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Abstract— Aggregate traffic loads and topology in multi-hop
wireless networks may vary slowly, permitting MAC protocols
to ‘learn’ how to spatially coordinate and adapt contention
patterns. Such an approach could reduce contention, leading
to better throughput and energy consumption. To that end we
propose a new family of distributed MAC scheduling algorithms
combining synchronous two-level priority RTS/CTS handshaking
with randomized time slot selection. We prove that for any fixed
admissible load such algorithms converge to a feasible schedule
(i.e., throughput-optimal). Furthermore, by adaptively biasing
time-slot selection probabilities based on past history, one can
develop variations that are also provably throughput-optimal and
exhibit better convergence rates. Additionally under moderate
loads local changes in load would lead to only local changes in
contention patterns leading once again to fast convergence. This
makes the case for adopting such protocols in wireless multi-
hop networks, where aggregate loads and network topology are
slowly varying.

I. INTRODUCTION

The design of MAC protocols for wireless multi-hop net-
works has received much attention over the last decade. These
protocols can be broadly classified into contention-based
schemes (e.g., [1]) and scheduling-based schemes (see [2] for
a survey). Contention-based schemes (e.g., IEEE 802.11 [1])
are based on random channel access with asynchronous data
transmission. In the contention-based schemes, the throughput
significantly degrades with increasing load due to collisions,
but it enables more implementation simplicity. The scheduling-
based schemes allocate channel resources (using either central-
ized or distributed strategies) in order to minimize resource
contention. However, it requires complex control message
exchange, leading to non-scalability to network dynamics (i.e.,
load or topology changes).

In this paper, we study a MAC scheduling algorithm, which
leverages the advantages of both schemes1. To that end,
we propose a synchronous contention-based MAC scheduling
algorithm, which self-adapts to changes in traffic load and
network topology, converging, if possible, to a conflict-free
schedule by exchanging synchronous control messages, as data
transmissions occur simultaneously (see Figure 1). Thus, our
algorithm has reasonably high throughput even during tran-
sients, and automatically adapts to load changes without any

1We restrict our discussion to the case where shared resources are time-slots
(i.e., a TDMA system). However, it is well-known in literature that resource
allocation algorithms for a TDMA system immediately extend to FDMA or
CDMA systems as long as the resource satisfies an orthogonality property
(i.e., “non-overlapping” resources such as different time-slots, or orthogonal
codes).
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explicit notification, by ‘learning’ local contention patterns.
Further, our algorithm is a distributed one, which is amenable
to simple implementation, where only four one-hop control
message exchange (over each time-slot) is required.

Our research is motivated by the following factors:
(i) Slowly varying loads/topologies: Our premise in this

paper is that although individual traffic loads may change
quickly, the aggregates on congested nodes may, in many
relevant applications, change more slowly. Similarly, node
mobility leads to changes in topology (and thus changes in
load), but again these changes might be slow enough to
permit a MAC protocol to learn and exploit the offered traffic
characteristics so as to quickly realize conflict-free schedules.
A nice example is that of a wireless mesh network [3], where
wireless mesh routers form a wireless multi-hop network, and
wireless mesh routers receive/send aggregate traffic from/to
wireless mesh clients.

(ii) Learning contention patterns: A scheduling-based MAC
scheduling algorithm is known to achieve a high throughput
after it finds a conflict-free schedule. However, whenever
load or network topology changes, it has to re-initiate a
“scheduling-decision” phase to find a conflict-free schedule.
On the other hand, a contention-based protocol (e.g., IEEE
802.11) asynchronously transmits data, enabling easier imple-
mentation and better robustness to load or network topology
changes. However, its throughput significantly degrades with
increasing loads. Our goal in this paper is to leverage the
advantages of both protocols, to realize high throughput and
robust adaptability to load and/or network topology changes.

By using synchronous contention, we expect to learn con-
tention patterns, such that time-slot allocation (chosen locally
by nodes) can become close to an “efficient” schedule by pro-
gressively learning the past contention patterns. Synchronous



contention [4]–[6] is known to be a good strategy for efficient
channel utilization, since it protects data transmissions as
well as acknowledgments, leading to eliminating the need for
maintaining protocol states (e.g., NAVs in IEEE 802.11 [1]),
as compared to asynchronous schedules. Further, it provides
a better framework to support priority access and better QoS
[7]. In part, synchronous contention is crucial for throughput-
optimality and enables us to break “deadlock” using a multi-
level priority control messages (see Section III). The trade-
off is the additional effort to synchronize nodes with equal
time. However, this condition of tight synchronization can be
relaxed with minor performance decrease [7], i.e., only “local”
synchronization is needed among nearby neighbors..

(iii) Guaranteeing high throughput and fast convergence:

If an adaptive MAC is to be useful, then high throughput
and fast convergence (to a conflict-free schedule) should be
guaranteed. Otherwise, most of the time will be devoted
to searching for a conflict-free schedule with possibly low
throughput. In particular, fast convergence is indispensable
for tracking the time-varying loads and topologies. However,
such algorithms to date [8]–[11] do not provably guarantee
high throughput and fast convergence, or assume limited
network topology (e.g., tree) as well as the restricted collision
model. Thus, the challenge remains to devise an algorithm,
which provably and quickly converges a conflict-free schedule
for any feasible load, irrespective of network topology (i.e.,
throughput-optimal2).

In a typical time-slotted system, time is divided into trans-
missions slots (time-slots), which are grouped into frames. We
consider a time-slotted system, where each link is subject to
an offered traffic load, which is typically represented by the
number of time-slots over a frame. Depending on the service
supported by the network, information on the offered load
could either be explicitly given to the nodes or be measured by
the nodes. If we have a guaranteed-service network based on a
resource reservation signaling (e.g., RSVP [12]), the amount of
load could be known a priori by nodes in the path of a reserved
flow. However, in a typical best-effort service network, the
amount of load is not explicitly provided to the nodes, but the
nodes could know the offered load by measuring/estimating it
over a suitable time-period.

The problem of finding a conflict-free schedule in a time-
slotted wireless multi-hop network, has been an active re-
search topic by formulating the original problem into a graph-
coloring problem . Since the graph-coloring problem is NP-
complete, there exist a huge body of research proposing sub-
optimal polynomial time heuristics (see [13] and references
therein). Another approach is to propose distributed algo-
rithms with provable (partial) throughput guarantees. Exam-
ples include distributed suboptimal schemes [14]–[17], which
provide lower-bounds (typically from 1/8 to 1/2) on the
throughput-region with no explicit knowledge of the offered
load (i.e., statistics/knowledge of the load over any link in the

2A link scheduling scheme is said to be throughput-optimal if it can find a
conflict-free schedule for any feasible offered load. An offered load is feasible
if there exists a conflict-free schedule (see Section II for formal definitions).

topology), and require control message exchanges with O(1)
[17] or O(log4 N) complexity [14], where N is the network
size.

We note that all the above-mentioned strategies are for
static scenarios, where the scheduling-decision phase and
data transmission phase are separated. Thus, any network
topology or load changes lead to a new scheduling-decision
phase. Further, even when these are implemented as distributed
algorithms, every node should be notified of the event of
a change by a broadcasting of control messages. Most of
research on this area assumes that such control messages are
successfully transferred to nodes contention-free, which seems
to be unrealistic in the resource-constrained wireless multi-hop
networks. Our work differs from the above-mentioned work in
that our algorithm adapts to load or topology changes without
explicit notification of such changes.

An alternate approach is to devise a dynamic scheduling
algorithm, where data transmission and scheduling-decision
(time-slot allocation) occur simultaneously. Several dynamic
algorithms have been proposed [8]–[11]. However, they re-
quire either two-hop connectivity information [8], or are not
provably throughput-optimal [8]–[10]. The work in [11] is
limited to networks with only “node-exclusive conflict model”
(i.e., primary conflict), and is only shown to provably converge
for a tree network topology. Our work also differs from
these in that for any arbitrary network and feasible load, our
algorithm converges to a conflict-free scheduling allocation
(throughput-optimal), as proved in Section IV.

A. Main Contributions and Organization

The main contributions of this paper are as follows:
(i) We propose a synchronous contention-based

load/topology-adaptive link scheduling algorithm
(DCAMA: Dynamic Contention-Aware Multiple
Access). In the DCAMA algorithm, two-level RTS/CTS
synchronous control message are used together with
randomized time-slot selection at each links. We prove
that the DCAMA always converges to a conflict-free
schedule (if there exists one) for any feasible load and
any arbitrary network topology (i.e., throughput-optimal),
and study its rate of convergence.

(ii) The importance of DCAMA algorithm is that it could
act as a base-line algorithm, whose variations are also
provably throughput-optimal and their rate of conver-
gence is also exponential. Thus, we propose an adaptive
variation to the DCAMA algorithm (ADCAMA: Adap-
tive DCAMA), which adaptively biases slot selection
probabilities based on contention histories of the previous
m frames. We prove that the ADCAMA algorithm also
converges to a conflict-free schedule, and by simulation
we show that only a three-frame history is necessary to
significantly improve the rate of convergence and the
transient throughput, resulting in a good adaptation to
load/topology changes.

The paper is organized as follows. We begin with a descrip-
tion of the system model in Section II. Next, in Section III,
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we describe the DCAMA algorithm and its properties. In
Section IV, we prove that the DCAMA converges to a conflict-
free schedule for any feasible load, irrespective of network
topology. We then propose an adaptive heuristic (adaptive
DCAMA) to improve the convergence rate (Section V). Fi-
nally, in Section VI, we validate the results using simulations.

II. SYSTEM MODEL

We model the wireless multi-hop network by a graph
G(L,V), where L = {1, · · · , |L|} denotes a set of directional
links, and V = {1, · · · , |V|} denotes a set of nodes. We assume
that for any link between two nodes there is a counter-part
in the opposite direction. The wireless system has a single
frequency/code, which is available for both data and control
message transmission, and there is no separate physical chan-
nel for control messages (i.e., in-band signaling). Each node in
the system is equipped with an omni-directional antenna, and
is synchronized. We assume that each transmission is intended
for only one receiver (unicasting constraint), and each node has
only a single transceiver (half-duplex radio) (see Figure 2).

In our network model, if node i ∈ V is within the transmis-
sion range of j ∈ V, then the link from i to j is established
(denoted by i → j). Thus, we have two transmission conflict
scenarios: (i) primary conflicts, where either multiple nodes
transmit simultaneously to the same receiver (Figure 3(a)), and
(ii) secondary conflict, where a node receiving transmission
is also within the transmission range of other transmissions
not intended for it (Figure 3(b)). Further, due to a single
transceiver, packet reception and transmission are not allowed
to happen simultaneously (Figure 2(b)). Finally, the transmis-
sion is intended only for one receiver (Figure 2(a)). The access
problem arises due to the above-mentioned four resource
constraints between links3.

In a TDMA based wireless ad-hoc network, time is divided
into transmission slots (time-slots), which are grouped into
frames. A time-slot duration is suitably chosen to accommo-
date the transmission of one fixed-size packet and includes
a guard time corresponding to the maximum differential
propagation delay between pairs of nodes in the network. We
assume that the frame size in the network is fixed throughout
system operation, where the frame size is chosen (heuristi-
cally) depending on the number of nodes, network load, and
quality-of-service constraints.

3In a typical distributed link scheduling algorithm, a node is responsible
for determining slot-schedules for its outgoing links. Thus, the unicasting
constraint in Figure 2(a) is automatically resolved.

We further assume that a node can distinguish between the
absence of any transmission and packet collisions (e.g., carrier
sensing). For example, in Figure 3(a), when B and C are
transmitting messages to A simultaneously in a same time-
slot, A is unable to decode the message due to collision, but
A is able to know that there was transmissions sent to itself.

We do not consider routing and transport-layer end-to-end
flows in this study. We focus on “next neighbor transmissions”
since multiple access problems depends solely on the next
neighbor transmission requirements.

With this setup, we denote the offered-load on the network
by ~ρ = (ρl : l = 1, · · · , |L|), where ρl is the number of the
requested time-slots over the link l in a frame, i.e., ~ρ ∈ Z |L|+ ,
where Z+ is the set of non-negative integers.

The scheduling decision at each frame is represented by a
contention matrix (CM), C(F, ~ρ) = (cls : l = 1, · · · , |L|, s =
1, · · · , F ) for a frame-size F and an offered load ~ρ, where
cls = 1 implies that a transmission is scheduled to contend
over the link l on time slot s. For all l ∈ L, ρl =

∑F
s=1 cls,

i.e., the number of contending time-slots is equal to the load
offered on that link.

Further, we use ~cl· = (cls : s = 1, · · · , F ) and ~c·s = (cls :
l = 1, · · · , |L|) to refer to the l-th row and s-th column vector
of C, respectively. We call ~cl· and ~c·s a slot schedule over l
and a link schedule on time-slot s, respectively. The link l is
said to be satisfied by ~cl·, if all its scheduled transmissions by
~cl· are successful.

Definition 2.1: A contention matrix C(F, ~ρ) is said to be
feasible if all its links are satisfied. An offered load ~ρ is said
to be feasible over a frame size F if there exists a feasible
C(~ρ, F ).

Our primal goal is to devise a distributed algorithm, which
converges to a feasible schedule (i.e., after it reaches a feasible
schedule, it stays at that schedule over successive frames,
before any change in traffic loads or network topology) for any
feasible offered load and any network topology (i.e., provably
throughput-optimal) under the following constraints: (i) only
a small number of one-hop control message is permitted
between the transmitter and the receiver at a link, and there
does not exist a separate contention-free control channel (ii)
data transmission and the process to find a feasible schedule
are not separated.

III. DCAMA ALGORITHM

A. Overview

The frame and time-slot structure of the DCAMA algorithm
are shown in Figure 4. A time-slot is divided into two parts:
time to exchange control messages and time to transmit
data to the receiver. We describe the DCAMA algorithm by
dividing its behavior into two different time-scales: (i) per-
frame operation (Section III-B.1), where at start of each frame,
a node determines the slot-schedules for the transmissions over
its adjacent outgoing links, following the offered loads, and
(ii) per-slot operation (Section III-B.2), where a node initiates
control message signaling to resolve contentions and transmit
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data if this time-slot is scheduled by slot-schedules over one
of its outgoing link.

To resolve contention, we use a synchronous RTS/CTS
based mechanism. However, unlike conventional contention
based algorithms our contention resolution mechanism has
two-level priority: high and low, i.e., every scheduled trans-
mission on a slot is assigned one of low or high priority4.
In other words, control message exchange is decomposed
into two stages, where the first and the second stages are
used for high and low priority transmissions, respectively. In
particular, the transmitters and the receivers of low priority
transmissions monitor control message signaling at the first
stage, and determines whether it has to defer (i.e., release this
time-slot) or contend on this time-slot (see Section III-B.2 for
details). An issue with two-level RTS/CTS signaling is that
of additional control messages overhead (as compared to the
conventional RTS/CTS signaling in the absence of priority).
However, as well shall see later in Section VI-B, our algorithm
does not generate significant additional overheads. Further,
due to synchronous contention, we do not require information
fields for maintaining states needed by asynchronous protocols
(e.g., NAV and DIFS in IEEE 802.11 [1]). In Section VI-B,
we will quantitatively compute the additional overheads due to
two-level RTS/CTS signaling, and show that the performance
increase (about 25%) is much higher than the additional
signaling overhead (about 3%).

The key mechanisms to achieve a goal to converge to a
feasible schedule (for any feasible load and for any network
topology) are summarized as follows:

Two level RTS/CTS priority. With a contention mechanism
without priority, even for a feasible load, the algorithm could
reach a deadlock, and thus it can be trapped in a “bad”
schedule, forever (see Figure 6 for an example). The two-level
priority RTS/CTS mechanism ensures that such a deadlock
does not arise.

Synchronized contention. Synchronous contention enables
receivers to infer the presence of RTS/CTS transmissions
merely by sensing signaling activity over the appropriate
time-intervals in a frame (corresponding to the RTS/CTS
transmission “slots” within a frame). Note that this does not
imply that these messages are successfully decoded by the

4Throughout this paper, for notational simplicity, we use RTS-H/CTS-H
and RTS-L/CTS-L to refer to control messages with high and low priority
level, as needed.
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receiver. Synchronization is useful in conjunction with the
two-level priority signaling scheme, as it enables low priority
transmissions to release a slot even if a signaling message
collision occurs.

Randomized slot selection. The algorithm is randomized
in determining slot-schedules (at the next frame) for unsuc-
cessful transmissions. Incorporation of prioritized RTS/CTS
mechanism with randomized slot selection strategy enables the
system to reach any schedule, and thus to ultimately converge
to a feasible schedule.

We note that a similar idea of using multiple priorities has
been used in the TDMA scheduling used in Z-MAC [18],
where a node can be in one of two modes: low contention
level (LCL) or high contention level (HCL). However, the
approach in Z-MAC differs from ours in that (i) it considers
only the graph-based interference model, and (ii) the major
objective of multiple priorities is to solve the hidden terminal
problem without any provable throughput-guarantee, whereas
we use two-level priority to get both provable convergence and
throughput-guarantee.

We additionally introduce a control message priority matrix,
R = (rls : l ∈ L, s ∈ F ) to represent the control message
priority, where rls = 1 (rls = 0) if a transmission is scheduled
over link l on time-slot s (i.e., cls = 1) and its priority is high
(low), and NULL if cls = 0.

B. Algorithm Description

1) Determining Slot-Schedules: When each frame starts, a
node (say, v ∈ V) determines the slot-schedules and their
RTS/CTS priorities for the transmissions over its adjacent
outgoing links (denoted by Ov). To do that, the following
simple rules are used:

Rule 3.1 (Slot and Priority Selection Rule):
(i) Successful transmissions: The time-slots at which suc-
cessful transmissions were realized at the previous frame are
sustained with low control message priority at the current
frame.
(ii) Unsuccessful transmissions: If more time-slots are required
(i.e., for transmissions that were not successful at the previous
frame), then they are selected at random among the remaining
time-slots, with high control message priority.



To illustrate, consider the example in Figure 5, where Ov =
{l1, l2, l3} with ρl1 = 3, ρl2 = 2, ρl3 = 1, and the frame size is
8. Since at frame t−1, the transmission over l1 on time-slot ‘1’
was successful, this transmission is scheduled once again with
low control message priority at the same time-slot positions at
frame t. The same principle is applied to the transmission over
l2 on time-slot ‘4.’ For the unsuccessful transmissions over l1
on time-slots ‘2’ and ‘3’, we randomly choose two time-slots
of the remaining time-slots, which was not “reserved” by the
successful transmissions (i.e., v does not consider time-slots
‘1’ and ‘4’ in this random selection). In the example, time-
slot ‘2’ and ‘7’ are selected, and they are scheduled with high
control message priority from Rule 3.1(ii). The same rule is
applied to other unsuccessful transmissions. Note that a slot
where an unsuccessful transmission was realized at frame t−1
could be again scheduled at frame t (e.g., the transmission over
l1 on time-slot ‘2’ at frame t).

2) Resolving Contentions: Following the determined slot-
schedules, at each time-slot, nodes use the following two-stage
RTS/CTS signaling mechanism to resolve contentions and
transmit data. Only transmitters having successful RTS/CTS
signaling with their receivers are allowed to transmit data.

Two-Stage RTS/CTS Signaling Mechanism

Stage 1: The transmitters and the receivers of high priority
transmissions perform RTS-H/CTS-H signaling.
Stage 2: Depending on monitoring status at stage 1, the
transmitters and the receivers of transmissions with low
priority, which is not forced to release this time-slot by
Rule 3.2, perform their RTS-L/CTS-L signaling.

Why is signaling in absence of priority inappropriate? First,
we explain that signaling without priority could reach a dead-
lock condition (i.e., it could stay at an infeasible schedule
forever, even if the offered load is feasible). Consider the
example in Figure 6(a). At frame ‘0’, the transmission over the
link A→B on time-slot ‘1’ is unsuccessful due to a collision
of RTS messages from A and C at node B, whereas the
transmission over link C→E is successful. At frame ‘1’, as we
discussed in Section III-B.1, successful transmissions will be
sustained on the same time-slot. Note that any choice of either
time-slot ‘1’ or ‘2’ over the link A→B results in unsuccessful
transmission due to once again an RTS collision at node B.
Thus, even if the offered load is feasible (thus, there exists a
feasible schedule), an incorrect choice of initial schedule leads
to a deadlock condition.

How does two priority level signaling help? However, if there
are two priority levels for control signaling, we can avoid such
deadlocks. The reason why we have a deadlock condition
with signaling in absence of priority is that there exists a
deterministic “winner-loser” relationship between links, such
that if winners maintain their time-slots, no time-slots are
available for the transmission by losers. For example, in
Figure 6, the transmission over the link C→E always wins
over link A→B, when both of them are scheduled on the same
time-slot, if we use RTS/CTS signaling without priority.
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To avoid this deadlock situation, link scheduling algorithms
must have a mechanism, whereby there are no deterministic
winner-loser relationships. In the DCAMA algorithm, this is
achieved by a two priority level of RTS/CTS mechanism, i.e.,
a scheduled transmission with high priority at some link could
“beat” a transmission with low priority at some other link (if
those two transmissions have contention relationship as shown
in Figures 2 and 3). The two level priority scheme enables
an unsuccessful transmission to preempt a successful one by
contending for the channel with high priority signaling. At the
same time previously successful transmissions must contend
using low priority RTS-L/CTS-L allowing, if need be, possible
release of time-slots. This intuition is realized in Stage 2 of
two-stage RTS/CTS signaling mechanism, where low priority
transmission releases its time-slot (i.e., defers its transmission)
by monitoring high priority signaling messages at Stage 1
and applying Time-Slot Release Rule, which will be explained
next.

Time-slot release rule. We use s(l) and d(l) to refer to
the source and destination of a link l, respectively. We say
that a node senses a control message if it decodes a control
message or receives non-decodable packet collision. Recall
that in Section II, we assumed that a node can distinguish
between the absence of any transmission and packet collisions.
We say that a (low priority) transmission over link l releases a
time-slot s if s(l) or d(l) does not perform RTS/CTS signaling,
but the transmission is scheduled on slot s. A low priority
transmission decides on its time-slot release (for conflicting
high priority transmissions) by conforming to the following
simple rule:

Rule 3.2 (Time-slot release rule): A low priority transmis-
sion on a given slot s over link l releases the slot s, if on
slot s, (i) s(l) senses CTS-H, (ii) d(l) senses RTS-H, (iii) s(l)
transmits CTS-H, or (iv) d(l) transmits RTS-H.

By applying Rule 3.2 to low priority transmissions (which
will be active at Stage 2), we can easily show that if an
high priority transmission has conflicts with a low priority
transmission, and both of them are scheduled on the time-
slot s, then the high priority transmission makes the low
priority transmission release the slot s (see Figures 7(a)-(e)
for the simple examples). We use “senses” (not “decodes”)
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in Rules 3.2(i) and (ii), as there are some cases when the
low priority transmission has to release, even if the high
priority signaling message is not decodable (see Figure 7(g)
for an example). Rules 3.2(iii) and (iv) comes from half-duplex
device constraint (see Figures 7(c) and (d)).

Note that the destination of a low priority transmission
(d(l)) is oblivious to its identity as a receiver before it receives
and decodes the corresponding RTS-L message intended for
itself. Thus, Rule 3.2 (ii) seems to be non-sense. However,
if the corresponding RTS-L message is not correctly received
(due to packet collisions among low priority transmissions)
at Stage 2, d(l) will not send CTS-L message, leading to
automatic slot-release.

Further, we reiterate that one of major advantage of syn-
chronous contention in Rules 3.2(i) and (ii) is that a node is
able to identify the kind of control message, irrespective of its
decodability, which helps low priority transmission decide on
its time-slot release.

IV. CONVERGENCE RESULTS

In this section, we prove that for any feasible offered load,
the DCAMA algorithm converges to a feasible schedule, and
its rate of convergence is represented by a geometric random
variable. Throughout this section, we implicitly assume that
the given offered load is feasible and is denoted by ~ρ, and the
frame size is F.

Prior to describing the main theorem, we first define a
“distance” function between two contention matrices, where
distance represents how many different slot-schedules they
have between two contention matrices.

Definition 4.1: With a same network topology, a load, and
a frame size, consider two contention matrices, C = (cls) and
B = (bls). We define

D(C,B) =
|L|∑

l=1

ρl −
|L|∑

l=1

F∑
s=1

cls × bls.

Intuitively, D(C, B) corresponds to the number of scheduled
transmissions by C, each of which is not scheduled by B.

It can be easily shown that if D(C, B) = 0, then two
contention matrices B and C are equivalent. Thus, for a
feasible contention matrix C?, the fact that D(C, C?) = 0
implies that C is also feasible.

Theorem 4.1 (Convergence): For an arbitrary graph
G(L,V) with a feasible load ~ρ over the frame-size F, the
DCAMA algorithm converges to a feasible contention matrix
(i.e., throughput-optimal).

We first represent the system status at the frame t via
(C[t].R[t]). We say that a control message priority matrix,
R = (rls), is said to low if all the scheduled transmissions
have low control message priority, i.e., rls = 0 whenever
rls 6= NULL, ∀s ∈ {1, . . . , F},∀l ∈ L. It can be easily
seen that {(C[t], R[t]), t ≥ 0} forms a Markov chain with at
least one absorbing state, where an absorbing state corresponds
to (C ′, R′) for some feasible C ′, low R′. Note that any
state (C[t], R[t]), where C[t] is feasible and R[t] is not low,
goes to an absorbing state over one frame with probability
‘1’ (i.e., C[t + 1], R[t + 1] will become an absorbing state
with probability ‘1’) since C[t]’s feasibility ensures that all
scheduled transmissions will be successful at frame t+1, and
all their priorities will be low. Thus, to prove the main theorem,
it suffices to show that there is a positive probability that from
any initial state, we reach a feasible contention matrix within
a finite time.

Our strategy to prove the theorem is that for any fixed
feasible contention matrix C?, we will show that over (at
most) two frames there is a positive probability that we get
“closer” to C? (i.e., D(C[t + 2], C?) = D(C[t], C?) − 1),
or C[t + 2] equals to some other feasible contention matrix
C??, C?? 6= C? (as the feasible contention matrix is not
necessarily unique). Since D(C, C?) is upper-bounded by∑|L|

l=1 ρl, for any initial contention matrix C, strict decrease
over two frames suffices to prove the convergence. In the
proof, we will construct a converging path to a C?. The proof
is presented in [19].

Now, we study the rate of convergence (i.e., time to
converge to a feasible contention matrix). We first define a
random variable τ(C), corresponding to a convergence time
to a feasible contention matrix for a given initial contention
matrix C. Then, we have the following exponential rate of
convergence.

Theorem 4.2 (Rate of Convergence): For any initial con-
tention matrix C, ∀t ∈ Z+, we have

Pr
{

τ(C) > tK
}

≤ pt,

for some constants 0 < K < ∞, and 0 < p < 1.
The proof is presented in [19].

V. ADAPTIVE DCAMA

Note that the DCAMA algorithm chooses a new time-slot
(for an unsuccessful transmission) with equal probability in the
subsequent frame. In fact, one can potentially increase the rate
of convergence or adapt to load change more effectively by
intelligently guessing which time-slot is likely to be successful



(using the past history), and biasing the time-slot access prob-
abilities. As shown in Proposition 5.1 below, such variations
of the DCAMA algorithm inherits the property of convergence
and the rate of convergence.

In this section, we propose a general family of variations
of DCAMA algorithm, the ADCAMA (Adaptive DCAMA)
family, which adaptively assigns different time-slot access
probabilities, depending on the past contention history, i.e.,
more efficient learning of local contention patterns. To that
end, each link is assigned its own slot weight vector, and the
individual nodes maintain slot weight vectors for its adjacent
outgoing links. This slot weight vector is updated every frame
by the associated node, depending on the transmission results
(success or failure) at the past frames, or overhearing signaling
messages around it. Let us denote the slot weight vector of
link l at frame t by ~wl[t] = (wl

s[t] : s = 1. · · · , F, ).
To increase/decrease the slot weight vector based on the

past contention histories, we define the time-slot status, which
corresponds to the result of past contentions (e.g., success
or failure) on the corresponding time-slots. Then, the slot
access probability is set to be inversely proportional to the
current weight. Also, by setting the minimum and maximum
of weight, we can avoid pathological cases (e.g., the time-slot
access probability could be arbitrarily small or close to ‘1’),
i.e., there exist w̄ and w, such that 1 ≤ w < w̄ < ∞ and
∀s ∈ {1, 2, . . . , F},∀l ∈ L, and ∀t > 0, w ≤ wl

s[t] ≤ w̄.
Then, we define a m-frame history based ADCAMA al-

gorithm, where each node stores and uses the previous m-
frame slot status history, based on which slot weight vector
is updated at every frame. Intuition behind the multi-frame
history based algorithm is that we could potentially increase
the rate of convergence or have the higher transient throughput
by considering longer slot usage history. As an example, a
time-slot with consecutive success is highly likely to be “safe”,
so that it would be beneficial to sustain the corresponding time-
slot at the next frame5. In Section VI, we will show that even
with a simple weight maintenance algorithm based on three
frame contention history, we could have quite a performance
increase, compared with the DCAMA algorithm.

Now, we have the following proposition to Theorem 4.1:
Proposition 5.1 (Convergence of ADCAMA): For an arbi-

trary graph G(L,V) with a feasible load ~ρ over the frame-size
F, any m-frame history based ADCAMA algorithm converges
to a feasible contention matrix (i.e., throughput-optimal).

The proof is presented in [19].

VI. SIMULATION RESULTS

In this section, we simulate wireless multi-hop networks
with nodes which are randomly distributed in a 500 × 500 or
100 × 100 meter-square area. The number of nodes, their
transmission range, and the frame size are parameterized,
such that we can observe the performance of the proposed

5Thus, DCAMA algorithm corresponds an algorithm belonging to the
ADCAMA family. However, we use the term ‘DCAMA’ to refer to an
ADCAMA algorithm without frame history

TABLE I
PARAMETERS USED FOR WEIGHT INCREASE/DECREASE

Sl
s[t− 3] Sl

s[t− 2] Sl
s[t− 1] inc/dec Weight

SUCC SUCC SUCC −D1

FAIL/IDLE SUCC SUCC −D2

FAIL FAIL FAIL +I1

SUCC/IDLE FAIL FAIL +I2

algorithms under different connectivity densities, time varying
environments and MAC layer rate granularities.

A. Weight Maintenance Algorithm

In Section V, we have proposed a family of DCAMA
variations (ADCAMA) adaptively assigning different time-slot
access probabilities. We now describe the details of a simple
weight maintenance strategy based on three-frame history.
To summarize our strategy, we increase/decrease slot weights
(equivalently, the slot access probabilities, see Section V)
based on observed success/failure of past time-slot requests.
We show that even with a simple weight update mechanism,
the performance of DCAMA can be improved significantly,
and enables it to be more adaptive to load/topology changes.

We denote a slot status over link l at time-slot s at frame
t by Sl

s[t]. We have three kinds of time-slot status: success
(SUCC), failure (FAIL), and idle (IDLE). The IDLE status
corresponds to the case when a node which did not sense any
control message.

Table I shows the parameters used in the simulation for a
typical link l. The parameters Ii and Di are the (additive)
weight increase/decrease constants used by nodes to adapt
their slot weights based on past observations. Table I sum-
marizes the observed state over the past three frames, and the
corresponding weight change operation. These parameters are
chosen such that D1 > D2 > 0, and I2 > I1 > 0. We have
used D1 = I1 = 3, D2 = I2 = 1, in all simulation results,
where the maximum and minimum weights (i.e., w̄ and w) are
set to 30 and 1, respectively (recall that the time-slot access
probabilities are inversely proportional to weights).

The intuition for these choices is that more back-to-back
successes at a time slot indicate that the offered loads around
the corresponding node at that time-slot are relatively low
(i.e., less “congested”), and transmissions in that time-slot are
likely to be successful in the future. Similar intuition is applied
for back-to-back failures. However, empirical evidence based
on simulations have indicated that responding to just a one-
time success/failure by decreasing/increasing the weight was
not very helpful, because such a success/failure could have
happened due to transient movement of transmission schedules
at other conflicting links (i.e., it does not capture congestion
very well).

With regard to the IDLE status, it seems intuitive to sched-
ule an unsuccessful transmission at the IDLE time-slot with
higher probability (i.e., decrease the weights) in order to to
“spread” the offered load over all the time-slots of a frame.
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Fig. 8. With frame size of 10 and the network topology (a), (b) shows an
example traces of # of time-slots with successful transmissions, compared to
the actual loads. (c) and (d) show the normalized throughput w.r.t the actual
loads over 50000 frames for different values of MLCTs and Lch.

However, weight decrease at the IDLE status could generate
a synchronization effect, i.e., due to aggressive decrease (by
multiple nodes), multiple transmissions are highly likely to
be scheduled at this slot, leading to collision again. Based on
empirical evidence using simulations, responding aggressively
to SUCC and FAIL is the determining factor in providing fast
convergence and good adaptability. We finally comment that
using other numerical values for Dj , Ij based on the heuristics
above also results in significant performance improvements
(compared to DCAMA), thus indicating that these heuristics
are quite robust to the actual numerical values. We do not
present simulations for varying Dj , Ij due to space constraints.

B. Simulation Results

In this section, we evaluate the performance of DCAMA
and ADCAMA algorithm by comparing them to the RAN-
DOM algorithm, described below. The RANDOM algorithm
determines slot-schedules (based on the requested loads) in
a pure-random manner at each frame, and uses a single-
level RTS/CTS signaling to gain access to the channel. The
reason why we adopt the RANDOM algorithm as a base-
line comparison is because (i) it is similar to Aloha-like
strategy (which is a “standard” algorithm for TDMA link
scheduling), and behaves like a slotted version of a CSMA-
like contention-based scheme, and (ii) it is not clear how
we can compare with some of the other dynamic coloring
based algorithms, since their objective is to solve a variant of
the coloring problem with different system models (such as
two-hop control message exchange and different transmission
conflict scenarios, see Section I).

Prior to presenting simulation results, we comment on

the control overhead of the DCAMA/ADCAMA algorithm.
Our approach has additional overheads as compared to a
standard contention based MAC protocol (which has only
one RTS/CTS signaling phase). Suppose that a MAC packet
has 1000 bytes of data (note that in the 802.11 MAC, the
size limit is 2312 bytes). The overhead of each RTS/CTS
message pair with DCAMA is no more than 30 bytes (6
bytes each for source/destination addresses, and 3 bytes for
signaling such as RTS priority level, stage, etc) will suffice
for our protocol. Thus, the additional overhead (recall that the
“standard” protocol has only one stage of RTS/CTS messages)
is about 30 bytes, which corresponds to approximately 3%.

On the other-hand, we have significant throughput gains
when compared to a baseline random access MAC, and
our simulations indicate a 25-30% gain in various scenar-
ios (changing topology, load requirements. steady-state, etc).
Thus, it seems worthwhile to pay the penalty of additional
overheads in order to accrue this additional throughput gain.
Another overhead with a fixed slot-size based approach is due
to partial-slot wastage, i.e., a small packet in one time slot
wastes part of a time-slot and thus reduces time resource
usage. However, this could be overcome by using “packet
bursting” or “packet aggregation” [20], where a time-slot usage
is maximized by aggregating the packets intelligently.

There are additional issues in comparing the
DCAMA/ADCAMA algorithm with conventional “static”
TDMA algorithms (please see Section I for the related
work). In a static TDMA algorithm, with every load/topology
change, the scheduling decision has to re-computed, for
which control messages has to be exchanged, and most of the
research in literature assumes that the control messages are
successfully transfered to neighboring nodes contention-free.
However, in a single channel wireless ad-hoc network, this
assumption seems to be unrealistic. Thus, it may take some
time to disseminate and share the newly generated scheduling
decision. On the other hand, our approach does not make
any such assumptions, and indeed RTS/CTS collisions could
occur, leading to control message losses.

Adaptation to load changes. First, we investigate the ef-
fect of load changes on the performance of DCAMA and
ADCAMA algorithm with frame size of 10 in the network
topology of Figure 8(a). We generate time-varying loads by a
random walk model, where we first determine a normalized
offered load of 70% (by a randomly chosen maximally feasible
load6). Then, at the beginning of each frame we randomly
choose Lch links and increase their link loads by one slot with
probability P I

L, decrease their link loads with probability PD
L ,

or stay at the current load (i.e., no change) with probability
1 − P I

L − PD
L . For simplicity, in the simulation, we set

PL , P I
L = PD

L . Thus, higher values of PL corresponds to
a faster load change with time. Then, the mean load change
time (MLCT) over Lch links is 1/(2× PL) frames.

Figure 8(c) shows that the throughput (over 50000 frames)

6A load is said to be maximally feasible if the resulting system load becomes
infeasible with any load increase anywhere in the network.



normalized by the actual (time-varying) offered load for
different values of MLCTs (Lch = 1) varying from 25 to
100 frames, where the error bars represent the maximum and
minimum values of 10 simulations with different random seed
values (i.e., different load changing patterns). For a network
with a link capacity of 10 Mbps, and a frame-size of 10 (which
corresponds to a 10 msec frame duration), this corresponds to
a load change ranging from once every 250 msec to once every
1 seconds.

We observe that with ADCAMA algorithm, the normalized
throughput is above 90%, whereas the RANDOM achieves
about 50%. Figure 8(b) shows an example trace of throughput
(i.e., number of successful transmission slots) for MLCT= 25
frames, where we observe that ADCAMA algorithm tracks
the actual load very well, resulting in nice adaptation to time-
varying load changes.

Figure 8(d) shows the normalized throughput by actual
offered loads in faster load changing scenario, where with
MLCT= 50 frames, Lch varies from 1 to 20. Note that the
actual mean load change time for Lch = 20 is 50/20 = 2.5
frames, which corresponds to 25 msec. As Lch becomes larger,
the throughput difference between DCAMA and ADCAMA
becomes slightly smaller. This is because with faster changing
loads, ADCAMA algorithm does not have sufficient time to
completely adapt to changes. However, even in this fast chang-
ing regime, ADCAMA shows a 5% throughput improvement
over DCAMA.

Adaptation to topology change. Second, we investigate
the effect of topology changes on the performance of
DCAMA and ADCAMA algorithm. With time-varying topol-
ogy changes, new links and existing links are dynamically
added and deleted in the network, which possibly changes
the offered loads in the links. To simulate practical scenarios
of such load/topology changes, we use end-to-end flows to
generate offered loads in the network. For a fixed frame size,
we first randomly generate a network topology. To initialize
the end-to-end flows, we employ the following procedure:
we randomly choose two nodes (source and destination of
an end-to-end connection), and increase the load in the path
of the chosen source-destination end-to-end connection. We
assume that a shortest path routing is used to determine
the path. We carry out this random selection of end-to-end
connections 2∗|V| times (note that |V| is the number of nodes
in the network), and skip the chosen end-to-end connection
if the load increase of its path generates infeasible offered
load. Thus, the initially generated loads are very close to a
maximally feasible load.

For the evolving time-varying topology, we randomly
choose Nch nodes and move each of the nodes independently
in one of four directions (north, south, east, or west) by one
meter with probabilities of PN

T , PS
T , PE

T , or PW
T . In the

simulations, we set them to be all equal, denoted by PT . Then,
the mean topology change time (MTCT) is 1/(4×PT ) frames.
If the topology changes due to node movement, we establish
the new end-to-end routes based on the shortest path routing,
for initially found end-to-end connections.
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Fig. 9. With 100×100 m2 network size, 30 nodes, 25m transmission range,
and frame size of 10, we first uniformly place nodes in the plane, and generate
end-to-end connections randomly. (a) and (b) show the normalized throughput
w.r.t the actual loads for different values of MTCTs and Nch.

Figure 9(a) shows that the throughput (over 10000 frames)
normalized by the actual (time-varying) offered load (due
to topology changes) for different values of MTCTs varying
from 12.5 frames to 250 frames. Again, for a network with
a link capacity of 10 Mbps with the frame size of 10, this
corresponds to a change ranging from once every 125 msec
to once every 2.5 seconds, which corresponds to a mobile
terminal moving with an average velocity of 8 m/sec and
0.4 m/sec. This seems reasonable for a typical slowly varying
environment. Similar to the figures in load change simulations,
we represent the maximum and the minimum values of error
bars in 10 simulations with different random seed values,
leading to different initial network topologies and end-to-end
connections.
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Fig. 10. This figure shows an instance of topology changes (due to the
random-walk model) at four time instances.

Further, Figure 9(b) shows the normalized throughput when
with MTCT= 25 frames, Nch varies from 1 to 20 nodes. We
again observe that with ADCAMA algorithm, the normalized
throughput is above 90%, whereas RANDOM achieves at most
60%. Thus, ADCAMA algorithm exhibits good robustness to
topology changes.



VII. DISCUSSION AND CONCLUDING REMARKS

In this paper, we have studied the problem of dynamic MAC
scheduling for a time-slotted wireless networks with arbitrary
topologies. We have developed a synchronous contention-
based MAC algorithm (DCAMA) that provably converges to
a conflict-free schedule for any feasible load and for arbitrary
topologies. The key mechanisms that enables us to achieve
this are a synchronous two-level priority RTS/CTS based
contention scheme and randomized selection of time-slots.
Based on this algorithm, we have proposed heuristics (which
also provably converge) that improve the convergence time by
biasing time-slot access probabilities based on past contention
history.

An issue that we do not directly address in this paper is the
behavior of the algorithms when the load is not feasible. To
handle such cases, we will need to combine admission control
strategies (long time-scale control) along with the MAC algo-
rithms (short time-scale resource allocation) to ensure that a
feasible solution exists. In any case, simulations (not presented
in this paper due to space constraints) indicate that even in an
overloaded scenario (with no admission control), the DCAMA
and ADCAMA algorithms provide much larger “transient”
network throughput (about 20 – 30% increase) when com-
pared to the baseline RANDOM algorithm (however, neither
DCAMA or ADCAMA converge because a feasible solution
does not exist). Future work will focus on developing and
studying admission control policies in conjunction with the
(A)DCAMA algorithm.
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