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Abstract—We study the problem of diffusion speed maximiza-
tion over strategic diffusion, where individuals decide to adopt
a new behavior or not based on a networked coordination game
with their neighbors. For a variety of topological structures of so-
cial networks, we design polynomial-time algorithms that provide
provable approximation guarantees. By analyzing three graph
classes, i.e., Erdős-Rényi, planted partition and geometrically
structured graphs, we obtain new topological insights, which does
not exists in the literature for popular epidemic-based models.
Our results first imply that for globally well-connected graphs, a
careful seeding is not necessary. On the other hand, for locally
well-connected graphs, their clustering characteristics should be
intelligently exploited for good seeding, where seeding inside and
intersection of clusters are important for such graphs having
big and small clusters, respectively. We believe that these new
insights will provide useful tools to understand and control the
sociological evolution of innovations spread over large-scale social
networks.

I. INTRODUCTION

Recently, with the rapid growth of social network services,
social networks become one of major routes for spreading new
ideas, behaviors, and innovations across the world through
person-to-person local interactions. In this trend, various re-
search communities including computer science, economics,
and sociology, have actively studied the diffusion of new
information in social networks.

Diffusion models are broadly classified into epidemic-based
or game-based ones. The epidemic-based diffusion models
inherit an underlying assumption that people adopt a new
innovation by just contacting others who already selected the
innovation, e.g., independent cascade (IC) and linear threshold
models (LT) in [2]. In such models, the authors in [2] first
addressed influence maximization which selects limited initial
adopters as seeds so that they maximize influence spread, i.e.,
number of adopters at the end of diffusion process, which
inspired several following works, e.g., [3]–[5].

Different from epidemic style diffusion, people’s behavior is
often strategic when they decide to adopt or not the innovation,
i.e., an individual follows the innovation only if it provides
sufficient utility, which increases with the number of neigh-
bors adopting the same choice (i.e., coordination effect) [6]–
[9]. The game-based diffusion models capture such strategic
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behaviors and situations where people have incentive to select
the same choices with their friends’, and tend to hesitate to
have different choices. This may occur in cases of selecting
an operating system, e.g., Windows versus Unix, a cellphone,
e.g., Android versus iOS, or a political stance, e.g., Republican
versus Democratic.

In game-based diffusion models with bounded rationality
of individuals (i.e., noisy best response dynamic), it has been
proved that the number of innovation adopters increases and
the entire social network eventually shifts to the innovation
[10], [11]. Thus, maximizing influence spread as for epidemic-
based models is meaningless since the innovation is finally
widespread at the equilibrium. In this paper, we study how to
choose seeds with a given budget to accelerate the speed of
diffusion under game-based diffusion models, which we call
diffusion speed maximization.

A. Challenges and Contributions
The diffusion speed maximization in game-based diffusion

models has arguably more challenges than the influence max-
imizastion in epidemic-based ones. First of all, the diffusion
speed, i.e., the convergence time to the equilibrium, is neither
albegraic nor combinatorial formula. In [9], the authors studied
the convergence time and they converted it into a combinatorial
optimization problem using the theory of meta-stability of
Markov chains [12]. Unfortunately, solving the optimization
problem is still computationally intractable. Similar challenges
are also discussed in the influence maximization with epidemic
diffusion [2], [3]. However, in most cases of the influence max-
imization, a greedy algorithm guarantees constant approxima-
tion because of the submodular structure in the optimization.
Whereas, the diffusion speed maximization is still intractable
even if we ignore the difficulty of estimating the diffusion
time because the diffusion time has none of submodular or
supermodular structures.

In spite of the above hardness, we propose polynomial-
time approximation algorithms for three graph classes, Erdős-
Rényi, planted partition and geometrically structured graphs,
which correspond to (a) globally well-connected, (b) locally
well-connected with big clusters and (c) locally well-connected
with small clusters, respectively. Also, we prove performance
guarantees in terms of approximation ratio as well as com-
plexity. Our contribution lies in providing new insights on how
to seed individuals depending on the connection structure of
underlying graph topologies in strategic diffusion models. We
summarize the main insights in what follows:
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First, for globally well-connected graphs like Erdős-Rényi
graphs, careful seeding is not crucially required because of
the high symmetry and dense connectivity of the graphs.
However, for locally well-connected graphs, it is necessary to
intelligently exploit their clustering characteristics, where the
network-wide diffusion time is governed by both intra-cluster
diffusion and inter-cluster correlation. In sharp contrast to
epidemic-based models, it turns out that in (b) intra-cluster dif-
fusion becomes the dominant factor, as opposed to in (c) where
inter-cluster correlation dominantly determines the network-
wide diffusion speed. Thus, as described in Sections III-B
and III-C, for planted partition graphs, we focus only on how
to distribute the seed budget to each (big) cluster, while for
geometrically structured graphs, the seeds are mainly selected
from the border individuals to remove inter-cluster correlation.

B. Related Work

In [2], [3], the influence maximization was first studied as
a combinatorial problem in linear threshold and independent
cascade models where spread of innovation occurs much
like epidemic. The authors discussed two challenges in the
formulation: #P-completeness in estimating influence for a
given seed set, and NP-completeness in selecting an optimal
seed set. Remarkably, a greedy algorithm achieves at least
(1 − 1/e − ε) of the optimal influence where ε represents
the inaccuracy in estimation of influence. The guarantee was
proved using the maximization technique on the submodular
set function in [13]. However, since the naive estimation of
influence, e.g., Markov Chain Monte-Carlo with ε accuracy, or
calculation of exact estimation, does not tend to scale with the
network size, various heuristic-based scalable estimations have
been proposed [14], [15]. In [14], [15], the methods utilizing
tree and clustering structures of a graph were proposed, but
with experimental performance evaluations.

As variations of the influence maximization in [2], [3], there
were considerable works which captured the time-sensitive
nature of the diffusion process [4], [5], [16]. In particular, [4],
Chen et al. first addressed the time-sensitiveness and proposed
modified LT and IC models by adding the contact process,
in which the newly activated individual delays its infection
chance until it meets its neighbors. Using the modified models,
the authors formulated an influence maximization with time
deadline and proposed a greedy algorithm motivated by [2],
[3]. In [5], Goyal et al. generalized the influence maximization
problem in LT and IC models as an optimization problem
with three dimensions: influence spread, seed budget, and time
deadline. Remarkably, in [16], Du et al. addressed not only the
time feature but also scalability with performance guarantee,
whereas the previous works either addressed the time feature,
e.g., [4], [5], or proposed empirically scalable solutions [14],
[15].

Regarding the influence maximization in game-based dif-
fusion models, in [6], [17], [18], the authors considered only
best-response dynamics and studied the conditions (of network
topology and the payoff difference between old and the new
technologies) on the existence of a small seed set, referred
as the so-called “contagion set,” under which all individuals

adopt new technology. In [19], a noisy best response was
considered with objective of maximizing the influence spread
by choosing a seed set assuming that there exists a set of
“negative individuals,” and a greedy algorithm was proposed
with only experimental evaluations. However, these works only
considered the maximum number of adoptions at the end of
the influence process.

II. MODEL AND FORMULATION

A. Networked Coordination Game
The networked coordination game is played among a set V

of n users on an undirected graph G = (V,E) where E is
the set of edges corresponding to social relationships among
users. On each edge, two users at the ends play a pairwise
coordination game with the payoff matrix given in Table I
where each user i’s strategy, xi, can be one of new or old
innovations, +1 and −1.
Payoff. We let x = (xj ∈ {−1,+1} : j ∈ V ), and x-i = (xj :
j ∈ V \{i}) be the states (i.e., a strategy vector chosen by the
entire nodes) of all and those except for i, respectively. Then,
user i’s payoff is summation of payoffs against i’s neighbors
N(i), i.e., Pi(xi,x-i) =

∑
j∈N(i) P (xi, xj).

TABLE I. TWO-PERSON COORDINATION GAME

P +1 −1
+1 (a, a) (c, d)
−1 (d, c) (b, b)

On the payoff, we assumes that (a) there always exists
coordination gain, i.e., a > d and b > c, and (b) the innovation
provides better coordination gain, i.e., a− d > b− c.

B. Diffusion Dynamics
We introduce the notion of seed set C ⊂ V, of which

individuals are initialized by +1 and keep their strategy +1
forever. We assume that each non-seeded user updates its
strategy at the arrival of its own independent Poisson clock
with rate 1. In the update, user i’s best strategy to maximize
its payoff is +1 if (a − d)|N+(i)| ≥ (b − c)|N−(i)| and it
is -1 if not, where we let N+(i) and N−(i) denote the sets
of node i’s neighbors adopting +1 and −1, respectively. To
simplify, we can write the rational user i’s response, i.e., its
best response, as sign

(
hi +

∑
j∈N(i) xj

)
where hi = h|N(i)|

and h = a−d−b+c
a−d+b−c .

Noisy best response: Logit dynamics. In practice, people do
not always make the rational decision. We model such behavior
by introducing a small mutation probability that non-optimal
strategy is chosen, often called noisy best response. A version
of the noisy best response we focus on in this paper is logit
dynamics [20]–[23] that individuals adopt a strategy according
to a distribution of the logit form in which for the given state
x, user i selects the strategy yi ∈ {−1,+1} with the following
probability:

Pβ(yi|x) =
exp(βyiKi(x))

exp(βKi(x)) + exp(−βKi(x))
.
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where Ki(x) = 1
2

(
hi +

∑
j∈N(i) xj

)
that is proportional to

payoff gain to choose +1 instead of -1 so that the parameter
β ≥ 0 quantifies noise in the dynamics. For example, β =∞
corresponds to the best response.
Convergence to equilibrium. The above dynamics is also
called the Glauber dynamics in the (truncated) Ising model,
where the truncation occurs since seeds’ states are fixed. For a
given seed set C ⊂ V , x(t) at time t is a continuous Markov
chain with the state space SC = {z ∈ {−1,+1}V | zi =
+1 if i ∈ C}. Also, this Markov chain is time-reversible with
the stationary distribution µβ(x) ∝ exp(−βH(x)) where

H(x) = −1

2

{ ∑
(i,j)∈E

xixj +
∑
i∈V

hixi

}
+ (1 + 2h)|E|. (1)

In the above, the constant term (1 + 2h)|E| is just added for
notational convenience. We note that −H is often referred to
as a potential function of the networked coordination game
and H is called the energy function in literature.

Since the energy function minimizes at the state +1 where
all users’ states are +1, as the users become more rational, i.e.,
β →∞, the stationary distribution concentrates to +1. Thus,
+1 becomes widespread after enough time to converge the
equilibrium. The convergence was observed in [10], [11] under
a similar noisy best response dynamics. Topological impact on
the convergence time was studied by Montanari and Saberi in
[9].

C. Problem Formulation
Our aim is to minimize the convergence time by seeding

within a given seed budget. First, we define the diffusion time
for a given seed set C:

τ+(C) = sup
y∈SC

inf
{
t ≥ 0 | Pβ{T+(C,y) ≥ t} ≤ e−1

}
where T+(C,y) is the convergence time or the hitting time to
+1 starting from y. The diffusion time provides upper bound
of the time to widespread of innovation with probability greater
than 1/2.
Limit behavior of the diffusion time. As mentioned earlier,
estimating the diffusion time is a highly non-trivial task since
it is neither algebraic nor combinatorial. To overcome such
challenge, we resort to meta-stability analysis by focusing
on the small noise, i.e., β → ∞, as in the other sociology
literature, e.g., [9], [11]. As the similar result with [9], [12],
we have the following limit behavior of the diffusion time that
is aware of truncation by a given seed set C ⊂ V :

τ+(C) = exp(βΓ∗(C) + o(β)), as β →∞., (2)

where we refer to Γ∗(C) as the diffusion exponent with respect
to the seed set C. In the above, Γ∗(C) is defined as

Γ∗(C) = max
w0∈SC

min
w:w0→+1

max
t<|w|

[H(wt)−H(w0)] (3)

where the minimization is taken over every possible path w =
(w0, w1, · · · , wT = +1) such that for each t, wt and wt+1

are same except for one coordinate.

Γ∗ can be interpreted as the smallest “energy barrier” among
all possible paths from the worst initial state to +1. Also,
it dominates the exponent of diffusion time as β → ∞.
In addition, it is known [9] that the minimization of (3) is
achieved just at a monotone path on which a user is not allowed
to take back from +1 to −1. Thus, such paths with the smallest
barrier represent major diffusion patterns.
Problem formulation in combinatorial optimization. The
formula (2) expresses τ+(C) in terms of Γ∗(C). We are moti-
vated by this and we will focus on the following optimization
to minimize the diffusion time with given seed budget k

min
C⊂V

Γ∗(C) subject to |C| ≤ k, (4)

where, by (2), it becomes identical to a direct formulation,
minC⊂V τ+(C) subject to C ≤ k.

We note that calculating Γ∗(C) is still computationally in-
feasible even though it seems easier than computing τ+(C). In
addition, except such difficulty, for our formulation, we cannot
apply the well-known optimization technique for submodular
and submodular objectives in [13], [24] because our objective
Γ∗(·) is neither submodular nor supermodular, whereas such
techniques were used for influence maximization in epidemic-
based models, e.g., [2]–[5]. These challenges motivate our
study of a different kind of approximation scheme.

III. MAIN RESULT

In this section, we describe our polynomial-time approxima-
tion algorithms for the seeding problem (4). Each algorithm
provides the guideline on which nodes should be seeded for
fast diffusion over a game-based diffusion model for each of
three graph classes having different topological structures in
terms of connectivity and the degree of clustering. To this
end, we first introduce the following notion of “approximate
solution”.

Definition 3.1: A seed set C ⊂ V with |C| ≤ k is called a
(γ, δ)-approximate solution of the seeding problem (4) if

Γ∗(C) ≤ γ · min
C′:|C′|≤δk

Γ∗(C ′),

where γ ≥ 1 and δ ≤ 1.
For a given seed set, we measure its degrees of suboptimality

in objective value and budget in the parameters γ and δ, respec-
tively. One can observe that the solution with (γ, δ) = (1, 1)
corresponds to an optimal solution. In the rest of this section,
we characterize approximate solutions for three graph classes
which are distinguished by topological aspects on the criterion
on how globally and locally well-connected nodes are.

A. Erdős-Rényi Graphs

We first consider Erdős-Rényi (ER) graph, denoted by
GER(n, p), consisting of n nodes of which each node pair has
an edge with probability p. Let λ = np, roughly corresponding
to the average number of neighbors per node, where our focus
is when λ = ω(1). For ER graphs, we obtain the following
result.
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Fig. 1. An instance of ER-graph (left) and planted partition graph (right).
Source: Lecture note of the network analysis and modeling course in Santa
Fe Institute [25].

Theorem 3.1: For a ER graph GER(n, p) and the seed
budget k, every C ⊂ V with |C| = k is almost surely a
(γ, δ)-approximate solution as n→∞, where λ = ω(1),

δ = 1 and γ = 1 + ε for any given ε > 0.

Theorem 3.1 implies that an arbitrary seed set C is, some-
what surprisingly, an almost optimal solution, i.e., (γ, δ) →
(1, 1). In addition, in the convergence, we can take ε =
O( 1√

λ
). This implies that more careful seeding mechanism

is requied for less (globally) well-connected graph. The proof
of theroem relies on the observation that the energy function
depends on only number of +1 becuase each node can have
an edge to any node with equal probability, i.e., the graph
structure is highly symmetric.

B. Planted Partition Graphs
As a generalized version of ER graphs, we consider the

planted partition graph 1 It is a popular model, e.g., [26],
for social networks with underlying clustered structure where
several sets of nodes organize into densely linked communities.

We let GPP(n, p, q,ω) denote the planted partition graph
with a disjoint partition of the clusters {V1, ..., Vm}, with⋃m
l=1 Vl = V, where we let ω = (ω1, ..., ωm) ∈ (0, 1)m denote

the fraction of nodes in the graph that belongs to a cluster l
be ωl = |Vl|/n. For a pair of i, j ∈ V , an edge (i, j) exists
between them with probability p = Θ(1) for the nodes i and
j if i, j belong to a same cluster, and with probability q < p,
otherwise. We obtain the following result.

Theorem 3.2: For a planted partition graph GPP(n, p, q,ω)
and the seed budget k, every C ⊂ V such that

C ∈ arg min
{C′:|C′|≤k}

max
1≤l≤m

(
1− h

2
|Vl| − |C ′ ∩ Vl|

)
(5)

is almost surely a (γ, δ)-approximate solution as n → ∞,
where q/p = o(1),

δ = 1 and γ = 1 + ε for any given ε > 0.

1This is often referred to as a stochastic block model.

Theorem 3.2 provides an insight on how to allocate seeds,
coming from solving a “simple” min-max optimization (5)
whose computational complexity is O(1). Intuitively, if the
resulting seed set C in (5) allocates seeds proportionally to
the size of each cluster, such seed set C is an almost optimal
solution, regardless of how to seed inside each cluster.

To provide a sketch of proof for Theorem 3.2, observe that
the dependency among diffusion processes in clusters can be
ignored due to a few inter-cluster edges comparing to intra-
cluster edges, i.e., q/p = o(1). Hence, the entire diffusion
process can be viewed as parallel processes of m ER graphs
and diffusion speed of the process is determined by the slowest
process among the parallel processes. This requires balance in
allocating seeds to each cluster as expressed in (5). We note
that if we greedily select seed based on node degree, some
clusters where nodes have low degrees in average may starve
so that the seeding performs poor due to the starvation clusters.

C. Geometrically Structured Graphs

Third, we consider locally well-connected graphs with small
clusters. Those graphs include geometrically structured graphs
such as planar and d-dimensional graphs. In these graphs, the
inter-cluster correlation dominantly determines the network-
wide diffusion speed, and hence seeds should be selected
with goal of removing the correlation. One of achieving such
a goal is to seed the border nodes among small clusters.
Motivated by this, we design a generic algorithm, called PaS
(Partitioning and Seeding)2 for finding good seeds. As the
name implies, PaS has two phases: (i) partitioning and (ii)
seeding, as elaborated in what follows.

(i) Partitioning phase: In this phase, PaS finds a partitioning
with a finite number of node clusters, where the number of
clusters are chosen appropriately, depending on the underlying
graph topologies. Except for a special cluster, say V0, which
will be used as the initial seed set, PaS will find the seeds
contained in each cluster by the seeding phase.

(ii) Seeding phase: In this phase, PaS runs in multiple rounds,
where it starts from the initial seed set V0 and the seed set C
increases by one in each round, until the entire seed set size
becomes the target budget k. Let Gl and Cl be the subgraph
induced and the seed contained, by l-th cluster Vl, respectively.
In each round, the algorithm finds the partition l∗ that has the
largest Γ∗ among the subgraphs {Gl}l=1,...,m and then with
one more budgets for the slowest cluster l∗, it exhaustively
chooses a seed set in the cluster which minimizes Γ∗.

Now, we are ready to present the performance guarantees
of PaS. To that end, we introduce a notation: El is the edge
set of the subgraph induced by Vl ∪ V0, where Vl is the l-th
cluster resulting from the partitioning phase.

Theorem 3.3: For given graph G = (V,E) and seeding
budget k = κn with κ ∈ (0, 1), suppose that {Vl : l =

2For a formal description, see Algorithm 1 in [1]
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0, 1, . . . ,m} in the partitioning phase of the PaS algorithm
has the following condition:

For some ε ∈ (0, 1),

|V0| ≤ εn and |Vl| = O(1), for all l = 1, ...,m. (6)

Then, PaS outputs a (1, 1− ε
κ )-approximation solution and its

seeding phase takes O(n2) time.

The condition (6) does not always hold. However, for d-
dimensional graph, e.g., random geometric graph, and planar
graph, e.g., 3-map graph, polynomial-time algorithms are
known for computing such a partition satisfying the condition
for any ε = Ω(1) [27] 3.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have studied the question on how the
diffusion speed of a new innovation can be maximized under
a noisy game-based model, by seeding a subset of individuals
(within a give budget), i.e., convincing them to pre-adopt a
new innovation. By analyzing three graph classes, i.e., Erdős-
Rényi, planted partition and geometrically structured graphs,
we obtain new topological insights, which does not exists in
the literature for popular epidemic-based models. Our results
first imply that for globally well-connected graphs, a careful
seeding is not necessary. On the other hand, for locally well-
connected graphs, their clustering characteristics should be
intelligently exploited for good seeding, where seeding inside
and intersection of clusters are important for such graphs
having big and small clusters, respectively. We believe that
these new insights will provide useful tools to understand and
control the sociological evolution of innovations spread over
large-scale social networks.

We have so far focused on how to maximize diffusion
speed where individuals strategically behave for given social
networks. For future work, we propose to address two issues
coming from our assumption and goal: (i) influence maxi-
mization in more practical social graphs, and (ii) different
purpose of controlling influence spread. First, in reality, our
social relationship is time-varying and it is sometimes hidden
even. This uncertainty of social graph inspires us to study a
different kind of influence maximization. Second, we often
observe negative results from the spread of false rumor,
misinformation, and computer virus. This motivates to study
diffusion minimization which hampers diffusion rather than
encourages it as the present work.
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