, (5)

with the normalizing constant κ to make the sum of all message

values be 1, and N(i) denotes the neighboring nodes of i .
Communication cost of distributed MAP. The communication

cost of MAP is paid, depending on the actual protocol that specifies

how to schedule message-passing procedures. Two natural message-

passing protocols studied in literatures are: (a) asynchronous depth-

first (unicast) update [12] and (b) synchronous (broadcast) parallel

update [24]. Both protocols for a tree distribution Q with its data

tree T (Q) have been shown to be consistent in that the message

update (5) converges to a unique fixed point {m∗i→j ,m
∗
j→i }(i, j)∈EQ ,

which defines the exact MAP assignment in (4) as xMAP

i = κ ·
ψi (xi )

∏
k ∈N(i)m

∗
k→i (xi ) for each i ∈ V . We denote the the cost

of a single message-passing over an edge e = (i, j), under a given
physical graphG , as ce or ci, j . Recall that the message passing over

e = (i, j)may need to be done over a multi-hop path on the physical

graphG . One simple example of ci, j is the shortest path distance

from node i to j inG . Then, both protocols incur the communication

cost as elaborated in what follows:

(a) Asynchronous: In the asynchronous protocol (simply ASYNC-
MAP), one node is arbitrarily picked as a root, and messages

are passed from the leaves upwards to the root, then back down-

wards to the leaves. It involves a total |EQ | number of messages

upon termination. Thus, the communication cost would be:

C(T (Q);G,ASYNC-MAP) =
∑

(i, j)∈EQ
2ci, j . (6)

(b) Synchronous: In the synchronous protocol (simply SYNC-MAP),
at each iteration, every node sends messages to all of its neigh-

bors. Then, since the diameter diam(T (Q))2 is the minimum

amount of time required for amessage to pass between twomost

distant nodes inT (Q), this protocol involves at most diam(T (Q))
iterations with total 2|EQ | · diam(T (Q)) number of messages.

Thus, we have the following cost:

C(T (Q);G, SYNC-MAP) =
∑

(i, j)∈EQ
2ci, j · diam(T (Q)). (7)

In the next subsection, we will use the above two cost functions

for two different learning algorithms for CDG(n) in (3) to estimate

two cost-efficient data trees.

2
For a tree T with d nodes, 2 ≤ diam(T ) ≤ d − 1.
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Algorithm 1: ASYNC-ALGO

Input: x1:n : a set of n samples, γ : the trade-off parameter, a

physical graph G = (V ,EP )
Output: Estimated tree T = (V ,E).

S0. E = ∅ and for each possible edge e = (i, j) ∈ V ×V , we
initialize its weight by:

we = Ie (P̂) − 2γ · ce , (9)

where Ie (µ) is the mutual information between two

end-points of edge e with respect to a given joint

distribution µ .

S1. Run a maximum weight spanning tree algorithm for H , and
save its resulting spanning tree at T = (V ,E).

S2. Return T .

3.2 Algorithm for Asynchronous MAP
Using the cost function for the asynchronous MAP in (6), the origi-

nal optimization problem CDG(n) is re-cast into:

CDG-A(n) : Q̂⋆(n) =

argmin

Q ∈P(Xd )
DKL(P̂(x1:n ) ∥ Q) + γ

∑
e ∈EQ

2ce . (8)

We now describe ASYNC-ALGO that computes Q̂⋆(n) in (8)

and thus estimates the cost-efficient data tree T (Q̂⋆(n)) in Algo-

rithm 1. As we see, the algorithm is remarkably simple. Using given

n data samples, we construct a weighted complete graph, where the

weight for each edge is assigned some combination of the mutual

information of nodes i and j with respect to the empirical distribu-

tion P̂ obtained from the data samples and the per-message cost,

as in (9). Then, we run an algorithm that computes the maximum

weight spanning tree, e.g., Prim’s algorithm or Kruskal’s algorithm,

and the resulting spanning tree is the output of this algorithm.

Correctness of ASYNC-ALGO. We now present the correctness

of the above algorithm in the sense that we can obtain the data

tree corresponding to the optimal distribution formulated in (8),

as explained in what follows: For some tree distribution Q (thus,

satisfying the factorization property in (2)), we have:

DKL(P̂ ∥ Q) = −H (P̂) −
∑

x ∈Xd
P̂(x) logQ(x)

≥ −H (P̂) +
∑
i ∈V

H (P̂i ) −
∑

(i, j)∈EQ
I (P̂i, j ), (10)

where H (·) is the entropy, and the inequality holds when the pair-

wise marginals over the edges of a fixed EQ are set to that of P̂ , i.e.,
Qi, j (xi ,x j ) = P̂i, j (xi ,x j ) for all (i, j) ∈ EQ . Since the entropy terms

are constant w.r.t. Q , it is straightforward that the structure of the

estimator Q̂⋆(n) of CDG-A(n) in (8) is given by:

Ê⋆(n) := argmax

EQ :Q ∈P(Xd )

∑
e ∈EQ

Ie (P̂) − 2γ · ce , (11)

Q̂⋆
i, j (n) = P̂i, j , ∀(i, j) ∈ Ê⋆(n). (12)

Then, it is easy to see that (11) requires us to find the maximum

weight spanning tree using Ie (P̂) − 2γ · ce as the edge e’s weight,

where the standard maximum weight spanning tree (MWST) com-

putation algorithm runs in O(d2 logd) time, where |V | = d .

3.3 Algorithm for Synchronous MAP
Similarly to ASYNC-MAP, using the cost in (7), the original opti-

mization problem CDG(n) is re-cast into:

CDG-S(n) : Q̂⋆(n) =

min

Q ∈P(Xd )
DKL(P̂(x1:n ) ∥ Q) + γ · diam(T (Q))

∑
e ∈EQ

2ce . (13)

Following the similar arguments in Section 3.2, the structure of

the above estimator of CDG-S(n) in (13) is given by

Ê⋆(n) := argmax

EQ :Q ∈P(Xd )

∑
e ∈EQ

Ie (P̂) − 2γdiam(T (Q)) · ce , (14)

Q̂⋆
i, j (n) = P̂i, j , ∀(i, j) ∈ Ê⋆(n). (15)

We comment that this optimization is non-trivial in that the ob-

jective function contains the diameter of the tree, which can be

computed only when the solution is fully characterized.

Hardness. The key difference in the cost function of SYNC-MAP
from ASYNC-MAP is simply the existence of diam(T (Q)). How-
ever, this simple difference completely changes the hardness of

learning the optimal data tree in SYNC-MAP, as formally stated

in the next Theorem.

Theorem 3.1 (Hardness of CDG-S(n)). For any parameter γ ≥
0, obtaining the optimal distribution Q̂⋆(n) inCDG-S(n) and thus its
associated data tree T (Q̂⋆(n)) is NP-hard with respect to the number
of nodes.

Due to space limitation, we present the full proof of Theorem 3.1

in our technical report [18]. The key step in proof is to reduce the

CDG-S(n) in (13) to Exact Cover by 3-sets problem.

Greedy algorithm. Due to the above-mentioned hardness, we pro-

pose a greedy heuristic algorithm that outputs the tree structure

denoted by ÊS(n), called SYNC-ALGO(β), as we describe in Algo-

rithm 2, where β is the algorithm parameter. The overall algorithm

operates as follows:

S0. Initialize the weight of each possible edge with some initial

value.

S1. Sequentially select the edge that has the maximum weight

and add it to the temporary resulting tree.

S2. Update the weight of each edge whose one end-point is in

the current resulting tree VS and another end-point is not,

and go to S1 until we handle all nodes.

One of the central steps here is: first, we dynamically update

the weight of the candidate edges (i.e., the set E ′) that we will add
and, second, which value is chosen as the weight is different from

the “one-shot” weight assignment as done in ASYNC-ALGO. To
explain this intuition, we first note that from (14) it is easy to see

that the degree of contribution in terms of weight by adding an

edge e ∈ E ′ to the existing resulting tree would be re-expressed as:

Ie (P̂) − 2γdiam(T ∪ {e})) · ce − Ke (T ), (20)

where Ke (T ) is defined in (18). Here, Ke (T ) corresponds to the

change of the communication cost over the existing edges in T ,
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Algorithm 2: SYNC-ALGO(β)

Input: x1:n : a set of n samples from P , γ : the trade-off parameter,

a physical graph G = (V ,EP ), and a tunable parameter β .
Output: Estimated tree T = (VS ,ES ).

S0. VS = ∅,ES = ∅, and for each possible edge e ∈ V ×V , we
initialize its weight by:

we = Ie (P̂) − 2γ · ce , (16)

and initialize the edge set E ′ by the set of all possible edges.

repeat
S1. Select an edge e = (u,v) ∈ E ′ with the maximum weight, and

update VS ← VS ∪ {u,v} and ES ← ES ∪ {e}.
S2. Update E ′ as the set of all edges e = (i, j), such that i ∈ VS and

j ∈ V \VS , and set the weight of each edge e = (i, j) ∈ E ′ as:
we = Ie (P̂) − 2γdiam(T ∪ {e}) · ce

− β d

|ES |
· Ke (T ) − 2γ · D(T ) · ce , (17)

where

Ke (T ) =
(
diam(T ∪ {e}) − diam(T )

)
·

∑
e ′∈ES

2γ · ce ′ , (18)

and

D(T ) =
√
d ·

(
1 −

√
|ES |√
d

)
. (19)

until VS = V ;

Return T = (VS ,ES ).

under the grown treeT∪{e}. For example,Ke (T ) = 0 if the diameter

of the grown tree does not change by adding the edge e, or Ke (T ) =∑
e ′∈ES 2γ · ce ′ , if the diameter of the grown tree increases by 1.

In dynamically assigning the weight of the candidate edges in

E ′, we do not use the value of (20). Instead, as seen in (17), (i) we

use the expected diameter growth of the tree, denoted by D(T ) in
(19), and (ii) we use a tunable parameter β > 0 to compensate for

the impact of the change in communication cost over the existing

edges Ke (T ) in (18). In more detail, we use D(T ) in (19), which

captures the expected diameter growth of the tree T via the term

√
d(1−

√
|ES |√
d
), since the diameter of a uniformly random spanning

tree is known to be of the order

√
d in [26]. We note that this term

decreases to 0 as the tree becomes to a spanning tree from the term

1 −
√
|ES |√
d

. Second, we consider the impact of old weights over the

existing edges inT , captured by Ke (T ) in (20), by controlling a scale
of β d

|ES | .

To summarize, these two modified choices of the weight are

for handling a probable sacrifice of the performance when using

a vanilla greedy method as in (18), since the edge weight should

be modified suitably for the changed diameter on the way of tree

construction. We expect that these two engineerings play an im-

portant role when the cost-efficient data graph is attained with a

large diameter, where the edges chosen in the begging phase of

the procedure (i.e., with a small diameter value) could exert much

impact of communication cost at the end of the procedure. Our

greedy algorithm runs in O(d4) times.

4 ESTIMATION ERROR FOR INCREASING
SAMPLE SIZE

In this section, we provide the analysis of how the estimation error

probability decays with the growing number of samples n, using
the large deviation principle (LDP).

4.1 Estimation Error of ASYNC-ALGO
Clearly, when we use more and more data samples, Ê⋆(n) ap-
proaches to Ê⋆(∞) that is the optimal edge structure solving CDG-
A(∞).We are interested in characterizing the following error prob-

ability of the event An :

P
[
An (x1:n ) :=

{
Ê⋆(n) , Ê⋆(∞)

}]
. (21)

To characterize the probability in (21) that is one of the rare events,

we use LDP that rare events occurs in the most probable way. To this

end, we aim at studying the following rate function K = K(γ ):

K(γ ) := lim

n→∞
− 1
n
logP(An (x1:n )), (22)

whenever the limit exists.

We now consider a simple event, called crossover event, as defined
in what follows: Recall that ASYNC-ALGO uses, for each edge

e , the weight
3
of we (P̂) = Ie (P̂) − 2γce based on the empirical

distribution P̂ . Then, consider two edges e and e ′ such that the

weight of e exceeds that of e ′ with respect to the true distribution
P , i.e.,we (P) > we ′(P). We now define the crossover event for two

edges e and e ′ as:

Cn (e, e ′) :=
{
we (P̂) ≤ we ′(P̂)

}
. (23)

As the number of samples n → ∞, the empirical distribution

approaches to the true distribution, thus the probability of the

crossover event decays to zero, whose decaying rate which we call

crossover rate is defined as Je,e ′ := limn→∞ − 1

n logP[Cn (e, e ′)]. Us-
ing this definition of the crossover event, we present Theorem 4.1

that states the decaying rate of the estimation error probability as

the number of data samples n grows.

Theorem 4.1 (Decaying rate ofASYNC-ALGO). For any fixed
parameter γ ≥ 0,

lim

n→∞
− 1
n
logP(An (x1:n )) = K(γ ), (24)

where

K(γ ) = min

e ′<Ê⋆(∞)
min

e ∈Ψ(e ′;Ê⋆(∞))
Je,e ′ , (25)

where Ψ(e ′ = (i, j); Ê⋆(∞)) := {v1(= i),v2, · · · ,vl (= j)} is the
unique path between nodes i and j , such that (vk ,vk+1) ∈ Ê⋆(∞) for
1 ≤ k ≤ l − 1, and

Je,e ′ =


inf

Q ∈P(X4)

{
DKL(Q ∥ Pe,e ′) : we (Q) = we ′(Q)

}
,

if
{
Q ∈ P(X4) : we (Q) = we ′(Q)

}
, ∅,

∞, otherwise.

(26)

3
We interchangeably use we (P̂ ) to denote the assigned weight of an edge e in

algorithms, with respect to the empirical distribution P̂ from the given samples.
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Moreover, we have the following (finite-sample) upper-bound on the
error probability: for all n = 1, 2, . . . ,

P
[
An (x1:n )

]
≤ (d − 1)

2(d − 2)
2

(
n − 1 + |X|4
|X|4 − 1

)
exp(−n · K(γ )).

(27)

In Theorem 4.1, we observe that the decaying rate of error proba-

bility is specified by some topological information of physical/data

graphs and the trade-off parameter γ . In particular, the crossover

event and its rate Je,e ′ depend on how difficult it is to differentiate

two edge weights under the true data distribution with a consid-

eration of the trade-off parameter γ as well as per-message cost

on edges. As interpreted from (26), when we (P) = Ie (P) − 2γce
andwe ′(P) = Ie ′(P) − 2γce ′ are close, the confusion between e and
e ′ from samples frequently occurs, leading to high error probabil-

ity, and we can show the existence of the infimum Q satisfying

we (Q) = we ′(Q) as by slightly adjusting the true distribution P .
Moreover, we remark that the decaying rate Je,e ′ (and thus K(γ ))
is characterized by a trade-off parameter γ . The error rate becomes

smaller (i.e., higher error probability) when γ nearly meets the con-

ditionwe (P) = we ′(P), and the weights becomes deterministic with

respect to the samples as γ increases since the portion of the cost in

weights grows, resulting to Je,e ′ = ∞ in (26). These interpretations

are well-matched to our numerical results in Section 5.

Proof sketch. The proof of Theorem 4.1 is presented in our tech-

nical report [18], and we describe the proof sketch for readers’

convenience. Our proof largely follows that of the related work in

[28] that analyzes an error exponent of a standard tree structure

learning (i.e., known as Chow-Liu algorithm [8]), whose goal is

to solely estimate the true data distribution with no consideration

of communication cost. Simply, the proof idea follows LDP in the

following way. The error eventAn (x1:n ) is expressed as a union of

small events that ASYNC-ALGO estimates only one wrong edge

(see the definition of the crossover event in (23)), two wrong edges,

and three, etc. Following LDP, the decaying rate of the error proba-

bility equals to the decaying rate of the most probable crossover

event, which corresponds to the case of only one wrong edge. In

more detail, two minimums in (25) specify the most-probably error,

whose edge set differs from the optimal data tree structure Ê⋆(∞)
exactly in one edge, , i.e., Ê⋆(∞) \ {e} ∪ {e ′}, where it contains the
non-neighbor node pair e ′ (as selected in the first minimization)

instead of the most probable replacement edge e in the unique path

along Ê⋆(∞) (as in the second minimization). To obtain the mini-

mum crossover rate Je,e ′ , we apply the Sanov’s theorem [5], which

provides an expression of the probabilistic relationship between P̂
and P via their KL divergence. Finally, in addition to the asymptotic

decaying rate of the estimation error probability, we also establish

its upper bound of the error probability in terms of the number n
of data samples, where the first term (d − 1)2(d − 2)/2 of the bound
in (27) implies the number of possible crossover events, and the

second term

(n−1+ |X |4
|X |4−1

)
represents the number of possible empirical

distributions P̂e,e ′ .

4.2 Estimation Error of SYNC-ALGO
We conduct a similar analysis here for SYNC-ALGO to what we

did for ASYNC-ALGO, which has more complicated issues for the

following reasons: We first denote bywe (P̂ ,T ) in (17) the assigned

weight for edge e to stress its dependence on the corresponding

resulting tree structure T and its associated empirical distribution

P̂ . Then, we need to investigate the most probable pattern in the

rare event through a certain tree T at some iteration. Simply, the

crossover event for two edges e and e ′ occurs if the order of edge
weights from the given finite number of samples becomes reversed

to the order of weights from the true data distribution. Among

all possible crossover events, we are interested in the crossover

event under every tree structure that is obtained on the way of

constructing the ideal data structure, denoted by ÊS(∞). Let et
true

and T t
true

be the selected edge and constructed tree at t-th iteration

obtained by running SYNC-ALGO w.r.t. the true data distribution

P , which would finally find ÊS(∞). Then, it is obvious that et
true

has

the unique highest edge weight for P , and the crossover event of

our interest is defined as:

Cn (ettrue, e ′;T ttrue) :=
{
we t

true

(P̂ ;T t
true
) ≤ we ′(P̂ ;T ttrue)

}
. (28)

We now state Theorem 4.2 that establishes the decaying rate of the

estimation error probability as the number of data samples grows.

Theorem 4.2 (Decaying rate of SYNC-ALGO). For any fixed
parameter γ ≥ 0,

lim

n→∞
− 1
n
logP(An (x1:n )) ≥ K(γ ), (29)

where

K(γ ) := min

t ∈{1, · · · , |V |−1}
min

e ′<T t+1
true

Je t
true

,e ′(T ttrue), (30)

where et
true

andT t
true

are the selected edge and constructed tree at t-th
iteration by running SYNC-ALGO w.r.t. the true data distribution P ,
i.e.,we t

true

(P) has the maximum edge weight under the tree T t
true

, and
it is given by: under some tree T , for any e, e ′,

Je,e ′(T ) =


inf

Q ∈P(X4)

{
DKL(Q ∥ Pe,e ′) : we (Q) = we ′(Q)

}
,

if
{
Q ∈ P(X4) : we (Q) = we ′(Q)

}
, ∅,

∞, otherwise.

(31)

Moreover, we have the following (finite-sample) upper-bound on the
error probability: for all n = 1, 2, . . . ,

P
[
An (x1:n )

]
≤ (d − 1)d(d + 1)

6

(
n − 1 + |X|4
|X|4 − 1

)
exp(−n · K(γ )).

(32)

In Theorem 4.2, as seen in (29), the error rate functionK(γ ) in (30)
indeed provides a lower-bound of the actual decaying rate of the

error event An (x1:n ), since the crossover event Cn (et
true
, e ′;T t

true
)

which estimates an edge e ′ < T t+1
true

rather than et
true

at any t-th
iteration does not guarantee that e ′ is a wrong edge. Intuitively,

the edge weights of SYNC-ALGO dynamically change according

to a diameter of T t
true

as iteration t proceeds, which makes the

characterization of the exact error rate of SYNC-ALGO be non-

trivial.

Proof sketch. Due to space limitation, we present the complete

proof in our technical report [18], and we provide a brief proof

sketch. The basic idea is similar to the proof of Theorem 4.1. As

mentioned there, the crossover event Cn (et
true
, e ′;T t

true
) is not a
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subset of the error event An (x1:n ), and as a result, we provide a

lower-bound of the decaying error rate in the proof, as established

by two minimizations in (31). In particular, the first minimization

is taken over all iterations (1 ≤ t ≤ |V | − 1) so that it selects

the iteration where the error occurs in the most probable way,

and the second minimization specifies the non-neighbor node pair

e ′, which can be estimated instead of et
true

, having the minimum

Je t
true

,e ′(T ttrue), In other words, the most probable pattern in the error

event of SYNC-ALGO is to estimate T t
true
\ {et

true
} ∪ {e ′} attained

in two minimizations in (30). For the crossover rate Je t
true

,e ′(T ttrue)
in (31), when two edges et

true
and e ′ can be clearly differentiated

via their edge weights, since the difference of the cost between

two edges dominantly determines the order of the edge weights,

i.e., the condition in (31) does not hold, the crossover event does

not happen, i.e., Je t
true

,e ′(T ttrue) = ∞. This mostly corresponds to

the situation of a large value of the trade-off parameter γ , where
the communication cost plays an important role of the error event,

which do not depend on the number of samples n. Otherwise, the
crossover rate is attained in a similar way to (26). Finally, we estab-

lish the upper bound of the error probability in terms of the sample

size n, where the first term (d − 1)d(d + 1)/6 of the bound in (32)

corresponds to the number of possible crossover events throughout

the entire iterations, and the second term implies the number of

possible empirical distributions P̂e t
true

,e ′ .

5 NUMERICAL RESULTS
In this section, we provide a set of numerical experiments to validate

our analytical results of ASYNC-ALGO and SYNC-ALGO under

various numbers of data samples, communication costs, and trade-

off parameters.

5.1 Setup
Physical graph.We use a physical networkG = (V ,EP ) consisting
of 20 nodes forming a line topology, where node i can directly com-

municate only with nodes i − 1 and i + 1, see Figure 2(a). We assign

some constant cost of single message-passing for each edge e =
(i, i+1): ci,i+1 = κ×1.1i , except for c1,2 = 4κ, c3,4 = 2κ, c6,7 = 0.1κ,
where we appropriately choose κ to adjust the scale of total com-

munication cost of two learning algorithms in the same range, for

clear comparison with the same values of γ . In the message-passing

between non-neighboring (w.r.t. the physical graph) node pairs

(i, j), we simply assume that it expenses the sum of the costs when

it is passed along the unique shortest multi-hop path Ψ((i, j);G) on
G , i.e., ci, j =

∑
e ′∈Ψ((i, j);G) ce ′ . For example, c1,4 = c1,2 + c2,3 + c3,4.

We use this line topology for an exemplar physical graph to clearly

observe the difference between ASYNC-ALGO and SYNC-ALGO,
where it leads to a significantly huge amount of communication

cost for SYNC-MAP, due to large diameter value diam(G) = 19.

Data graph. As an underlying statistical dependencies among 20

nodes in the data graph, we consider a 3-regular tree T = (V ,ED ),
except for boundary nodes, where the node 1 is a root node and

every node has a degree of 3 or less, as depicted in Figure 2(b).

Each random variable Xi associated to a node i is set to follow a

Bernoulli distribution. For a root node 1, it has P(X1 = 0) = 0.7 and

P(X1 = 1) = 0.3, and for other neighboring node pairs i and j, we

(a) Physical graph of 20

nodes forming a line

topology.

(b) Data graph of 20 nodes forming a 3-

regular tree (except for the leaves).

Figure 2: Physical and data graphs used for our simulations.

set the conditional distribution between Xi and X j by

P(Xi = 0|X j = 0) = 0.7, and P(Xi = 0|X j = 1) = 0.3 (33)

whenever i < j. With this setting of per-node distribution, it turns

out that neighboring node pairs have high correlations, and thus

have distinct values of the mutual information.

Under this choice of physical and data graphs, we obtain nu-

merical examples to show the performance of ASYNC-ALGO and

SYNC-ALGO for various values of trade-off parameter γ , ranging
from 0 to 4, and a fixed β = 1 in our results. For a fixed n ∈ N,
we first generate n i.i.d. samples x1:n from P(x) in (33). Then, we

compute the empirical distribution P̂(x1:n ) and the empirical mu-

tual information of all possible node pairs {Ie (P̂)}e ∈V×V . Then,
we learn the cost-efficient data tree by running ASYNC-ALGO
or SYNC-ALGO, and estimate how well the proposed algorithms

recover the ideal data graph by investigating the estimation error

probability as n grows.

5.2 Results
(i) Estimated trees with varying γ . Figures 3 and 4 show that

the estimated data trees by ASYNC-ALGO and SYNC-ALGO for

various γ . We recall that the value of γ parameterizes the amount of

priority for communication cost compared to the inference quality,

see (3), where smaller γ leads to higher priority to the inference

quality. In both algorithms, we observe that they with γ = 0 es-

timate the exact data graph in Figure 2(b), since the goal is to

achieve the highest inference accuracy. However, as γ grows, each

of two algorithms estimates a different structure for data tree, since

ASYNC-MAP and SYNC-MAP have different forms of commu-

nication costs. In particular, in ASYNC-ALGO, as γ grows, we

observe that the algorithm produces the estimated data tree with

more resemblance to the physical graph, and finally it estimates

the data tree that is the same as the physical graph with γ = 4,

see Figures 3(b) and 3(c). We note that for a large value of γ , the
goal of ASYNC-ALGO is to find a MWST of minimum total cost,

which accords with the physical graph of line-topology. However,

the communication cost of SYCN-ALGO increases in proportion

to the diameter of the estimated tree, thus it estimates a tree that is

of a star-like topology, i.e., a tree with a small diameter as seen in

Figures 4(b) and 4(c), to significantly reduce the cost, as γ grows.

(ii) Quantifying trade-off between inference accuracy and cost.
We now quantify how the trade-off between inference accuracy

of the MAP estimator in (4) behaves and the total communication

cost is captured for different values of γ . To support the trade-off
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(a) Estimated tree structure of γ = 0 (b) Estimated tree structure of γ = 0.5 (c) Estimated tree structure

of γ = 4

MAP error 
Comm. cost 

M
A

P 
er

ro
r p

ro
ba

bi
liy

0

0.2

0.4

0.6

0.8

C
om

m
unication cost0.05

0.10

0.15

0.20

0.25

Trade-off parameter (γ)
0 1 2 3

(d) Trade-off between MAP accuracy and cost

Figure 3: An instance of estimated tree structure by ASYNC-ALGO with distinct trade-off parameter γ = 0, 0.5, 4, and the trade-
off between MAP accuracy and communication cost.

(a) Estimated tree structure of γ = 0 (b) Estimated tree structure of γ = 1 (c) Estimated tree structure of

γ = 4
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(d) Trade-off between MAP accuracy and cost

Figure 4: An instance of estimated tree structure by SYNC-ALGO with distinct trade-off parameter γ = 0, 1, 4, and the trade-off
between MAP accuracy and communication cost.
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parameter γ

Figure 5: Error probability of ASYNC-ALGO.

parameterized by γ in the optimization problem in (3), we vary γ
from 0 to 4 and plot the accuracy of MAP estimator and the to-

tal cost on the learnt data dependency graph as the red and blue

lines, respectively, in Figures 3(d) and 4(d). In particular, we run the

ASYNC-ALGO and SYNC-ALGO with n = 200 samples, respec-

tively, and run the max-product algorithm on the learnt data tree

to obtain the MAP estimator. We repeatedly run for 200 times, and

measure the error probability that the MAP estimator on the learnt

data tree differs from the MAP estimator on the true data graph, as

a metric of inference accuracy. The average (over the 200 results)

of the communication cost on the learnt data tree is measured by

the form of (6) and (7) for each algorithm. In Figure 4(d), we ob-

serve that the MAP estimation error and cost with γ = 0.5 is 0.33

and 0.083, respectively, while those with γ = 2.5 is 0.91 and 0.034,

respectively. The impact of γ on the trade-off for two algorithms

seems similar, as seen in Figures 3(d) and 4(d).
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parameter γ

Figure 6: Error probability of SYNC-ALGO.

(iii) Impact of data sample size on graph estimation accuracy.
Finally, we demonstrate the theoretical findings in Theorems 4.1

and 4.2 on the decaying rate of the error probability w.r.t. the num-

ber of samples n for various values of γ . In both ASYNC-ALGO
and SYNC-ALGO, for a fixed γ , we run both algorithms for 200

times each, and measure their error probabilities. In Figures 5(a)

and 6(a), we observe that the error probability P(An ) for every γ
decays exponentially as the sample size n increases, as established

in (27) and (32). It is interesting to see that a different choice of

γ leads to a different decaying rate, which can be understood by

our analytical findings of the crossover rate in (26) and (31), simply

given by:

Je,e ′(T ) = inf

Q ∈P(X4)

{
DKL(Q ∥ Pe,e ′) : we (Q) = we ′(Q)

}
,

where the edge weights for ASYNC-ALGO and SYNC-ALGO are

assigned in different forms, yet depending on the value of γ , as
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seen in (9) and (17). Some choice of γ makes a difference of the

corresponding edge weights highly small, so that it becomes easier

to estimate wrong edges with an insufficient number of samples.

In our simulation, ASYNC-ALGO with γ = 2 shows higher error

probability of 0.2 with n = 10
4
samples, while that with γ = 0

achieves almost 0 error probability with less than 3000 samples, see

Figure 5(a). This impact of γ on the error probability is presented

in Figures 5(b) and 6(b) for both algorithms, where for large γ , we
observe the error probability decays at a higher rate in general,

since the priority to the inference accuracy is insignificant, leading

to less chance of experiencing the crossover event.

6 CONCLUSION
In many multi-agent networked systems, a variety of applications

involve distributed in-network statistical inference tasks, such as

MAP (maximum a posteriori), exploiting a given knowledge of

statistical dependencies among agents. When agents are spatially-

separated, running an inference algorithm leads to a non-negligible

amount of communication cost due to inevitable message-passing,

coming from the difference between data dependency and physical

connectivity. In this paper, we consider a structure learning prob-

lem which recovers the statistical dependency from a set of data

samples, which also considers the communication cost incurred by

the applied distributed inference algorithms to the learnt data graph.

To this end, we first formulate an optimization problem formalizing

the trade-off between inference accuracy and cost, whose solution

chooses a tunable point in-between them. As an inference task,

we studied the distributed MAP and their two implementations

ASYNC-MAP and SYNC-MAP that have different cost genera-

tion structures. In ASYNC-MAP, we developed a polynomial time,

optimal algorithm, inspired by the problem of finding a maximum

weight spanning tree, while we proved that the optimal learning in

SYNC-MAP is NP-hard, thus proposed a greedy heuristic. For both

algorithms, we then established how the error probability that the

learnt data graph differs from the ideal one decays as the number

of samples grows, using the large deviation principle.
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