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Abstract—Hundreds of papers over the last two decades have
studied the theory of distributed scheduling in wireless networks,
including a number of them on stability or utility maximizin g
random access. Several publications in 2008 studied an adaptive
CSMA that can approach utility optimality without any message
passing under a number of assumptions. This paper reports
the results from the first deployment of such random access
algorithms through an implementation over conventional 802.11
hardware, an on-going effort that started in summer 2009. It
shows both a confirmation that Utility Optimal CSMA may
work well in the practice even with implementation over legacy
equipment, and a wide array of gaps between theory and practice
in the field of wireless scheduling. This paper therefore also
brainstorms the discovery of and bridging over these gaps, and
the implementation-inspired questions on modeling and analysis
of scheduling algorithms.

I. I NTRODUCTION

Design of distributed scheduling algorithms in wireless
networks has been extensively studied under various metrics
of efficiency and fairness. In their seminal work [1], Tassiulas
and Ephremides developed a centralized scheduling algorithm,
Max-Weight scheduling, achieving throughput optimality,i.e.,
stabilizing any arrival for which there exists a stabilizing
scheduler. Since then, there has been a large array of lower-
complexity, more distributed scheduling algorithms, using the
ideas of randomization (pick-and-compare scheduling), weight
approximation (maximal/greedy scheduling), or random access
with queue-length exchanges, e.g., in [2]–[11], to achieve
large stability region under unsaturated arrivals of traffic at
each node in the network. For saturated arrivals, optimizing a
utility function, which captures efficiency and fairness atthe
equilibrium, has been studied for slotted-Aloha random access,
e.g., in [12]–[17]. Together with the principle of Layering
as Optimization Decomposition, advances in scheduling have
also been translated into improvements in joint congestioncon-
trol, routing, and scheduling over multihop wireless networks,
e.g., [18]–[22]. There are many more studies on this topic, as
discussed in more detail in surveys such as [23].

A main bottleneck that remains is the need for message
passing in the above algorithms. Tradeoffs of the time com-
plexity of message passing with throughput and delay have
been studied recently in [6], [7], [24] and [25]. Message
passing reduces “effective” performance, is vulnerable tose-
curity attacks, and makes the algorithms not fully distributed.

This naturally leads to the following question on simplicity-
driven design:Can random access without message passing
approach some type of performance optimality?The answer
was suggested to be positive last year, first in [26] for wireless
network, with a similar development in a different context in
[27]. Convergence proof and tradeoff were presented in [28].

In [28], we extended the algorithm in [26], and developed a
rigorous proof of the convergence of these algorithms, without
assuming that network dynamics freeze while the CSMA
parameters are being updated, for the continuous-time Poisson
clock model. New proof techniques are developed to overcome
the difficulty of the coupling between the control of CSMA
parameters and the queueing network dynamics. We then
turned to more realistic discrete-time contention and backoff
model, and quantified the effect of collisions. We revealed and
characterized the tradeoff between long-term efficiency and
short-term fairness: short-term fairness decreases significantly
as efficiency loss is reduced. Similarly to other distributed
scheduling algorithms, there is a 3-dimensional tradeoff [24]:
the price of optimality and zero message passing here is delay
experienced by some nodes.

This paper reports the results from the first deployment of
such random access algorithms through an implementation
over conventional 802.11 hardware, an on-going effort that
started in summer 2009. It shows both a confirmation that
Utility Optimal CSMA may work well in the practice even
with implementation over legacy equipment, and a wide array
of gaps between theory and practice in the field of wireless
scheduling. This paper therefore also brainstorms the discov-
ery of and bridging over these gaps, and the implementation-
inspired questions on modeling and analysis of scheduling
algorithms. This is an “interim report” of the ongoing experi-
ments, and further results will be presented in the future.

The rest of this paper is organized as follows: In Section II,
we briefly describe the theoretical foundation of UO-CSMA.
Section III presents the experiments and their analysis in im-
plementation, followed by identifying the gaps between theory
and practice in Section IV. Implementation-inspired theory
and next steps of experimentation are outlined in Sections V
and VI. We conclude the paper in Section VII.
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II. T HEORY: UTILITY OPTIMAL CSMA

In this section, we summarize UO-CSMA (Utility-Optimal
CSMA) that approximately achieves optimality in terms of
utility. We refer the readers to [28] for details.

A. Network and interference model

We consider a wireless network composed by a setL of L
links. Interference is modeled by a symmetric, boolean matrix
A ∈ {0, 1}L×L, whereAkl = 1 if link k interferes linkl, and
Akl = 0 otherwise. Define byN ⊂ {0, 1}L the set of the
N feasible link activation profiles, or schedules. A schedule
m ∈ N is a subset of non-interfering active links (i.e., for any
m ∈ N , k, l ∈ m, Akl = 0). We assume that the transmitters
can transmit at a fixed unit rate when active.

B. Scheduling and utility maximization

The network is assumed to handle single-hop data con-
nections. However, the results presented here can be easily
extended to multi-hop connections (e.g., using classicalback-
pressureideas [1]). The transmitter of each link is saturated,
i.e., it always has packets to send. A scheduling algorithm
decides at each time which links are activated. Denote by
γs = (γs

l , l ∈ L) the long-term throughputs achieved by
scheduling algorithms. The throughput vector of any schedul-
ing algorithm has to belong to therate regionΓ defined by

Γ = {γ ∈R
L
+ : ∃π ∈ R

N
+ ,

∀l ∈ L, γl ≤
∑

m∈N :ml=1

πm,
∑

m∈N

πm = 1}.

In the above, for any schedulem ∈ N , πm can be interpreted
as the proportion of time schedulem is activated. As is a
standard in problems with saturated arrivals, the objective is to
design a scheduling algorithm maximizing the total network-
wide utility. Specifically, letU : R

+ → R be an increasing,
strictly concave, differentiable objective function. We wish
to design an algorithm to solve the following optimization
problem:

max Σl∈LU(γl), (1)

s.t. γ ∈ Γ.

We denote byγ⋆ = (γ⋆
l , l ∈ L) the optimizer of (1). Most

distributed schemes proposed in the literature to date to solve
(1) make use of a dual decomposition of the problem into a rate
control and a scheduling problem: A virtual queue is associ-
ated with each link; a rate control algorithm defines the rateat
which packets are sent to the virtual queues, and a scheduling
algorithm decides, depending on the level of the virtual queues,
which schedule to use with the aim of stabilizing all virtual
queues. The main challenge reduces to developing a distributed
and efficient scheduling algorithm. Many solutions proposed
so far are semi-distributed implementations of the max-weight
scheduler introduced in [1], and require information about
the queues to be passed around among the nodes or links
(e.g., see a large set of references in [23]). This signaling
overhead increases communication complexity and reduces
effective throughput.

C. Efficiency of CSMA

CSMA-based random access is the most popularly used
distributed scheduling algorithms in wireless networks. They
are based on random back-off algorithms such as the De-
centralized Coordinated Function (DCF) in IEEE802.11. The
two basic principles behind CSMA schemes are (i) to detect
whether the channel is busy before transmitting, and to refrain
from starting a transmission when the channel is sensed
busy, and (ii) to wait a random period of time before any
transmission to limit the probability of collisions.

The network dynamics under CSMA have been extensively
studied in the literature. The following popular model is due
to Kelly [29], and has been recently revisited by e.g. [30]
and [31]. In this model, the transmitter of linkl waits an
exponentially distributed random period of time with mean
1/λl before transmitting, and when it initiates a transmission,
it keeps the channel for an exponentially distributed period
of time with meanµl. This CSMA algorithm is denoted by
CSMA(λl, µl) in the rest of the paper. Defineλ = (λl, l ∈ L)
and µ = (µl, l ∈ L). When each linkl runs CSMA(λl, µl),
the network dynamics can be captured through a reversible
process [32]: Ifmλ,µ(t) denotes the active schedule at time
t, then (mλ,µ(t), t ≥ 0) is a continuous-time reversible
Markov chain whose stationary distributionπλ,µ is given by

∀m ∈ N , πλ,µ
m =

Q

l:m
l
=1

λlµl
P

n∈N

Q

l:n
l
=1

λlµl

, where by convention
∏

l∈∅
(·) = 1. It is worth noting that due to the reversibility of

the process, the above stationary distribution does not depend
on the distributions of the back-off durations or of the channel
holding times, provided that they are of mean1/λl and µl,
respectively, for linkl. This insensitivity property allows us
to cover a more realistic scenario with uniformly distributed
back-off delays and deterministic channel holding times.

Under the above continuous-time model, collisions are
mathematically impossible, leading to tractability as a first
step of the study. In practice, however, time is slotted and
the back-off periods are multiple of slots, which inevitably
causes collisions.

Under the CSMA(λl, µl)’s algorithms, the link throughputs
are given by

∀l ∈ L, γλ,µ
l =

∑

m∈N :ml=1

πλ,µ
m .

An important result, proved in [26] (Propositions 1 and 2),
states that any throughput vectorγ ∈ Γ can beapproached
using CSMA(λ, µ) algorithms. More precisely, we have:

Lemma 1 ( [26]): For anyγ in the interior ofΓ, there exist
λ, µ ∈ R

L
+ such that∀l ∈ L, γl ≤ γλ,µ

l .

The above lemma expresses theoptimality of CSMA
scheduling schemes, and it suggests that for approaching the
solution of (1), one may use CSMA algorithms.

D. Continuous time model: Algorithm and performance

We now describe a generic adaptive CSMA-based algorithm
to approximately solve (1). The algorithm is an extension of
those proposed in [26], and does not require any message
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passing. Time is divided intoframesof fixed durations, and
the transmitters of each link update their CSMA parameters
(i.e., λl, µl for link l) at the beginning of each frame. To do
so, they maintain a virtual queue, denoted byql[t] in frame
t, for link l. The algorithm operates as follows:

UO-CSMA

1) During frame t, the transmitter of link l runs
CSMA(λl[t], µl[t]), and records the amountSl[t] of ser-
vice received during this frame;

2) At the end of framet, it updates its virtual queue and its
CSMA parameters according to

ql[t+1] =

[

ql[t]+
b[t]

W ′(ql[t])

(

U ′−1(
W (ql[t])

V
)−Sl[t]

)

]qmax

qmin

,

and setsλl[t + 1] andµl[t + 1] such that their product is
equal toexp{W (ql[t + 1])}.

In the above algorithm,b : N → R is a step size function;
W : R

+ → R
+ is a strictly increasing and continuously differ-

entiable function, termed theweight function; V , qmin, qmax(>
qmin) are positive parameters, and[·]dc ≡ min(d, max(c, ·)).
We will later see that proper choice ofb ensures convergence.
V controls the accuracy of the algorithm, and the functionW
controls the transient behavior. The impact ofb[t], V, andW
will be demonstrated in the implementation in the next section.

Since the performance of CSMA algorithms depends on
the productsλlµl only, we have the choices in UO-CSMA to
either update theλl’s (the transmission intensities) and fix the
µl’s (the transmission durations), or to update theµl’s and fix
the λl’s, or to update both theλl’s andµl’s.

E. Convergence

UO-CSMA may be interpreted as a stochastic approxima-
tion algorithm with controlled Markov noiseas defined in
[33]. The main difficulty in analyzing the convergence of
UO-CSMA lies in the fact that the updates in the virtual
queues, and hence in the CSMA parameters, depend on the
random service processes(Sl[t], t ≥ 0). The service processes
(Sl[t], l ∈ L) received by the various links in turn depend on
the state of the network at the end of framet− 1, and on the
updated CSMA parameters(λ[t], µ[t]).

For any vectorq ∈ N
L, we denote byπq the distribution

on N resulting from the dynamics of the CSMA(λ, µ) algo-
rithms, where for alll ∈ L, λlµl = exp(W (ql)). In other
words,

∀m ∈ N , πq
m =

exp(
∑

l∈m W (ql))
∑

m′∈N
exp(

∑

l∈m′ W (ql))
. (2)

We also denote byγ[t] = (γl[t], l ∈ L) the vector representing
the cumulative average throughputs of the various links up to
frame t, i.e.,

∀l ∈ L, γl[t] =
1

t

t−1
∑

n=0

Sl[n].

The next theorem states the convergence of UO-CSMA
under diminishing step-sizes, towards a point that is arbitrarily
close to the utility-optimizer.

Theorem 1:Assume
∑∞

t=0
b[t] = ∞ and

∑∞

t=0
b[t]2 < ∞.

For any initial conditionq[0], UO-CSMA converges in the
following sense:

lim
t→∞

q[t] = q⋆ and lim
t→∞

γ[t] = γ⋆, almost surely,

whereγ⋆ andq⋆ are such that(γ⋆, π
q⋆) is the solution of the

following convex optimization problem (overγ andπ):

max V
∑

l∈L

U(γl) − Σm∈Nπm log πm

s.t. γl ≤
∑

m∈N :ml=1

πm,
∑

m∈N

πm = 1. (3)

Furthermore UO-CSMA approximately solves (1) as
∣

∣

∑

l∈L

(

U(γ⋆,l) − U(γ⋆
l )

)∣

∣ ≤ log |N |/V . (4)

F. Slotted time model: Performance and tradeoff

In practical implementation, time is slotted and collisions
may occur. In this section, we briefly summarize the impact of
collisions (see [28] more details). We consider the following
model for slotted CSMA: The transmitter of linkl starts a
transmission at the end of a slot with probabilitypl if the slot
has been sensed to be idle. When a link is active, it can expe-
rience either a successful transmission or a collision. When
a link is currently successfully transmitting, it releasesthe
channel with probability1/µl at the end of a slot. Collisions
are classified into two kinds:

(a) Short collisions.Using a channel probing mechanism
using a small signaling message, e.g., RTS/CTS, we
restrict the length of collisions to a short time interval.

(b) Long collisions.Long collisions occur when RTS/CTS-
like procedures are not implemented, so that collision
time last for a maximum of holding times of links
involved with collision.

If we want the resulting link throughputs of UO-CSMA to
be close to the solution of (1), the products of the transmission
probabilities and the channel holding times need to be very
large. In the adaptation of UO-CSMA to the slotted-time
scenario, this implies that the channel holding times are very
large, since the transmission probabilities must remain very
small (to ensure very low collision rates). This further implies
that the delay between two successive successful transmissions
on a link is very large as well. In other words, to ensure
efficiency, we need to sacrificeshort-term fairness.

Another source of short-term unfairness with UO-CSMA
is the fact that if a link is interfering with by a lot of links
(compared to other links), before transmitting it needs to wait
until all its neighbors become inactive. This waiting time can
be very long, especially if these neighbors do not sense each
other. When the link finally gets access to the channel, it then
needs to hold the channel for a duration that is much larger
than the transmission durations of its neighbors, in order to
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Fig. 1. WiMesh: Campus-wide wireless mesh network testbed at KAIST

achieve throughput fairness. This may considerably exacerbate
short-term unfairness.

We now quantify the above two observations. We formally
define the short-term fairness index of linkl as 1/Tl where
Tl is the average delay between two successive successful
transmissions on this link. To illustrate, consider a simple
star network: it is composed ofL + 1 links, where link 1
interferes with by all other links, but linkk, k > 1, interferes
with only link 1. Throughout some computations (see [28] for
details), it turns out that for a given efficiency lossǫ > 0, (i)
channel holding times for link 1 and linkk, k > 1 scale as
1/ǫ2L and 1/ǫ2, respectively, and (ii) the short-term fairness
for all links scales asǫ2L. This quantifies the tradeoff between
efficiency and short-term fairness when implementing UO-
CSMA in slotted-time systems, implying that a huge cost of
short-term unfairness should be paid for large efficiency.

III. PRACTICE: IMPLEMENTATION OF UO-CSMA

This section describes the implementation of UO-CSMA on
the 802.11-based conventional hardware platform and presents
preliminary results. This implementation provides a proof-of-
concept of the theory-driven algorithm, UO-CSMA, and ad-
dresses the key challenges to transfer from theory to practice.
In Section IV, we elaborate the gaps between theory and
practice and the workaround solutions to bridge them.

A. WiMesh Network and Common Code Architecture

We implemented UO-CSMA on a campus-scale mesh net-
work testbed at KAIST, Korea,WiMesh testbed[34]. The
WiMesh has 56 mesh routers in an office building and in
6 undergraduate dormitory buildings over 1 km2 area, as
shown in Figure 1. Each node is typically equipped with
two 802.11a/b/g based wireless interface cards as well as
one Ethernet interface. The WiMesh has been designed for
a research testbed that is open to researchers who want to test
and realize their conceptual ideas on top of real hardwares.

One of the unique features in WiMesh isCommon Code
Architecture (CCA), a programming environment designed to
reduce cost and effort of testing a protocol by providing a way
of using one code for both simulation and real experiment.
A typical way to validate new algorithms or protocols is to
first make simulation programs at e.g., [35], [36] and then

Fig. 2. Common Code Architecture: GloMoSim simulation codes are
reusable in WiMesh without modification.

implement them in real hardwares. However, implementing
in the real testbed is significantly different from simulations
and much more challenging, as it requires understanding of
complicated real network protocol stacks, skills of system
programming, and even modification of proprietary hardware
through work-around hacking. Deploying protocols designed
from a substantially new angle such as UO-CSMA is par-
ticularly hard compared to simple modifications of existing
protocols, e.g., 802.11 DCF with a new backoff scheme. CCA
reduces the transition time from theory to simulation and then
to implementation.

In CCA, we first make a simulation code, where CCA
at WiMesh uses the protocol stack of GloMoSim simulator
[36]. We can make various simulation scenarios to test a
developed protocol. Simulation results give useful feedback to
the original protocol, so that we can have chances to modify
the original theory and protocol easily. Once simulation tests
verify the developed protocol, we load and run the same
simulation codes on top of CCA. Most of functions of CCA
are run at user-level space which is possible by making in-
terfaces connecting between user-level processes and wireless
hardwares. Figure 2 depicts the structure of CCA. We refer
the readers to [37] for more details.

B. Setup of Simulation and Implementation

To evaluate performance, we compare UO-CSMA with the
optimal benchmark and the 802.11 DCF in both simulation and
implementation. In simulation, we implement UO-CSMA by
changing the CSMA in GloMoSim, where we mainly modified
the part that sets backoff counters. We used two-ray path-
loss model, SNR bounded packet reception. Note that we
disabled ACK operation. When collision occurs, it lasts for
the corresponding holding time. The network is slotted with
1.6ms timeslot and 5Mbps link capacity, and the packet size
is set to be 1000 bytes. Using the feature of CCA, we can use
the same GloMoSim code to experiment UO-CSMA in real
hardware. The setup and hardware specification is shown in
Table I.

In 802.11, contention resolution scheme operates based
on the contention window,CW , where a back-off counter
randomly chosen in the range[0, CW − 1]. We modify the
mechanism of settingCW appropriately so that 802.11 DCF
can be turned into a basis for implementing UO-CSMA.
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TABLE I
ENVIRONMENTAL SETUP FOREXPERIMENT

WLAN device Atheros 5212 chipset
PHY 802.11a, 5.745GHz band, 6Mbps rate
Flow Single-hop session

Traffic Saturated
Utility function U(x) = log(x)

Performance metrics Total utility (or, throughput), short-term fairness
Holding time 20, 100, 500
V parameter 20, 100, 500

Weight function W (x) = x and log log(x)

(a) Per-link CW . In 802.11,CW is maintained at each node,
not each link, i.e., one contention window per one interface
card. In UO-CSMA, backoff counters should be installed
per link. We implemented per-linkCW, denoted byCWl,
at GloMoSim, and associate per-linkCWl to the per-node
CW, whenever linkl is activated.

(b) From access probability to contention window.Our theory
is developed based on access probabilitypl. Thus, we need
a way of convertingpl to CWl, for which we use:CWl =
2/pl, where ‘2’ is needed since the actual contention
window size is selected randomly from[0, CWl − 1].

(c) CWmin and CWmax. In 802.11, there exist two back-
off related values. In short, the realCW is first set to be
CWmin and then doubles whenever there is a collision.
The doubledCW value is used when a collided packet is
retransmitted. We disable this feature by settingCWmin =
CWmax, so that retransmitted packets are not specially
treated.

Note that in our experiments, both UO-CSMA and 802.11
DCF are implemented on top of CCA, implying there is no
gap due to Common Code between them. To facilitate packet-
by-packet parameter control with less overhead, instead of
using (indirect) interfaces such as user-level commands, e.g.,
iwpriv, provided by the device driver, we directly instill the
target parameter into the so-called TX descriptor used by the
firmware to decide action.

C. Results of 3-link Experiment

Now, we present the preliminary results in a simple 3 link
topology, as shown in Figure 3, where flows 1 and 2 (2 and 3,
respectively) are interfering with each other, but flows 1 and
3 are interference-free. In physical reality, interference among
links cannot be modeled by a simple graph, since channels
are time-varying and interference is very often asymmetric.
We tried various placements of wireless nodes in WiMesh
network, so that we obtain the desired inteference relationship
in Figure 3. This small experiment allows us to get a deep view
on many aspects of theory prediction, including performance,
transient behavior, and parameter setting. Ongoing work will
extend these to large topologies.

Total utility and throughput deviation

We first performed multiple per-link throughput measure-
ment without any interference to figure out effective link
capacity without MAC overhead. In our hardware setup,

(a) A network topology with three links and six nodes in
experiment on WiMesh testbed

1 2 3

(b) Interference graph: We map a
link to a node, where two nodes
are if they are interfering with
each other.

Fig. 3. Network topology in our experiment

the average per-link capacity amounts to about 5Mbps. We
henceforth use this value as a link capacity.

In theory, it is easy to compute the optimal throughput by
solving (1) with log utility function, whereγ∗

2 = 1/3 × 5 ≈
1.67Mbps, andγ∗

1 = γ∗
3 = 2/3×5 ≈ 3.33Mbps. In simulation,

we implemented UO-CSMA with adaptive backoff scheme on
top of CSMA. The simulation almost match the protocol over
the slotted model in Section II, except that access probability
is replaced by contention windows.

Figure 4 summarizes the results, where we show the total
utilities over links as well as deviation from the optimal values.
The deviation is computed by normalizing the total throughput
difference from optimal one for each case with the optimal
solution.

Figure 4 shows that UO-CSMA in simulation has a good
match with that in theory, where a small gap is mainly due to
the difference between the ideal continuous without collision
and the slotted model with collision. We can also observe that
UO-CSMA implementation works well with 6.6% throughput
deviation from theory, whereas about 14.9% throughput devi-
ation is observed in 802.11 DCF.

One interesting fact from our measurement in the real
testbed is that throughput deviations in simulation and practice
differ. The throughput loss in simulation is mainly due to
collisions. Note that we use a graph-based interference model
with perfectly synchronized nodes in simulation. In the testbed
experiment, we indirectly measured the number of collisions
by assuming that all data loss is due to collisions, which seems
to be suitable since two nodes over a link are very close.
The number of collisions in practice just amounts to about 20
packets out of 30000 packets, and thus almost zero collisions.
It implies that throughput deviation in practice is due to
other reasons such as imperfect execution of holding time etc.
The small number of collisions is likely due to the collision
avoidance feature of 802.11 and device asynchronization.

Holding time: Efficiency and short-term fairness

Section II shows that increasing holding times lead to
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(b) Short-term fairness for different holding times

Fig. 5. Throughput and short-term fairness

increase in total throughput, since collisions can decrease at
the cost of short-term fairness. We define short-term fairness
as the inverse of longest starvation time, where starvation
time is the interval between two successful transmission. We
measured such tradeoff between throughput and short-term
fairness and show it in Figure 5.

From Figure 5, we observe that as holding time increases,
the short-term fairness decreases, whereas throughput remains
to be the same. To figure out why, we performed the following
measurements: By modifying the Madwifi device driver [38],
we disabled retransmission. Again, we assume that there is no
packet loss due to weak wireless signal, since each sender-
receiver pair is very close. Similar to the earlier experiment in
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(a) Queue trace of flow 2 with fixed step size
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(b) Queue trace of flow 2 with diminishing step size

Fig. 6. Flow 2 converges to 0.4 in both cases.

total utility, for different holding times, we still get a similar
number of collisions, i.e., around0.05%, i.e., no dependency
of holding time on the number of collisions. We conjecture
that (i) there exists a nice arbitration by backoff in 802.11
DCF in spite of small CW values (for small holding times),
and (ii) asynchronous operation of 802.11 induced by delay
such as turnover time between transmission and reception
and transition time for carrier sensing. More measurements
are necessary to verify our conjectures. Therefore, we can
conclude that in contrast to theory, there is no benefit of using
large holding time when we implement UO-CSMA on top of
the 802.11 hardware.

Step size: Transient behavior

We observe the impact on the queue behavior and conver-
gence. of different step size policy. As shown in Figures 6,
the trajectories with the step sizeb = 0.01 are oscillating
within some neighborhood of the converged point, here0.4
for flow 2 and0.2 for flow 3. The trajectories with decreasing
step size behaves in a way that it is reduced by 0.9 every
10 seconds starting from 0.1 converges within a few hundred
seconds. We recall that this convergence is just related to queue
length, while the convergence in terms of throughput is already
achieved in both cases through the similar converged points,
i.e., 0.4 for flow 2 and 0.2 for flow 3. (We omit the queue
traces for flow 3 due to space limitation.)

ParameterV : Efficiency and average delay

We now measure changes in efficiency and the length of
virtual queues asV changes. Intuitively, the parameterV
controls sensitivity of response to network congestion that
is reflected in the virtual queue lengthsq[t]. Thus, largerV
results in higher throughput, yet larger virtual queue lengths
(thus larger delay). Figures 7 and 8 show throughput changes
and virtual queue behaviors forV = 20, 100, and500, re-
spectively. Figure 8 shows that for the smallV = 20, we
observe that the virtual queue length constantly stays at the
pre-specified minimum value (i.e., 0.1). Conversely, for the
largeV = 500, the virtual queue length reach the pre-specified
maximum (i.e., 2.3), and stays there from 22 secs on. Note that
the virtual queue is nothing but a real queue length multiplied
by step size whenlog utility is used, i.e.,q[t] = rq[t] × b[t],
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Fig. 7. Throughput for V=20, 100, 500 and optimality

whererq[t] means the actual queue length. Typical lengths of
our actual queue range from 100 to 300 pkts.

As a remark, our system is saturated and consists of single-
hop sessions, where the virtual queue is used as a control
variable to derive the system towards different directions.
However, in implementation of UO-CSMA, we install per-
link intermediate buffers to whom packets are injected (from
an infinite backlogged reservoir) at a congestion controlled
rate. Thus, the average lengths of such intermediate buffers
imply the average queueing delay that a packet experiences.
The average delay becomes much more clear when we extend
our system to that with multi-hop sessions.
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(a) Queue trace of flow 2 for V=20
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(b) Queue trace of flow 2 for V=100
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(c) Queue trace of flow 2 for V=500

Fig. 8. Backlogs for different V parameters

Weight function: Queue length and convergence time

We also investigate the transient behaviors of queue length
and throughput for different weight functions. We have tested
two functions:W (x) = x and W (x) = log log(x + e). As
depicted in Figures 9 and 10, we can observe thatW (x) = x
has smaller virtual queue length and longer convergence time
thanW (x) = log log(x + e) with the same throughput being
achieved for both functions. The virtual queue lengths for
W (x) = x oscillate between0.2 and 0.4 for W (x) = x,
whereas between0.5 and 1.5 for W (x) = log log(x + e).
This is due to the fact that the long-term throughput is
determined byρ (thusρ should be the same for both functions),
but sinceρ = exp(W (q)), we have smaller virtual queue
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Fig. 9. Virtual queue traces forW (x) = x andW (x) = log log(x + e)
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Fig. 10. Aggregate throughput traces and convergence timesfor W (x) = x

andW (x) = log log(x + e)

lengths for W (x) = x. Theoretical verification for faster
convergence time for “less aggressive” weight function, i.e.,
W (x) = log log(x+e) remains for future study. We conjecture
that less aggressive weight functions result in larger virtual
queue length fluctuations, which, in turn, let the protocol
respond to congestion more sensitively.

IV. T HEORY-PRACTICE GAPS

A. Overview of gaps

This section briefly discusses the origins of many gaps be-
tween theory and practice based on our experimental measure-
ments. Such an understanding is important to improve theory-
driven implementation of UO-CSMA. In addition, it motivates
us to develop better theories capturing and bridging this gap.
The key origins of the gaps include imperfect modeling of
sensing, holding time, and interference (e.g., capture effect)
in practice.

Other gap origins are caused by implementation method-
ologies. First, we adopt the Common Code Architecture to
facilitate simulation and experiment, which, however, maylead
to unexpected overhead as well as may have impact on the
behaviors of networking, e.g., inappropriate event scheduling
in CCA can starve transmission opportunity in the wireless
interface. Second, we also implement a new MAC protocol on
top of the conventional MAC hardware that are just partially
controlled by and also even hidden to us (e.g., functions
implemented at firmware). For example, when a contention
window CW is set by us, the system randomly chooses a
backoff counter in the interval[0, CW − 1]. We are not able
to know the real backoff counter, which is sometimes needed
to investigate the MAC behavior more rigorously.
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B. Gap between Theory and Simulation

In simulation, we implemented UO-CSMA under perfect
synchronization over a discrete slotted system by modifying
the conventional CSMA with new CW-based backoff counter
control mechanism. We also used a graph-based interference
model based on which sensing mechanism is implemented.
Carrier sensing is deterministic, and its range is set to be equal
to transmission range. Thus, as seen in Figure 11, we observe
a very small gap between theory and simulation, which is just
due to collisions in slotted-time model.

TABLE II
THEORY-SIMULATION GAP

Gap Theory Simulation

Backoff Data-slot based Mini-slot based
Collision No Yes, and last for holding time

Opt Sim (Htime = 20) Sim (Htime = 100) Sim (Htime = 500)
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Fig. 11. Throughput between theory and simulation for holding time = 20,
100, and 500

C. Gap between Simulation and Implementation

(a) Hidden-terminal: Link-oriented vs. node-oriented.Theory
does not cover the hidden-terminal problem that even if
two nodes do not sense signal, their intended transmis-
sions can collide. This is due to the gap between theory
that interferences are characterized bylinks and practice
that carrier-sensing is performed bynodes.The hidden-
terminal problem can be a cause of throughput decrease
in practice, when RTS/CTS mechanism can be a candidate
solution. Note that RTS/CTS-like signaling may also help
with driving the system with slotted model from theory
into that with short collisions (see Section II-F).

(b) Difference in sensing and decoding ranges.For example,
in 802.11b, systems are designed to be conservative, so
that sensing range is larger than decoding range. Thus,
transmissions may defer even if they can be successful
in decoding. Interestingly, this difference in decoding and
sensing ranges is heterogeneous depending on wireless
systems. for example, sensing mechanism of 802.11a in
our testbed differs from 802.11b, in that nodes first try to
decode a preamble of packets from neighbors (thus sens-
ing range is equal to decoding range). When the preamble
is not decodable mainly due to some unpredictable behav-
ior such as instantaneous hardware-malfunction, sensing
range that is smaller than decoding range is applied for

TABLE III
SIMULATION -IMPLEMENTATION GAP

Gap Simulation Implementation

Hidden-terminal No, due to link-based in-
terference model

Yes, due to carrier sensing
by senders

CS and TX rangesAlways same Different and governed by
PHY layer

Time-varying
channel

No, fixed channel Yes, no guarantee of hold-
ing time

Asymmetry No, symmetric Yes, both at transmission
and carrier sensing

carrier-sensing, whereas in 802.11b sensing range is larger
than decoding range.

(c) Time-varying channel.Time-varying channels precludes
us from ensuring holding times. The holding time set by
a nodei cannot always be guaranteed by an interfering
neighbor ofi that decrements its backoff counter whenever
signal is not sensed (due to time-varying channel), and
preempts the transmission of nodei. Note that ensuring
holding time correctly is the key to efficiency and fairness.
Time-varying channels also generate packet loss induced
by channel degradation that are not considered by theory.

(d) Asymmetry.Wireless links are often asymmetric because
signals propagate differently between two nodes. Further-
more, link asymmetry is also time-varying. Theory adopts
a model that both link channel conditions and interferences
are symmetric and fixed.

D. Gap between Clean-slate and 802.11

There has been exciting discussion on the vision of clean-
slate design for the overall future of the Internet. As an
alternative option for alocal surgery such as UO-CSMA,
implementation over legacy hardware like conventional 802.11
also presents a least resistance path from theoretical advance
to practical impact. However, there exist challenges and gaps
generated by legacy hardwares, summarized below, using three
examples.

(1) Holding time

The first example of this gap is holding time that relies on
perfect carrier-sensing capability. Perfect carrier-sensing may
be achieved by clean-slate design. However, in 802.11, we
found out that it is very hard to do so due to (i) hidden state
information (many parts are implemented in its firmware), (ii)
imperfect synchronization, and (iii) asynchronous features.

We adopted several work-arounds to ensure that holding
time is executed correctly.

• Imperfect CW = 0. We use AIFS (Arbitration Inter-
Frame Space) from 802.11. The AIFS specifies an interval
between packet transmissions. We set AIFS to be a large
value only when a node first access the media right after
its backoff counter reaches 0, but to be a small value
for back-to-back transmissions in the middle of holding
time. This heterogeneous setting of AIFS precludes a
node from intercepting transmissions from other nodes
being in the middle of holding time.
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TABLE IV
CLEAN SLATE-OVER 802.11 GAP

Gap Clean slate Over 802.11

Holding Perfect Not perfect

Contention control By access prob.
By discrete back-
off, but only2n−1
CW value available

Transmission type User defined Unicast with ACK

Synchronization Synchronization
from PHY Asynchronous

Overhead
Hardware
dependent

802.11 chipset de-
pendent

• Time-varying channel.In time-varying channels, even
while a nodei is transmitting data, nodei’s interfering
links sometimes decrement their backoff counters in case
when interfering links may not sense nodei’s signal
due to time-varying channels. To prevent it, we use the
NAV (Network Allocation Vector) option recording the
amount of time during which neighbors should be silent
irrespective of carrier-sensing. The NAV option helps
much when the packet with a NAV value is overheard
and decoded by interfering neighbors.

• More workaround solutions.The workaround solutions
mentioned earlier just partially solve the gap origin that
we listed in the previous section. Obviously, we try to
find more workaround solutions, for which we need to
perform more rigorous measurement. We expect that new
software and hardware help with it.

(2) CW granularity

The second example is the coarse CW granularity that
prevents us from controlling access intensity perfectly. The
802.11 allows only2x − 1 CW values, which is again imple-
mented in firmware in the chip used in our experiment. In our
implementation, we take a “ceiling function” of the computed
CW value, saycw, i.e., the value that is larger thancw and
closest to2x − 1 for some positive integerx.

(3) 802.11-specific packets

The third example is specially treated packets in 802.11,
where examples include beacon packets (with high priority)
that are used to identify neighbors. These beacon packets may
intercept chances for usual data transmission, having negative
impact on guaranteeing holding times. To deal with it, we
modified the device driver to minimize the impact of the
packets for beacon signal by increasing beacon interval from
100 msec to 5 sec (Our measurement tell us that too large
beacon intervals generate network malfunctions, e.g., slow
connectivity update).

In addition to gaps due to the use of legacy hardware,
there are additional challenges in making the overlay ap-
proach work, generating additional gaps. Mentioned earlier,
we adopt the Common Code Architecture for compatibility
of simulation with real experiment, where MAC is partially
implemented in overlay. It it natural that Overlay MAC cannot
fully utilize the hardware-level information such as channel
status.

V. DEVELOPING IMPLEMENTATION-INSPIREDTHEORY

Implementing theory-driven algorithms provides useful
feedbacks, motivating us to look into and augment the existing
theories with new theories. The new theory is required to
revisit and even develop new theory by considering (i) what
existing theory assumed away, e.g., overhead, asymmetry,
control granularity, (ii) what existing theory modeled sim-
plistically, e.g., imperfect holding and sensing, and finally
(iii) what theory analyzed loosely, e.g., convergence speed,
transient behavior like queue buildup, and parameter choice.

VI. N EXT STEPS IN IMPLEMENTATION

There are interesting next steps to take in the future, listed
as follows:

• Large-scale networks with multi-hop sessions.Test over a
simple topology with simple traffic model is insufficient
to fully verify theory-driven algorithms and bridge the
gaps. We plan to test UO-CSMA in large-scale networks
consisting of more than 20 nodes with multi-hop sessions,
where we need routing protocols as well as more practical
transport protocols, e.g., TCP.

• Software and hardware upgrade.We plan to upgrade our
testbed with new 802.11n cards, as well as newer Linux
kernels, with which we believe that much more freedom
to access the hardware is provided.

VII. C ONCLUDING REMARKS

Theories depend on a mathematical crystallization of the
engineering system under study. This process needs to ignore
some parts of the physical characteristics of the system by
making assumptions, simplify other parts by building tractable
models, and focus on metrics that can lead to crisp quan-
tification and tight analysis using the existing mathematical
machinery. There perhaps is no other starting point towards
a rigorous study. This paper aims at going one step further
for the topic of distributed scheduling in wireless networks,
through an implementation over conventional 802.11 hardware
and a deployment in the WiMesh network at KAIST. This is
simply an “interim report”, where we report the first, small-
scale experiment that confirms the ability of UO CSMA to get
close to utility optimality despite many gaps between theory
and practice. The discovery, quantification, and bridging of
these gaps are more important than the numerical results. We
identify the key gaps, group them in three types, and explain
where they originated and how they might be bridged, either
by work-around engineering solutions or by addressing the
new modeling challenges through enriched theories of wireless
scheduling.
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