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Abstract—Greening effect in interference management (IM),
which is a technology to enhance spectrum sharing via intelligent
BS transmit power control, can be achieved by the fact that
even small reduction in BS transmit powers enables considerable
saving in overall energy consumption due to their exerting
influence on operational powers. In this paper, we study the
impact of power sharing policies in IM schemes on cellular
network greening, where different spatio-temporal power sharing
policies are considered for a fixed system-wide power budget.
This study is of great importance in that the pressure on the
CO2 emission limit per nation increases, e.g., by Kyoto protocol,
which will ultimately affect the power budget of a wireless service
provider. We propose optimization theoretic IM frameworks with
greening, from which we first develop four IM schemes with
different power sharing policies. Through extensive simulations
under various configurations, including a real BS deployment
in Manchester city, United Kingdom, we obtain the following
interesting observations: (i) tighter greening regulation (i.e., the
smaller total power budget) leads to higher spatio-temporal
power sharing gain than IM gain, (ii) spatial power sharing
significantly excels temporal one, and (iii) more greening gain
can be achieved as the cell size becomes smaller.

I. INTRODUCTION

With increasing awareness of the potential harmful impact
on the environment by CO2 emissions and the depletion of
non-renewable energy sources, there has been a consensus
on the need to limit per-nation CO2 emission [1]. In the
near future, a government is likely to relay such energy-
saving pressure to all industries in the country. Information
and Communication Technology (ICT) is one of the industries
to consume significant amount of energy—a fraction of the
world-wide energy consumption ranging from 2% to 10% [2].
In particular, the energy consumed to operate cellular networks
reaches 25% of the total ICT energy consumption [3], and
the power consumption in base stations (BSs) is one of the
dominant components occupying about 60-80% of the total
energy in the whole cellular networks [2].

In a typical macro BS, the amount of transmit power is
in fact low (e.g., 10-20W), compared to the total operational
power (e.g., 500-2000W). However, the transmit power exerts
substantial influence on the required power for amplifiers,
cooling systems, and so on, where the influence is often linear.

This research was supported by the MKE (The Ministry of Knowledge
Economy), Korea, under the ITRC (Information Technology Research Center)
support program supervised by the NIPA (National IT Industry Promotion
Agency) (NIPA-2011-(C1090-1111-0011)).

As an example, Fehske et al. [4] showed that a macro BS
can reduce the total power consumption from 766W to 532W
(i.e., 234W reduction) just by reducing the transmit power
from 20W to 10W. Thus, we are able to enjoy greening effect
by employing an appropriate interference management (IM)
scheme which can minimize the performance degradation due
to the transmit power reduction, especially when the network
is interference-limited, e.g., the current cellular network whose
cell size is becoming smaller.

Pushed by the demand for greening regulation to limit CO2

emission, wireless service providers (WSPs) may be given the
total energy budget, say, per year or month. A big question
to WSPs is how to share the given energy budget temporally
and spatially. Their clear objective is to save more energy but
degrade performance less. For example, a brute-force approach
is just to decrease the instantaneous power constraint of each
individual BS by some portion according to the regulation.
However, such an approach may be inefficient because it
cannot fully consider the spatial load difference over space
and the temporal channel variation of users.

In this paper, we consider two power sharing policies, (i)
spatial sharing and (ii) temporal sharing, and their impact on
the overall greening effect in the context of IM schemes. In
the spatial sharing, we adaptively distribute the power budget
across BSs in the network, depending on topology and user
distributions. In the temporal sharing, the power budget at each
BS is adaptively changed overtime, depending on the time-
varying channel conditions of users, so that the long-term total
reduced power budget stays same. Fig. 1 depicts four possible
combinations of power sharing. We also investigate their
impacts on the overall operational power in cellular networks
based on a realistic BS power consumption model [5].

A. Related Work

For radio resource management in downlink cellular net-
works, rate adaptive objectives [6]–[13] (e.g., throughput or
utility maximization) subject to given transmit power con-
straints per each BS mostly have been considered rather than
margin adaptive objectives [14] (e.g., power minimization)
subject to quality of service (QoS) constraints for users. This
is because the power consumption on BSs relatively had not
been a major concern so far.

Related work on BS energy saving includes [2], [15], [16]
which consider different issues with different time scales. For
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Fig. 1: Four spatio-temporal power sharing policies.

example, the authors in [15] studied an energy-aware BS
deployment strategy that is an issue of a long time-scale.
It is natural that once BSs are deployed, it hard to change
their locations in at least months or even years. In [2], [16],
the authors proposed load and location-aware BS switching
on/off algorithms that operate with a faster time-scale (e.g., an
order of hours) than the deployment. The IM schemes can also
bring energy saving, where IM refers to the technology that
BSs dynamically control powers in the order of time slots to
increase the efficiency of spectrum sharing by mitigating inter-
cell interference. However, the conventional studies on IM
have focused on improving system performance by mitigating
inter-cell interference [8]–[13]. In particular, Venturino et al.
[8] presented several centralized IM schemes that maximize
the sum of long-term utilities of users, and Son et al. [12]
further proposed low-complex and fully distributed practical
IM algorithm in heterogeneous multi-cell networks.

There was also a greening approach based on IM in the
context of wired DSL (Digital Subscriber Line) networks. Tsi-
aflakis et al. [17], [18] proposed fair-greening frameworks and
showed that when the power of each DSL line is fairly reduced
to the half, respectively, the sum of rate can be achieved to
more than 85% if appropriate power control algorithms are
adopted. Their papers are based on [19], which deals with
power control algorithm to mitigate crosstalk of DSL network.
This can be regarded as a special case of wireless multi-
cell network, i.e., there is only one user in the cell, so user
scheduling is fixed by the user and wireless channel is fixed for
a long time. Accordingly, we need more complex consideration
in greening of wireless multi-cell cellular networks than wired
DSL networks due to the additional user scheduling and
stochastic channel variation issues.

B. Contributions and Organization

The main contributions of this paper are as follows
1) We develop an optimization based greening IM frame-

work with four BS power sharing policies. Also, we
develop four different IM algorithms with joint user
scheduling and power allocation per each time slot, each
of which is with one sharing policy. Since we consider
long-term BS power budget, we introduce a virtual queue
which reflects average power constraints.

2) Throughout extensive simulations based on a real BS
deployment, we obtain many interesting observations: (i)
power saving gain outshines performance gain due to the
fact that the network is interference-limited. (ii) Tighter
greening regulation (i.e., the smaller total power bud-
get) leads to higher spatio-temporal power sharing gain,
(iii) spatial power sharing significantly excels temporal
one, and (iv) more greening and performance gain are
achieved as the cell size becomes smaller, e.g., femto/pico
cells. These observations suggest that as more greening
pressure is given to WSPs, it is important to distribute
the given power budget spatially, and smart IM becomes
more important as the cell size becomes smaller.

The remainder of this paper is organized as follows. In
Section II, we present our system model. In Section III,
we propose greening IM schemes with four different power
sharing policies. In Section IV, we demonstrate the impact
of four power sharing policies on cellular network greening
under various topologies and scenarios. Finally, we conclude
the paper in Section V.

II. SYSTEM MODEL

A. Network and traffic model

We consider a downlink wireless cellular network with mul-
tiple cells. There are N BSs, and K users (mobile stations),
and denote by N .

= {1, . . . , N} and K .
= {1, . . . ,K} the set

of BSs and users, respectively. BS (or user) has one transmit
and one receive antenna. Each user can be associated with a
single BS. Denote by Kn the set of users associated with BS
n. i.e., K = K1∪· · ·∪KN and Kn∩Km = ø for n ̸= m. All of
the adjacent BSs are assumed to communicate with each other
via high-speed wired dedicate backhauls directly or through a
centralized BS controller (BSC).

We assume that each BS has an infinite buffer and always
has data for transmission to all associated users. We consider
an OFDMA (Orthogonal Frequency Division Multiple Access)
system where a subchannel is a group of subcarriers as the
basic unit of resource allocation. Assume no interference
across the subchannels. Denote by S .

= {1, . . . , S} the set
of subchannels, and each BS can use all the subchannels for
data transmissions, i.e., universal frequency reuse.
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B. Resource and Allocation model

Consider a time-slotted system indexed by t = 0, 1, . . ..
During a slot, the channels are assumed to be invariant. Each
BS selects only one user for scheduling and determines the
power allocation on each subchannel. Denote by Is

.
= [Ik,ns :

k ∈ K, n ∈ N ] the vector of user scheduling indicators across
all users and subchannels, where Ik,ns = 1 if BS n schedules
user k on subchannel s, and Ik,ns = 0 otherwise. Denote by
k(n, s) the user scheduled by BS n on subchannel s. In order
to reflect the constraint that at most only one user can be
selected in each subchannel for each BS, we should have:∑

k∈Kn

Ik,ns ≤ 1, ∀n ∈ N , s ∈ S. (1)

Let pns be the transmit power of BS n on subchannel s,
and let ps

.
= [p1s, . . . p

N
s ]T , and pn .

= [pn1 , . . . p
n
S ]

T . There
exists a maximum level of transmit power at each BS due
to a hardware constraint (e.g., power amplifier capability) or
regulations from government agencies due to harmful effect
to humans [20], [21]. We will consider additional power
constraints later for various power sharing policies in the next
section.

C. Link model

We do not consider interference cancelation techniques, and
hence users treat the sum of received signal powers from other
BSs as a noise in each subchannel. For a power allocation
vector ps, the received SINR (signal to interference plus noise
ratio) from BS n to user k on subchannel s is denoted by

ηk,ns (ps) =
gk,ns pns∑

m ̸=n g
k,m
s pms + σk

s

, (2)

where gk,ns and σk
s are channel gain from BS n to user k

on subchannel s and thermal noise of user k on subchannel
s, respectively. The channel gain takes into account random
shadowing, Rayleigh fading, and path loss. Following Shan-
non’s capacity formula [22], the potential data rate of user k
associated with BS n on subchannel s is given by

rk,ns (ps) =
B

S
log2

(
1 + ηk,ns (ps)

)
, (3)

where B is the system bandwidth. Note that rk,ns is the
meaningful data rate for user k when the user k is selected
for service by BS n on subchannel s and actual data rate
of user k becomes 0 when another user is selected. i.e.,
rk.ns (ps, Is) = Ik,ns · rk,ns (ps). For notational simplicity, we
omit B/S throughout the paper unless explicitly needed.

III. GREENING INTERFERENCE MANAGEMENT SCHEMES
WITH POWER SHARING POLICIES

A. Objective and Power Sharing Constraint

Our objective is to develop a slot-by-slot resource alloca-
tion, consisting of user scheduling and BS power control,
(p(t), I(t))∞t=0, whose long-term user rates are the solution
of an optimization problem with the constraints on scheduling

and power budget with greening considered. The optimization
problem is chosen such that

max
∑
k∈K

Uk(xk), s.t. x ∈ R(β), (4)

where Uk(xk) is the long-term utility function of user k which
is continuously differentiable and strictly increasing concave
function and R(β) is the rate region (a set of all achievable
rate vectors by any joint user scheduling and power control).
The parameter β is due to the power budget constraint which
we parameterize by the greening factor β.

A power sharing policy is reflected in the above optimiza-
tion framework as a constraint. The power budget constraints
of four different power sharing policies are presented in
Table I. To refer to each power sharing policy, we henceforth
use the notation (S,T) = {(0,0), (0,1), (1,0), (1,1)}. The An

and Bn are for modeling BS operational power consumption
[5], which may or may not depend on the transmit power of
BS n, respectively. The P̂n,max and P̄n,max are instantaneous
and average power constraints for BS n, respectively. Greening
factor β ∈ (0, 1] controls the amount of power budget reduc-
tion, e.g., given by a greening regulation policy. Note that for
a given β, all power sharing policies guarantee to work under
the same long-term system-wide power budget. Irrespective of
sharing policies, the basic transmit power constraint regulated
by the hardware as well as the government agencies is imposed
by
∑

s p
n
s (t) ≤ p̂n,licensed. Each power sharing policy can be

classified into network-level and cell-level power constraints
spatially, and time average and instantaneous power con-
straints temporally.

B. Greening IM Algorithms

Our objective is to develop a slot-by-slot joint user schedul-
ing and BS power control (p(t), I(t))∞t=0 for different power
sharing constraints. To this end, we apply a stochastic gradient-
based and greedy primal-dual techniques [23], [24] to long-
term utility maximization problem in (4). Then, solving the
following optimization problem at each time slot can lead
to the asymptotically optimal solution. From now on, we
suppress the slot index t unless explicitly needed for notational
simplicity.
(Slot-by-Slot) :
max
p,I

∑
k∈K

wk

∑
s∈S

rk,ns (pns , I
n
s )−

∑
n∈N

∑
s∈S

AVE(pns ), (5)

subject to
∑
k∈Kn

Ik,ns ≤ 1, ∀n ∈ N , ∀s ∈ S, (6)∑
s∈S

pns (t) ≤ p̂n,licensed, ∀n ∈ N , (7)

∑
s∈S

Anp
n
s (t)+Bn≤βP̂n,max,∀n ∈ N , if (S,T) = (0,0), (8)∑

n∈N

(∑
s∈S

Anp
n
s (t)+Bn

)
≤β

∑
n∈N

P̂n,max, if (S,T) = (1,0),(9)

where wk is the derivative of utility dUk(Rk)
dRk

|Rk=Rk(t) for
user k; AVE(pns ) is γ1p

n
sQ

pc
n for (S,T) = (0,1), γ2pnsQ

pn for
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TABLE I: Constraints for Power Sharing Policies

Sharing policy Notation Constraints

No sharing (S,T) = (0,0)
∑
s

Anp
n
s (t) +Bn ≤ βP̂n,max, ∀n ∈ N

Only temporal sharing (S,T) = (0,1) lim
t→∞

1

t

t−1∑
τ=0

∑
s

Anp
n
s (τ) +Bn ≤ βP̄n,max, ∀n ∈ N

Only spatial sharing (S,T) = (1,0)
∑
n

(∑
s

Anp
n
s (t) +Bn

)
≤ β

∑
n

P̂n,max

Spatio-temporal sharing (S,T) = (1,1) lim
t→∞

1

t

t−1∑
τ=0

∑
n

(∑
s

Anp
n
s (τ) +Bn

)
≤ β

∑
n

P̄n,max

(S,T) = (1,1) and 0 otherwise; Here, γ1 and γ2 are the step
size values which determine tradeoff between the required time
for convergence and the optimality of algorithms. Finally, the
virtual queue lengths Qpc

n (t) and Qpn(t) can be updated as
follows:

Qpc
n (t+ 1) =

[
Qpc

n (t)− βP̄n,max −Bn

An

+
∑
s∈S

pns

]+
, ∀n ∈ N ,

(10)

Qpn(t+ 1) =
[
Qpn(t)− (β

∑
n

P̄n,max −
∑
n

Bn)

+
∑
n∈N

∑
s∈S

Anp
n
s

]+
.

(11)

The key idea is that we inherit spatial power sharing
constraint, in conjunction with the scheduling constraint in
(6) and the transmit power constraint in (7) [23]. For temporal
constraint, we use the idea of a greedy primal dual algorithm
[24] and introduce a virtual queue which is added to the
objective function as a penalty function AVE(pns ), i.e., if the
time-averaged constraint is more violated, then the penalty
increases.

We now present an algorithm of user scheduling and power
control solving (Slot-by-Slot) that determines (p(t), I(t))∞t=0.
Since the number of available joint power allocation and user
scheduling combinations is huge, we can solve user scheduling
for a given power allocation and power allocation for a given
user scheduling iteratively until it converges. Unfortunately,
even though user scheduling is given, it is known in [25] that
the problem is computationally intractable since the system
objective is tightly coupled by the powers of all BSs and
nonlinear (neither convex nor concave) function. There exist
several approximation techniques in literature, see, e.q., [19]
and the references therein.

For a given power allocation, the slot-by-slot framework can
be decomposed into user scheduling at each cell (19). Users
are selected depending on the user weight and the potential
rate for each time-slot as following lemma.

Lemma 3.1: If there exists any given feasible power alloca-
tion p for the problem (Slot-by-Slot), then it can be reduced
to N × S independent intra-cell optimizations for each BS n
and subchannel s.

Proof: For the given power allocation p, we can rewrite
(5) as follows:∑

n∈N

∑
k∈Kn

[
wk

∑
s∈S

Ik,ns · rk,ns (ps)− AVE(pns )

]

=
∑
n∈N

∑
s∈S

[ ∑
k∈Kn

wk · Ik,ns · rk,ns (ps)− AVE(pns )

]
.

(12)

As wk, rk,ns (ps) and AVE(pns ) are given parameters, we
only have to consider dependencies among Ik,ns . Since the
constraint (1) do not play a role across different BSs and sub-
channels, the original problem is equivalent to independently
solving the N × S subproblems for each BS and subchannel.
This completes the proof.

For a given user scheduling I(t), the problem (Slot-by-Slot)
can be reduced to the following power allocation problem:

max
p

∑
n∈N

∑
s∈S

[
wklog2

(
1+ηk,ns (ps)

)
− AVE(pns )

]
, (13)

subject to
(7) for all policies,
(8) for (S,T) = (0, 0),
(9) for (S,T) = (1, 0),

(14)

With the help of the CA-DSB algorithm [19] which is
known to be near optimal power allocation algorithm in the
DSL networks, we apply the same concave approximation to
the non-concave objective function in (13) as follows.

max
p

∑
n∈N

∑
s∈S

[
wklog2

(
1+ηk,ns (ps)

)
− AVE(pns )

]
, (15)

= max
p

∑
n∈N

∑
s∈S

[
wk log2

(∑
m∈N

gk,ms pms + σk
s

)

−wk log2

(∑
m ̸=n g

k,m
s pms + σk

s

)
− AVE(pns )

]
,

(16)

≥ max
p

∑
n∈N

∑
s∈S

[
wk log2

(∑
m∈N

gk,ms pms + σk
s

)

−wk

(∑
m ̸=n a

k,m
s pms + cks

)
− AVE(pns )

]
,

(17)

For a given user scheduling I(t), this approximation is
similar to CA-DSB algorithm except for that we also should
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consider time average power constraints. Fortunately, virtual
queue is fixed during the time slot, so AVE(pns ) is linear
function of psn, which has not effect on the concavity of the
given function (15). Since the second term of the equation (16)
is non-concave (convex) while the first and third terms are
concave and linear function, we can approximate the second
term of the equation (16) by a lower bound hyperplane as
the equation (17). The approximation parameters ak,ms (∀m)
are obtained by solving a linear system of N equations on
N unknowns. We determine pns (∀n, ∀s) by following power
allocation procedures under given approximation parameters
ak,ms (∀m) and determine ak,ms (∀m) under given power
allocation iteratively until the power allocations are converged.
By applying this lower bound approximation, the objective in
(15) can be transformed into the following concave function:∑

n∈N

∑
s∈S

[
wklog2

(∑
m∈N

gk,ms pms + σsk

)

−wk

∑
m ̸=n

ak,ms pms + cks

− AVE(pns )

]
.

(18)

For given user scheduling and concave optimization prob-
lem, now we can derive the closed form power allocation by
applying Karush-Khun-Tucker (KKT) conditions [26].

(User Scheduling and Power Allocation):

Ik,ns =

{
1, if k = k(n, s) = arg max

k∈Kn

wkr
k,n
s (ps),

0, otherwise,
(19)

pns =

[
wk(n,s)/ ln 2

λn + taxn
s + V

−
∑

m ̸=n g
n,m
s pms + σn

s

gns

]+
0

, (20)

where V = {0, µ, γ1Qpc
n , γ2Q

pn}
for (S,T) = {(0, 0), (1, 0), (0, 1), (1, 1)},

(21)

taxn
s =

∑
m ̸=n

wm
|gn,ms |2/ ln 2∑

q ̸=n |g
n,q
s |2pqs + σn

s

−
∑
m ̸=n

wm
gm,n
s / ln 2∑

p g
m,p
s pps + σm

s

,

(22)

where taxn
s is a taxation term of BS n on subchannel s

reflecting that the power of BS n on subchannel s will give
interferences to the scheduled users in the neighboring cells.

We assume that all parameters related to taxation term such
as interference, allocated power of the other BSs, channel
gains and weights of users in the other cells are obtained
by a centralized BSC. λn and µ are non-negative Lagrange
multipliers associated with the cell-level and network-level
instantaneous BS power constraints, and these two multipli-
ers must be chosen such that the following complementary
slackness conditions are satisfied, respectively:

λn

(∑
s∈S

Anp
n
s +Bn − βP̂n,max

)
= 0, for (S,T) = (0, 0),

TABLE II: Algorithm Description for (S,T)={(0,0),(0,1),(1,1)}

BS Algorithm
1: Virtual queues update & exchange among BSs through BSC
2: Power initialization
3: repeat (user scheduling loop):
4: User scheduling (given power allocation)
5: repeat (power allocation loop):
6: λmin

n , λmax
n decision

7: Taxation update from BSC
8: while
9: λn = (λmin

n +λmax
n )/2

10: update pns , ∀s from (21)
11: if

∑
s Anp

n
s +Bn > βP̂n,max

for (S,T)={(0,0),(0,1)}
or

∑
s p

n
s > p̂n,licensed for (S,T) = (1,1)

then, λmin
n ← λn

12: else then, λmax
n ← λn

13: until pn converges or max # of iterations is reached
14: Measure intns =

∑
p̸=n gn,p

s pps + σn
s ,∀s

15: Transmit intns , pns , gns , wn to BSC, ∀s
16: until In converges or max # of iterations is reached

BSC Algorithm
1: Share the information of the virtual queues among BSs.
1: repeat :
2: Receive messages intns , p

n
s , g

n
s , wn from BS n, ∀n

3: Compute taxation and send to each BS n, ∀n
4: until In of all BSs converge or max # of iterations is reached

λn

(∑
s∈S

pns − p̂n,licensed
)
= 0, for (S,T) = (0, 1) or (S,T) = (1, 1),

λn

(∑
s∈S

pns − p̂n,licensed
)
= 0 and

µ
( ∑

n∈N

(∑
s∈S

Anp
n
s +Bn

)
− βP̂max

)
= 0, for (S,T) = (1, 0).

Given all other parameters, the closed form equation of
pns in (20) is a function of λn and µ. Starting from the
initial power allocation, λn and µ, we can calculate pns for
all subchannels and BSs. We iteratively repeat the calculation
of pns until above complementary slackness conditions are
satisfied. BS and BSC algorithms are given by Table II for
(S,T) = {(0,0), (0,1), (1,1)}, and Table III for (S,T) = (1,0).

C. Cost of Power Sharing Policies

Now let us discuss the implementation cost of the power
sharing policies ((S,T) = (1,0) , (0,1) , (1,1)) compared to no
sharing policy ((S,T) = (0,0)), in terms of (i) algorithmic and
(ii) transmit power usage perspectives.

From the algorithmic point of view, in order to calculate
power allocation (20) without any power sharing, we need to
exchange allocated power, channel gains and weights from
the scheduled user in the cell and other cells with BSC.
Even though we have to manage virtual queues or additional
Lagrange multiplier and complementary slackness condition
per each time-slot under temporal or spatial power sharing
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TABLE III: Algorithm Description for (S,T) = (1,0)

BS Algorithm
repeat :

1: Receive pns , Ik,ns from BSC ∀s
2: Calculate intns , gns , wn ∀s and send to BSC
3: until I converges or max # of iterations is reached

BSC Algorithm
4: Receive initial values intns , pns , gns , wn, virtual queues from

each BS n, ∀s, ∀n
5: Power initialization
6: repeat (user scheduling loop):
7: User scheduling (given power allocation)
8: repeat (power allocation loop):
9: µmin, µmax decision

10: while
11: µ = (µmin+µmax)/2, for each BS, λmin

n , λmax
n decision

12: while
13: λn = (λmin

n +λmax
n )/2

14: Taxation update from (22), update pns from (20), ∀s
15: send pn, In to each BS n, ∀n, receive intns , gns ,

wn from each BS n, ∀s, ∀n
16: if

∑
s p

n
s > p̂n,licensed then, λmin

n ← λn

17: else then, λmax
n ← λn

18: until pn converges or max # of iterations is reached
19: if

∑
n(
∑

s Anp
n
s +Bn) > β

∑
n Pn,max

then, µmin ← µ,
else then, µmax ← µ

20: until p converges or max # of iterations is reached
21: until I converges or max # of iterations is reached

policies, we do not need to exchange any more information
with BSC. Therefore, only a little computational overhead is
needed to temporally or spatially share the given power budget.

From the transmit power usage point of view, there are
physical hardware constraints (e.g., power amplifier capability
in BSs) and regulations by organizations such as Ofcom in
the United Kingdom [20] or FCC (Federal Communications
Commission) in the United States [21]. We obey these con-
straints by the constraint term (7), so we do not need any
additional cost (e.g., power amplifier upgrade or penalty cost
of over usage of transmit power from regulation authorities)
in the transmit power usage perspective.

IV. GREENING EVALUATION

A. Simulation Setup

We consider a two-tier macro-cell network composed of
hexagonal 19 cells where the distances between BSs are 2km.
Wrap around techniques are applied in the cells for the same
interference environment. We refer to the some parameters and
channel model on OFDMA cellular networks from 802.16m
standard document [27]. The number of subchannels and the
regulated transmit powers per BS are set at 8 and 40W,

TABLE IV: Simulation Parameters

· Number of subchannels : 8
· Max tx power per each BS for (S,T) = {(0,0), (0,1)}: 20W
· Max licensed (regulated) tx power per BS : 40W
· Total system-wide BS power budget : 14559W
· Number of BSs : 19
· Number of users per each cell: 10
· Radius of BS ( Macro cell ) : 2km
· α (fairness criterion) : 1.0 (proportional fair)
· Bandwidth : 10MHz per each channel
· Length of time slot : 1ms
· Center frequency : 2.3GHz
· Shadowing deviation : 8dB
· Thermal noise : 174dBm
· Noise figure of receiver antenna : 5dB

respectively. Total BS power budget (for 19 BSs) is 14559W1.
All users are assumed to have a logarithmic utility function,
i.e., logRk. The random shadowing with 8dB deviation and
Reyleigh fading and ITU PED-B path loss model (−16.62−
37.6 log10 d[m]) are adopted in communication channel. Noise
figure of receiver antenna is added into thermal noise to obtain
more accurate performance curve with greening factor β. The
simulation parameters are summarized in Table IV.

We verify the rate-power tradeoff of the proposed frame-
works under interference management (IM) with four power
sharing policies and conventional equal power allocation (EQ)
without any spatio-temporal sharing as a baseline. The EQ
equally allocates the transmit power for all subchannels with
(S,T)=(0,0) and uses proportional fair user scheduling. As a
performance metric, the geometric average user throughput
(GAT in [Mbps]) is considered since maximizing this metric
is equivalent to our system objective. The greening efficiency
(GE in [bps/Hz/joule]) is also considered to see how we can
energy-efficiently use the total BS power budget in terms of
throughput.

B. Greening Effect of Power Sharing Policies

In Fig. 2, we first investigate the GAT performance of differ-
ent polices by varying the greening factor β. From this result
of greening effect, we made three interesting observations.

(Obs.1) More power saving gain is achieved compared
to performance gain when we adopt spatio-temporal power
sharing policy. With the full power budget (β =1.0), power
saving gain of spatio-temporal power sharing policy (i.e.,
power saving at the same performance with no power sharing
(IM with (S,T)=(0,0)): 35%) is higher than performance gain
(i.e., increment of IM with (S,T)=(0,0) to (S,T)=(1,1): 20%)
due to insensitivity of performance curve by the fact that the
network is interference-limited.

1This total power budget is obtained from the real GSM BS power
consumption parameters [5] when the average transmit power of BSs is 20W.
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Fig. 2: GAT-power tradeoff.

(Obs.2) The tighter greening regulation (i.e., smaller β) by
the government is, the higher spatio-temporal power sharing
gain is expected. With the full power budget (β=1.0), spatio-
temporal power sharing gain (i.e., increment of IM with
(S,T)=(0,0) to (S,T)=(1,1): 20%) is smaller than interfer-
ence management gain (i.e., increment of EQ to IM with
(S,T)=(0,0): 39%). However, as the power budget decreases,
the sharing gain is larger than interference management gain.
For example, at the half power budget (β=0.5), the sharing
gain (23.8%) is almost as two times as the interference
management gain (43%).

(Obs.3) Using only spatial power sharing is enough to
obtain the most of the performance gain. We further examine
how much gain each spatial and temporal sharing can bring
and which sharing is more important. To this end, we consider
the GAT of (S,T)=(0,0) with full power budget (β=1.0) as a
baseline performance, and investigate how much power saving
can be achieved while guaranteeing the baseline performance
through either only temporal (S,T)=(0,1) or spatial sharing
(S,T)=(1,0) and both temporal and spatial sharing (S,T)=(1,1).
As can be seen in Fig. 2, we can reduce 25% or 34% of total
power budget by only temporal or spatial sharing, respectively.
Interestingly, adopting both temporal and spatial sharing gives
us a marginal benefit (from 34% to 35%) compared to the
spatial sharing only.

C. Real UK BS Topology Evaluation

In order to provide more realistic simulation results, we
also investigate the greening performance under the part of
the macro BS deployment topology in Manchester city, United
Kingdom [20]2, as shown in Fig. 3. We carry out our simu-
lation under 15 number of BSs (in 3km × 2.5km) which are
owned by T-Mobile corporation. Maximum licensed transmit
power per BS is 63W whereas each BS use different transmit

2Parameters of BS deployment, transmit power per each BS and max-
imum licensed transmit power per each BS which are voluntarily given by
wireless service operator of UK can be acquired from this website.

Fig. 3: Real BS deployment map.
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Fig. 4: GAT-power tradeoff in real BS topology.

power depends on BS location and user density. Assuming
the deployment of BSs in Manchester city have been done
according to the average user density, we consider all of BSs
in the network has same number of associated users.

In Fig. 4, we investigate the GAT performance in the same
manner of previous simulation. The interesting remark comes
from performance gap between IM with no sharing and spatio-
temporal sharing(e.g., with the full power budget (β=1.0),
increment of IM with (S,T)=(0,0) to (S,T)=(1,1): 200%) which
is much higher than the previous regular BS topology scenario.
This is because real BSs are irregularly deployed depending
on several environment (e.g., user density), so user distribution
among cells in real environment is more asymmetric than
regular BS deployment case. Therefore, the degree of freedom
exploiting power sharing can be greater in real BS deployment
case than regular BS deployment case.
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TABLE V: Small cell effect

Metrics
Large cell Small cell

(Macro BS) (Micro BS)

EQ + GAT 0.786 1.15

(S,T)=(0,0) GE 0.0042 0.0082

IM + GAT 1.47 8.59

(S,T)=(1,1) GE 0.0063 0.0369

D. Small Cell Effect

Small cell is an inevitable trend in the next generation
cellular network to maximally exploit the spectral resource. In
order to clearly see the impact of the cell size on the greening
and performance, we consider the following two different
scenarios: (i) large cell (where the distances between macro
BSs are 1km) and (ii) small cell (where the distances between
micro BSs are 354m). The same total BS power per unit area
(0.244mW/m2) and the same number of users per same area
are used for a fair comparison. The power consumption models
and parameters for macro and micro BS are obtained from
[5]. As shown in Table V, we can see more greening gain
in small-cell scenario than that in large-cell scenario. For
example, in terms of GAT and GE, there are fourfold (from
1.87 = 1.47/0.786 to 7.47 = 8.59/1.15) and threefold (from
1.5 = 0.0063/0.0042 to 4.5 = 0.0369/0.0082) increments,
respectively.

V. CONCLUSION

With increasing energy-saving pressure to WSPs due to
harmful impact on the environment by CO2 emissions, we
seriously considered to maximally exploit given power budget
of BSs. This paper focused on analyzing the impact of four
combinations of spatial and temporal power budget sharing on
cellular networks from a greening perspective. We formulated
optimization theoretic IM frameworks with greening and de-
veloped joint power allocation and user scheduling algorithms
for different power sharing policies. Through extensive sim-
ulations, we investigated that two types of gain of the IM
framework with four power sharing policies: performance and
power saving gains. The simulation results reveal that smart
IM and efficient power sharing policies will be more crucial
in the near future, in which the greening regulation would be
tighter and the cell size of networks would become smaller.
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