
Hybrid Client-Server and Peer-to-Peer Caching
Systems with Selfish Peers

Youngmi Jin and Yung Yi George Kesidis and Fatih Kocak JinwooShin
EE Dept., KAIST, Korea EE and CSE Depts., The Penn. State UnivIBM T. J. Watson Research

{youngmi jin,yiyung}@kaist.ac.kr {gik2,fwk5027}@psu.edu jshin@us.ibm.com

Abstract—This paper considers a hybrid peer-to-peer (p2p)
system, a dynamic distributed caching system with anauthoritative
server dispensing contents only if the contents fail to be found
by searching an unstructured peer-to-peer (p2p) system. We
study the case when some peers maynot be fully cooperative
in the search process and examine the impact of various non-
cooperative behaviors on the querying load on the server as the
peer population size increases. We categorize selfish peersinto
three classes:impatient peers that directly query the server without
searching the p2p system,non-forwarders that refuse to forward
query requests, andnon-resolvers that refuse to share contents.
It is shown that in the hybrid p2p system, impatient and/or non-
forwarding behaviors prevent the system from scaling well because
of the high server load, while the system scales well under the
non-resolving selfish peers. Our study implies that the hybrid
p2p system does not mandate an incentive mechanism for content
sharing, which is in stark contrast to unstructured p2p systems,
where incentivizing peers to share contents is known to be a key
factor for the system’s scalability.

I. I NTRODUCTION

In a simplified peer-to-peer (p2p) search scenario, peers and
known service/data objects are given geospatial coordinates.
Queries to (presumed) known coordinates are then forwarded
to neighboring peers that are closest. Under certain topological
conditions (e.g., the presence of long distance neighbors [1]),
it can be shown that forwarding is efficient. Typically based
on consistent hashing, distributed hash table (DHT) coordinate
systems also have good forwarding-delay properties, e.g.,[2];
peers are expected to be able to resolve queries for data/service
objects which are proximal to themselves in (hash) key space.
In an unstructured search, as considered in this paper, the
contact/resolution time in hops of a single-threaded or limited-
scope flooded query (including an anycast) has been studied
using techniques from the spectral theory of Markov chains
and random graphs, e.g., [3]–[7].

In this paper, we consider the impact of selfish behaviors on
content distribution using local search for a hybrid unstructured
p2p and client-server framework consisting of an authoritative
server and unstructured peers [8]–[11]. The interest on a hybrid
p2p system is increasing since it can provide scalable content
distribution and overcome weaknesses of purely unstructured
p2p systems, including illegal content disseminations. Recently,
the authors in [6] showed that hybrid p2p systems have good
scalability under the assumption that all peers are cooperative,
implying that both obtaining scalability and preventing illegal
content distribution are feasible. They proved that a hybrid
p2p system can alleviate the server load significantly for a
random walk based content search, under some conditions on

the structures of the peer-connectivity graph family and time
to live for query resolution.

However, it has been observed that a considerable portion of
peers in practice do not cooperate mainly in content sharingand
possibly search query forwarding, and such selfish behaviors
significantly degrade the performance of content distribution
[12], [13]. Thus, it is of critical importance to study how the
performance of hybrid p2p systems will be in presence of
selfish peers, which has been under-explored to the best of our
knowledge. Note that peers can have various selfish behaviors
and scenarios in terms of what and how. Thus, in this paper we
classify selfish behaviors into three categories; (i)impatience
meaning direct access to the server without searching other
peers, (ii) non-forwarding that refuses to forward queries,
and finally (iii) non-sharing that refuses to share contents.
In our model, the system consists of a server, selfish peers
and altruistic (hence cooperative) peers; some fraction ofpeers
are selfish. Also, depending on how selfish peers behave, we
consider two scenarios:staticone in which selfish peers always
act selfishly when handling queries during the whole stay period
in the system, andprobabilistic one in which selfish peers opt
to act selfishly with some probability when handling queries.
The probabilistically selfish peers correspond to those who
may want to hide their non-cooperativeness to avoid being
detected. This paper investigates how each selfish behavioror
their multiple combinations affect on the scalability of a hybrid
p2p system measured by the server load as the number of peers
increases.

The main contributions of the paper are as follows:
1) We provide mathematical and numerical analysis of the

impacts of various selfish behaviors on the server load for
both static and probabilistic scenarios. In both scenarios,
we prove that the scalability of the hybrid p2p system is
preserved in presence of non-resolving (i.e., non-content-
sharing) peers under the same conditions for the scalability
of fully cooperative hybrid p2p systems. This is in stark
contrast to that in purely distributed unstructured p2p sys-
tems. However, the scalability does not hold any more in
presence of non-forwarding or impatient peers.

2) For the static scenario, we obtainclosed formsof the
server loads and the probabilities of query resolution by
the server under various selfish behaviors. This leads to our
main result about the scalability of the hybrid p2p system
under the static scenario. These studies additionally offer
more accurate scalability properties, and they can also be
independently useful to other analytical studies of hybrid



p2p systems. The main novelty of this analysis lies in a
definition of “contact set”, that is an extension of the set of
peers with the content in the fully cooperative p2p system.
This allows us to make mathematical connections between
fully cooperative studies in [6] and partially cooperative
ones pursued in this paper.

3) The analysis of the probabilistic scenario is much more chal-
lenging than that of the static one since the peer selfishness
is intermittent and hence the contact set mentioned above
becomes highly dynamic. To overcome this issue, instead
of obtaining closed forms as in the static scenario, we
provide comparison results between the static scenario and
the probabilistic one, which suffice to determine scalability.
Our approach considers “virtual walks” in the query propa-
gation. This provides analytic separation between the query
propagation dynamics and the peers’ selfish behaviors.

Our results imply that for a hybrid p2p content distribution
(or caching) system, an incentive mechanism for content shar-
ing is not necessary, while an incentive mechanism for impa-
tient peers and/or non-forwarding peers is essential to guarantee
the scalability of the system. Note that incentive mechanisms
for content-sharing have been extensively studied, e.g., [14]
and less attention has been paid to other selfish behaviors than
non-sharing selfish behaviors [15]. We show that in hybrid
p2p systems, non-forwarding and unconditional access to the
server cause more dominant increase of the server load than
non-content-sharing. Our finding suggests two opposite and
arguable points. Since the impact of non-forwarding selfish
behaviors is critical, study on incentive mechanisms for query
forwarding may be important [16]. Searching information over
social networks could be achieved through query propagation in
p2p systems. The other aspect is that query forwarding cost can
be regarded negligible since the forwarding cost is much less
than content-sharing cost. If forwarding cost is small enough to
be considered negligible and peers are willing to forward the
queries, then in the hybrid p2p system, it suffices to consider an
incentive mechanism to prohibit peers from direct accessing the
server. Such an incentive mechanism seems much simpler than
that for content sharing, because an incentive mechanism for
content sharing requires a complicated design of fair rewarding
and implementation difficulties such as heavy communication
overhead load and reliability [14]. Our results show that a
hybrid p2p system can be a more practical scalable and efficient
content distribution architecture against selfish behaviors than
a fully distributed p2p system with an incentive mechanism for
content-sharing, when the forwarding cost is negligible.

II. M ODEL

In this section, we describe our model of a hybrid p2p system
with a server and many peers. Among many content search
mechanisms, we consider a popular random walk based query
propagation. Our model is similar to that in [6] except that
some peers may be selfish while others are cooperative.

A. Network, Peer Churn, and Query Propagation

Network.We consider a hybrid p2p system that has a single
server andN peers. The peers form an unstructured p2p

network and all of them have direct connectivity to the server.
The peers constitute an undirected, connected graphG(V,E).
The graphG represents a p2poverlaynetwork, where one hop
in the overlay may correspond to multiple “physical” hops.
Denote bydi the degree of nodei, and letd := maxi∈V di
be the maximum degree. Once the graphG is given, there is
an associated random walk, which is a discrete-time Markov
chain with transition probability matrixR whose entries are,
for all peersi, j ∈ V ,

Rij =

{

1
di
, if i 6= j, (i, j) ∈ E,

0 otherwise,
(1)

Peer churn.Peers dynamically enter and leave the system. We
assume that as soon as a peer departs the system, a new peer
enters the system and replaces the departing peer (this modeling
assumption for peer churn is commonly made in literature, see,
e.g., Sec. 2.4 of [17]). Thus, neither the total number of peers
nor its graphical topologyG changes. Peers stay in the system
for an independent and identically exponentially distributed
time with mean1/µ. Peers can generate query requests for
the contents in the system. For simplicity, we consider the case
where the queries are generated for only one content and those
query requests are generated only by newly entering peers with
probability p. The query request probabilityp = p(N) can be
a function of the total number of peersN . Then, by Little’s
formula [18], the mean rate at which peers “arrive” isN/(1/µ),
and so the mean load (query rate) at which queries are generated
is:

mean load = pNµ. (2)

A new peer, who is cooperative, first sends a query to her
neighboring peers who further relay the query to other peers.
However, there may exist selfish peers who directly access the
server. After sending a query to the peers, the (cooperative) peer
initiating the query waits for a query resolution response until
the given time to liveTmax. If the peer does not get the response
by Tmax, it deems the process of searching the p2p network as
failed and sends a new request directly to the server. LetA =
A(t) ⊂ V be the set of peers possessing the content at timet.
We assume the time-scale separation between churn dynamics
and content resolution, i.e., the maximum query response time
Tmax is negligible compared to the mean peer lifetime1/µ.
Then, the churn stateA(t) forms a continuous-time Markov
process with transition rates depicted in Fig. 1. If a peer,x ∈ A
leaves the system (at rateµ) and the new peer replacingx
does not send a request (with probability1− p), then the state
changes fromA to A− {x}, i.e., at rate(1 − p)µ. If y ∈ Ac(
whereAc is the complement ofA), leaves the system (at rate
µ) and a new peer replacingy sends a request (and acquires
the content, with probabilityp), then state changes fromA to
A ∪ {y} (at ratepµ).

Query propagation.We assume that queries are propagated by
a continuous-timerandom walk which is a lazy version of
(1) where the holding time at each peeri is independently
exponentially distributed with mean1/δ. A cooperative peer
issuing a query sends a query packet to one of its neighbors
which is chosen uniformly at random. A peer that receives the
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Fig. 1: Continuous-time Markov process{A(t)}

query packet checks whether it has the requested content. If
it has the content, it replies and shares the content with the
peer who initiated the query. Otherwise, it simply forwardsthe
query packet to one of its neighbors also chosen uniformly
at random. However, selfish peers may refuse to forward a
query packet or share the content. In the following section,we
formally categorize such selfish behaviors. Again, to simplify
analysis, we assume that peers can receive the same query
packet multiple times (i.e., no “taboo” list is maintained on the
packet to avoid cycles or enable reverse-path forwarding ofa
successfully resolved query). The query propagation dynamics
can be thought as a continuous-time random walk on astatic
p2p network , i.e., no peer leaves or enters the system while
a query propagates among them, since it is assumed that the
maximum query response time is negligible compared to the
peer lifetime. Note that the query propagation is modeled bya
transition rate matrixQ of a continuous-time Markov chain,

Qij =
δ

di
if i 6= j, (i, j) ∈ E, (3)

where a state in the continuous-time Markov process of query
propagation is a peer which handles the query packet.

B. Selfish Peers: Behaviors and Scenarios

We assume that a fractionσ of the peers are selfish while
the rest are cooperative peers. To formally model selfishness of
peers, we classify selfishbehaviorsand consider twoscenarios
each of which corresponds to being selfish aboutwhatandhow
peers act selfishly, respectively.

Behaviors.We consider five selfish behaviors as follows:

S1. An impatient peer does not send a query request to the p2p
system, but instead directly accesses the server to acquire
a content without delay.

S2. A non-resolving peer does not share contents, even if it
owns them, but merely forwards queries to other peers.

S3. A non-forwarding peer does not forward queries and does
not possess the queried content.

S4. A blackhole peer neither forwards a query nor resolves a
query (though the peer may possess the queried content).
Note that possessing content and being a blackhole are
“independent” properties of a peer.

S5. A completely selfishpeer is one that is both impatient and
blackhole.

When a peer departs the p2p system and a new peer arrives
replacing it, the new peer does not necessarily inherit the selfish
property of the departing one: it is possible that the exiting peer
is selfish and the arriving peer is cooperative or vice versa.We
assume that the new entering peer is selfish with probabilityσ.

Scenarios.Depending on how peers act selfishly, we provide
the analysis under two scenarios:

• Static. The peer’s attribute on selfishness or cooperative-
ness is sustained until it leaves the system. Henceselfish
peersalwaysact selfishly whenever they handle a query.

• Probabilistic. In this scenario, eachselfishpeer acts self-
ishly with probability β ∈ (0, 1] when the peer handles a
query request. Thus, the probabilistic behavior forβ = 1 is
the same as the static behavior. This scenario often occurs
in practice, since selfish peers often want to hide their
selfish actions by being intermittently selfish.

III. M AIN RESULTS

This section summarizes and discusses the main results of
the impacts of selfish behaviors on the asymptotic server load as
N goes to∞. The complete proofs of this section are provided
in Sections IV and V following this section.

A. Prior Work: A Fully Cooperative Case

Before addressing our main results, we briefly state the
related results of [6]. Under the assumption that all peers are
cooperative, the authors of [6] got the probability of query
resolution by the server,s(p), and showed that the average load
on the server,µNps(p), is bounded asN → ∞ regardless of
p(N) (note thatp is a function ofN ) whenTmax(N) = Ω(N)1

and {G(N)}∞N=2 is an expander family whose definition is
as follows (see Corollary 1 in [6]). A sequence of graphs
{G(N)}∞N=2, is an expander family if

τ̂ := lim sup
N→∞

τG(N) < ∞

(see also [19] and (3) of [6]), where

τG := (1− λ
(R)
2 )−1.

for a graphG = (V,E) with |V | = N and λ
(R)
2 is the

second largest eigenvalue of the transition probability matrix R
associated withG (see (1)). It was evidenced that the overlay
graphs of unstructured p2p systems are expanders (e.g., see
[3]).

B. Our Results

Once there is a constant fraction of selfish peers, the selfish
behaviors generally increase the server load and may compro-
mise the scalability of the hybrid p2p system. The increment
on the server load depends on selfish behaviors as stated in
Theorem 1.

Theorem 1:For both static and probabilistic cases, asN →
∞, the hybrid p2p systems have server load that is
(a) boundedunder non-resolving peers, if{G(N)}∞N=2 is an

expander family andTmax(N) = Ω(N) regardless of
p(N);

(b) unboundedunder impatient, blackhole, or completely self-
ish peers whenlimN→∞ Np(N) = ∞; and

(c) unbounded under non-forwarding peers when
limN→∞ p(N) exists andlimN→∞ p(N) < 1, under the
condition thatlimN→∞ Np(N) = ∞.

1A function f(N) = Ω(N) if there is a real numberk > 0 such that
f(N) ≥ kN for all sufficiently largeN .



The condition thatlimN→∞ Np(N) = ∞ in (b) and (c)
means that the demand for the content increases with the
population size, that is, the content is still popular even the size
of the p2p system gets large. Hence the results in (b) and (c)
imply that the server in the hybrid p2p system cannot support
query requests for popular contents as the total number of peers
is increasing.

Note that under the identical conditions for scalability ofa
fully cooperative hybrid p2p system, the non-resolving selfish
behavior does not destroy the scalability of the p2p system.
In the hybrid p2p system, a query request is always resolved
either by a peer or by the server, once generated. Hence a
peer generating a query request ultimately owns the content
and there is a sufficient number of (cooperative) peers with
the content. However, in a fully distributed p2p system without
a server, some query requests may not be resolved because
of the absence of a server and selfishness of peers. The
unresolved query requests may increase the number of peers
without the content and as a result the performance of content
distribution can be severely deteriorated by the non-resolving
selfish behavior.

In the static case, we get the closed forms for the probability
of query resolution by the server corresponding to the cases
of various selfish behaviors and mathematically confirm the
intuition that multiple selfish behaviors increase the server
load more than a single selfish behavior. The closed forms of
the probability of query resolution by the server enable us to
examine the limit of the server loads for the various cases of
selfish behaviors asN goes to∞.

C. Implications

We discuss the implications of Theorem 1 with focus on the
relation between incentive mechanisms and the server loads.
The fact that the server loads are unbounded as the system size
increases provides some guidelines on how we should design
hybrid p2p systems against selfish peers.
Non-resolving peers.As stated in Theorem 1, non-resolving
peers do not have critical impact on the server load for any fixed
selfish portionσ < 1. It implies that a mechanism to incentivize
peers to share contents is not necessary in hybrid p2p systems
for scalability. This is in contrast to the case of fully distributed
p2p systems which typically exert significant efforts to develop
nice incentive mechanisms for content sharing [17], [20], [21].
The main reason for this difference lies in the fact that we
have a dedicated server in hybrid p2p, which ensures to sustain
a reasonable degree of content availability, whereas in a fully
distributed p2p the content availability can be worsened over
time by non-resolving peers.
Impatient peers.It is intuitive that the system does not scale
well to the increase of the impatient peers, because the server
load increases in proportion to aσ portion ofN peers. However,
this unscalability can be easily solved by employing a simple
incentive mechanism with help of the server in hybrid p2p, e.g.,
enforcing impatient peers to pay a small fee for their impatient
direct server access.
Non-forwarding peers.In this case, the server load also blows
up even for a small portion of non-forwarding peers. Thus,

the key of hybrid p2p system with selfish peers lies in how to
incentivize them to forward queries. Two opposite, arguable
points can be discussed for non-forwarding peers. The first
is that the cost of forwarding (short) query messages may
be negligible, compared to that of sharing contents unless
resource is scarce (and as a result, users are willing tofor-
ward query requests). Thus, one may connect Theorem 1 and
simple payment-based incentivization for impatient peers, to
the implication that hybrid p2p systems are generally scalable
even in presence of selfish peers. Note that this contrasts with
the case of wireless ad hoc networks with scarce battery and
bandwidth resources, where an extensive array of research on
forwarding incentivization has been studied e.g., [22]–[24].
Another point is that despite low query forwarding cost, there
may still exist a non-negligible portion of non-forwardingpeers,
e.g., simply malicious peers or peers in the competitive p2p
systems [25], in which case a scheme for forwarding incentive
needs to be applied to the system. However, an incentive
mechanism for non-forwarding peers seems to involve some
degree of hardness and complexity, especially compared to that
for impatient peers. Due to the dedicated server in the hybrid
p2p system, developing an incentive mechanism in this case
can be easier than that of wireless ad hoc networks, yet it may
incur heavy message passing among the server and the peers.
Incentive mechanisms for forwarding queries get important
as the search for information over social networks becomes
popular [16]. To answer more definitely, further experimental
studies on existence as well as the portion of non-forwarding
peers in hybrid and unstructured p2p systems are necessary.

IV. STATIC SELFISH BEHAVIORS

This section analyzes the effect on the p2p system perfor-
mance of each type of static selfish behaviors in the aspect of
the server load. To investigate the asymptotic server load,we
will first find the probability that a query is resolved by the
server and the average time to find a peer with the content
by random walk for each selfish behavior. The performance
from the querying peer’s point of view is captured by the query
latency.

Before starting our analysis on the p2p system under the
selfish behaviors, we first introduce necessary preliminaries
for the fully cooperative p2p system in Section IV-A. In the
following sections, we will discuss the server load for the five
selfish behaviors in Section II. From now on, a random walk
always means the continuous time random walk in (3).

A. Fully Cooperative Peers

We state the probability of query resolution by the server
and the average time to find a peer with the content in [6]. Let
T be the average time to find a peer possessing the content
by a random walk ands be the probability that a query is
resolved by the server. Therefore, for a completely cooperative
p2p system (i.e.,σ = 0), the probability that the p2p system
resolves a query is1−s, and by (2) the mean load (query rate)
on the server is

l(p) = spNµ.



The two quantities,s and T, are obtained by conditioning
the set of peers possessing the content,A. The steady-state
distribution of the set of peers possessing the content,A(t), is

νA(N, p) := P(A(t) = A) = p|A|(1− p)N−|A|, (4)

for A ⊆ V , which does not depend onµ (peer churn parameter).
For a given setB ⊂ V , Ei[TB] denotes the mean hitting time

on the setB from peeri by the (query propagation) random
walk andPi(TB > t) denotes the probability that a random
walk starting from the peeri hits the setB after more thant
(seconds).

The expressions forT ands are respectively (see equations
(6)-(9) (proof of Prop. 1) and the proof of Prop. 2 of [6]).

s(p) =
∑

A 6=V

νA(N − 1, p)fA, (5)

T(p) =
∑

A 6=V

νA(N − 1, p)gA, (6)

where

fA :=
1

N

∑

j∈Ac

Pj(TA > Tmax),

gA :=
1

N

∑

j∈Ac

Ej [min{TA, Tmax}] .

Note that for a given setA ⊂ V , N
N−|A|fA is the probability

that a randomly chosen query-issuing peer does not get the
content untilTmax and N

N−|A|gA is the average time to find a
peer with the content withinTmax. We emphasize the following
facts:

• gA andfA do not depend onp.
• fA > fA∪{x} andgA > gA∪{x} for x /∈ A andA ⊂ V .

Note thatf∅ = 1 andg∅ = Tmax and thatgA andfA depend
on the p2p overlay graph structure and the dynamics of the
random walk. In addition, we have found useful properties of
s(p) andT(p) as follows. (see the Appendix for the proof).

Lemma 1:T(p), s(p) are decreasing convex functions ofp.

B. Impatient Peers (S1)

If a peer is impatient with probabilityσ (though always
cooperatively relaying and resolving) and cooperative with
probability 1 − σ, then the probability that an “arriving” peer
generates a queryto the p2p systemis simply reduced to
(1 − σ)p. But because the impatient peers are assumed to be
cooperatively resolving and relaying, impatience doesnot have
an effect on the probability of query resolution by the p2p
system,1 − s, and the mean sojourn time of the query in the
p2p system,T.

Impatiencedoeshave an effect on the server querying load.
By (2), the mean querying load to the server is increased to

sSIPσ pNµ. (7)

where sSIPσ , the probability that the query is resolved by the
server, is

sSIPσ = σ + (1 − σ)s(p) (≥ s(p) )

with sSIP0 ≡ s. Similarly, the load per resolving peer is now
ΠSIP

σ = (1−σ)Π(p), whereΠSIP
0 ≡ Π is the load per resolving

peer for fully cooperative p2p system (withσ = 0).

C. Non-resolving Peers (S2)

Now assumeσ is the probability that a peer is non-resolving
(though patient and relaying), and a peer is cooperative with
probability 1 − σ. Here, a non-resolving peer (implicitly with
content) acts just like a cooperative relaying peer (that does not
possess the content).

For this subsection and the following subsection, we will use
a contact set whose definition is as follows. Acontact setC is
a set of peers such that if a query request (random walk on
the p2p overlay network) reaches any elementj ∈ C, then the
query request is terminated.

When there are non-resolving peers, the contact setÃ is a set
of peers that have the content and are cooperative (resolving).
The p2p graph dynamics can be represented by a Markov
processÃ(t) with transition rates

Ã → Ã− {x} with rate (1− p+ pσ)µ ∀x ∈ Ã

Ã → Ã ∪ {y} with rate (1− σ)pµ ∀y ∈ Ãc

Hence, it follows that

sSNR

σ (p) =
∑

A 6=V

fAνA(N − 1, (1− σ)p)

T
SNR

σ (p) =
∑

A 6=V

fAνA(N − 1, (1− σ)p)

Therefore, we have the following proposition.
Proposition 1:

sSNR

σ (p) = s((1− σ)p) and

T
SNR

σ (p) = T((1− σ)p).

From the perspective of query resolution by the p2p system,
the mean size of the contact set terminating (and here success-
fully resolving) the query has changed toκSNR

σ N where

κSNR

σ := (1− σ)p, (8)

and, for the fully cooperative case,

κSNR

0 = p.

In the following, κ is the probability that a peer belongs to
the contact setÃ that terminates a query before time to live
Tmax, whether or not contacting this set results in the query
being successfully resolved. So we can relate the scenario with
non-resolving peers to a fully cooperative one as

sSNR

σ (p) = s(κSNR

σ ) > s(p) and

T
SNR

σ (p) = T(κSNR

σ ) > T(p),

where the inequalities are by Lemma 1. Because we assume
that the non-resolving peer is patient, the mean query rate to
the server iss(κSNR

σ )pNµ.

D. Blackhole Peers (S4)

Now suppose that the probability that a peer is a blackhole
is σ, and that a peer is cooperative with probability1−σ. The
mean size of the random set of blackholes isE

[

ASBH
]

= σN .
A query will “stop” when it either times out or contacts̃A :=
ASBH ∪ A = ASBH ∪ (A \ASBH), where

E[Ã] = κSBH

σ N and κSBH

σ := σ + (1− σ)p.



The resulting p2p system dynamics can be represented by a
Markov process{Ã(t)} with transition rates

Ã → Ã− {x} with rate (1− p)(1− σ)µ ∀x ∈ Ã

Ã → Ã ∪ {y} with rate (σ + p− σp)µ ∀y ∈ Ãc.

The closed forms ofsSBHσ (p) andTSBH
σ (p) are provided below.

Proposition 2:

sSBHσ (p) =
σ

κSBH
σ

+ s(κSBH

σ )
(1− σ)p

κSBH
σ

T
SBH

σ (p) =
σ

κSBH
σ

+ T(κSBH

σ )
(1− σ)p

κSBH
σ

.

Proof: By conditioning onÃ = ASBH ∪ A, we get

1− sSBHσ (p) =
∑

Ã 6=V

hÃ(σ, p)νÃ(N − 1, κSBH

σ ), (9)

wherehÃ(σ, p) := P(TA\ASBH < min{Tmax, TASBH}) (and we
suppressed indication of conditioning on the initial (querying)
peer onÃc). Let X(t) be the peer handling the query at time
t, so that

hÃ(σ, p) = P(TÃ < Tmax, X(TÃ) ∈ A \ASBH) (10)

=
(1 − σ)p

κSBH
σ

P(TÃ < Tmax).

Therefore,

1− sSBHσ (p)

=
(1− σ)p

κSBH
σ

∑

Ã 6=V

P(TÃ < Tmax)νÃ(N − 1, κSBH

σ )

=
(1− σ)p

κSBH
σ

(

1− s(κSBH

σ )
)

. (11)

Using similar arguments, we have the result onT.
Since blackhole peers have two selfish behaviors, non-

resolving and non-forwarding, we intuitively expect the server
load with blackhole peers is bigger than that with non-resolving
peers. The following corollary shows that this intuition istrue.
Recall thatsSNR

σ (p) = s((1−σ)p) andTSNR
σ (p) = T((1−σ)p).

Corollary 1:

sSBHσ (p) ≥ sSNR

σ (p) ≥ s(p)

T
SBH

σ (p) ≥ T
SNR

σ (p) ≥ T(p).

Proof: Let

E1 = { event such thatTÃ < Tmax andX(TÃ) ∈ A \ASBH}

E2 = { event such thatTA\ASBH < Tmax}.

Note thatE1 ⊆ E2. Hence,

P(TÃ < Tmax, X(TÃ) ∈ A \ASBH) ≤ P(TA\ASBH < Tmax).

Therefore,

1− sSBHσ (p) ≤ 1− s((1− σ)p)

by (9), (10) and the fact that the mean size ofA\ASBH is (1−
σ)pN . Finally, recall thatsSNR

σ (p) = s((1−σ)p) by Proposition
1 ands((1− σ)p) ≥ s(p) by Lemma 1.

For T
SBH
σ (p), we can use the same argument since,

E[min{TA\ASBH, Tmax}] ≥ E[min{TÃ, Tmax}] together with
Lemma 1 and Proposition 1 (again, suppressing indication of

conditioning the initial peer inÃc above).

We can similarly show that the mean query rate on the (non-
blackhole) resolving peers satisfies

ΠSBH

σ (p) =
1− sSBHσ (p)

1− s(p)
Π(p). (12)

E. Non-forwarding Peers (S3)

The effect of non-forwarding behavior is similar to that of
blackhole behavior. Now suppose that the probability that a
peer is non-forwarding isσ, and that a peer is cooperative with
probability1−σ. The contact set that terminates a query is the
set of peers that are selfish or that have the content. The mean
size of the contact set isκSNF

σ N , where

κSNF

σ := σ(1 − p) + p = κSBH

σ . (13)

However, the probability that the query is resolved given that
the contact set is reached is

p

κSNF
σ

=
p

σ(1 − p) + p
,

rather than(1−σ)p/κSBH
σ in Proposition 2. Hence (11) becomes

1− sSNF

σ (p) =
p

κSNF
σ

(

1− s(κSNF

σ )
)

.

Hence, we have the following proposition.
Proposition 3:

sSNF

σ (p) =
σ(1 − p)

κSNF
σ

+ s(κSNF

σ )
p

κSNF
σ

.

Furthermore, we observe that

sSBHσ (p) ≥ sSNF

σ (p) =
σ(1− p)

κSNF
σ

s(0) + s(κSNF

σ )
p

κSNF
σ

≥ s
(σ(1− p)

κSNF
σ

· 0 +
p

κSNF
σ

· κSNF

σ

)

= s(p),

where we uses(0) = 1 for the first equality and the second
inequality holds because of the convexity ofs(p). Similarly,
the analogous version of (12) holds as well.

F. Completely Selfish Peers (S5)

A completely selfish peer is both impatient and a blackhole.
Considering the separate cases above, the probability thata
query request is resolved by the server is

sSCSσ (p) = σ + (1− σ)sSBHσ (p)

= sSBHσ (p) + σ(1− sSBHσ (p)).

Note thatsSCSσ (p) ≥ sSBHσ (p). To summarize,

sSCSσ (p) ≥ sSBHσ (p) ≥ sSNF

σ (p) or sSNR

σ (p) ≥ s(p).

G. Proof of Theorem 1 for Static Selfish Behaviors

This subsection provides the proof of Theorem 1 under static
selfish behaviors.

S1. Under impatient peers, by (7) the average load on the server
is greater thanσpNµ which diverges asNp → ∞.

S2. Under non-resolving peers, the server load is

pNµs(κSNR

σ ) = pNµs
(

(1 − σ)p
)

=
1

(1 − σ)
{p′Nµs(p′)},



where p′ = (1 − σ)p and the first equality is due
to Proposition 1. By Corollary 1 in [6],p′Nµs(p′) is
bounded if {G(N)}∞N=2 is an expander graph family
and Tmax(N) = Ω(N) as N → ∞. Hence the server
load s(κSNR

σ )pNµ is bounded regardless ofp with the
assumptions.

S3. To derive a contradiction, suppose that the server load is
bounded under non-forwarding peers. Namely, for some
K < ∞,

lim
N→∞

µNpsSNF

σ (p) < K.

Then, we observe that

µNp ≤
K

sSNF
σ (p)

≤ K
σ(1− p) + p

σ(1 − p)

= K
(

1−
1

σ
+

1

σ(1 − p)

)

(14)

where the second inequality holds by Proposition 3. Thus,
when limN→∞ p(N) < 1, the right hand side of (14) has
a finite limit, which contradicts thatµNp is unbounded.
Therefore,limN→∞ pNµsSNF

σ (p) = ∞.
S4. Under blackhole peers, the server load diverges asNp →

∞ because

µNpsSBHσ (p) ≥ µNp
σ

σ + (1− σ)p
> µNpσ,

where the first inequality is due to Proposition 2.
S5. Under completely selfish peers, the server load is un-

bounded simply because the completely selfish case is for
the corresponding system with blackhole peers.

V. PROBABILISTICALLY SELFISH BEHAVIORS

In this section, we consider probabilistically selfish behav-
iors. We remind the definition: an arriving peer is selfish
with probability σ and will thereafter behave selfishly when
handling queries only with probabilityβ. In other words, a
selfish peer may behave differently when handling the same
query more than once. Recall that our random walk is assumed
memoryless. Note that this is another way to model how a node
may (selfishly or maliciously) attempt deplete a query’s time
to live Tmax. A motivation for acting selfish only in such a
probabilistic manner is to avoid detection and classification as
a non-cooperative peer.

A. Proof of Theorem 1 for Probabilistically Selfish Behaviors

We analyze the asymptotic server load for various proba-
bilistically selfish peers which act selfishly (according totypes
of (S2)-(S4)) as in the previous section. A similar strategy to
what we used to establish the asymptotic server load for static
selfish peers does not work for probabilistically selfish peers.
Instead, we show the following comparison results.

Proposition 4: Let σ1β1 = σ2β2 and β1 ≤ β2. Then, it
follows that

(a) sPNR

σ1,β1
(p) ≤ sPNR

σ2,β2
(p) (≤ sSNR

σ1β1
(p))

(b) sPNF

σ1,β1
(p) ≥ sPNF

σ2,β2
(p) (≥ sSNF

σ1β1
(p))

(c) sPBHσ1,β1
(p) ≥ sPBHσ2,β2

(p) (≥ sSBHσ1β1
(p))

Since we have

sSNR

σ (p) = sPNR

σ,1 (p), sSNF

σ (p) = sPNF

σ,1 (p), sSBHσ (p) = sPBHσ,1 (p),

the conclusions of Theorem 1 for probabilistically selfish
behaviors can be derived using Proposition 4 and Theorem
1 for static selfish behaviors. Now we present the proof of
Proposition 4 in below.

Proof of Proposition 4: Let P = i1 → i2 · · · → iL
be the random walk generated by a query request (excluding
the peer generating the request), andYn ∈ {H,T } be the
random coin to decide whether peerin possess the query
content or not, i.e.,P(Yn = H) = p. Similarly, we use
Zn ∈ {H,T } for in being selfish when entering the system,
andWn ∈ {H,T } for in acting selfishly when handling the
query request. By considering “virtual” walks even after a query
request is resolved (or non-forwarded), we assume that the
random walk continues till time to liveTmax. Hence,P(P) is
independent of parametersσ, β and types of selfish behaviors,
and only dependent on the underlying p2p graph and holding
times at peers. Using this notation, we have

s(p) =
∑

P

P(P) · P(A query is not resolved| P).

Therefore, to prove part (a), (b) and (c), it suffices to study
whetherP(A query is not resolved| P) decreases or increases
whenσ, β change,

For part (a), i.e., non-resolving peers, we letBn denote the
event thatYn = T or Yn = Zn = Wn = H . Using this
notation, we have

P(A query is not resolved| P) = P
(

L
⋂

n=1

Bn | P
)

=
∏

i∈R(P)

P
(

⋂

n∈Si(P)

Bn | P
)

, (15)

whereR(P) andSi(P) denote the set of peers appearing inP
and the set of indexes for peeri ∈ R(P) in P , respectively,
i.e.,

R(P) = {i1, i2, . . . , iL} Si(P) = {n : in = i}.

For example, ifP = a → b → c → b → a → d,
then R(P) = {a, b, c, d} and Sa(P) = {1, 5}, Sb(P) =
{2, 4}, Sc(P) = {3}, Sd(P) = {6}. The second equality
in (15) is from the independence between

⋂

n∈Sj(P) Bn and
⋂

n∈Sk(P) Bn if j 6= k. Furthermore, we have

P(A query is not resolved| P) =
∏

i∈R(P)

P
(

⋂

n∈Si(P)

Bn | P
)

=
∏

i∈R(P)

P
(

Yn = T, ∀n ∈ Si(P) | P
)

+ P
(

Yn = Zn = Wn = H, ∀n ∈ Si(P) | P
)

=
∏

i∈R(P)

1− p+ pσβ|Si(P)|, (16)

where we use the fact thatYn1
= Yn2

andZn1
= Zn2

(with
probability 1) forn1, n2 ∈ Si(P). (16) increases asβ increases
andσβ is fixed.



For part (b), i.e., non-forwarding peers, note that

P(A query is resolved| P)

=

L
∑

n=1

P(A query is resolved at then-th peerin of P | P)

=

L
∑

n=1

P(En) · P(A query is resolved atin | En,P),

where we letEn be the event that the random walk reachesin
throughP , i.e., a query is neither resolved nor non-forwarded
till the (n-1)-th peer ofP . One can check that

P(A query is resolved atin | En,P)

=

{

p if in does not appear inPn

0 otherwise

P(En) =
∏

i∈R(Pn)

(1− p)(1− σ + σβ|Si(Pn)|)

wherePn = i1 → ... → in−1, i.e., the first sub-path of length
n− 1 in P . The part (b) of Proposition 4 follows by observing
thatP(En) increases asβ increases andσβ is fixed.

For part (c), i.e., blackhole peers, we use a similar strategy
to that used for the part (b) by using analogous definitions of
En,Pn. In this case,

P(A query is resolved atin | En,P)

=

{

(1− σβ)p if in does not appear inPn

0 otherwise

P(En) =
∏

i∈R(Pn)

(1− p)(1− σ + σβ|Si(Pn)|).

As before, this establishes part (c) of Proposition 4.

VI. N UMERICAL STUDY

This section shows our numerical experiments. It is known
that almost alld-regular graphs form an expander family if
d > 2 and that random non-regular graphs with uniform degree
distribution are also an expander family with high probability
[26]. To create the overlay graphs (of peers) of an expander
family, we used randomd-regular graphs and random non-
regular graphs whose degrees are uniformly distributed over
{3, 4, 5, 6}. For comparison, 2-regular graphs are also used. For
each plot,p = 0.1, µ = 0.001, andTmax(N) = N/20. Due to
space limit, we provide the experimental results of only non-
resolving and blackhole peers for random non-regular graphs
and2-regular graphs; we obtained similar results for3-regular
graphs.

Figure 2 and 3 depict the bounded asymptotic server load
of the p2p system with non-resolving peers for random
non-regular graphs with degrees uniformly distributed over
{3,4,5,6} and 2-regular graphs, respectively. Figure 2 shows
that as in Theorem 1, the server load decreases withN > 1000
and is bounded ultimately. Note that the boundedness of asymp-
totic server load is still observed in2-regular graphs in Figure
3. However, the server load in Figure 3 increases significantly
both for static and for probabilistic cases, compared with that
in Figure 2. This can be explained by the property of expander

graphs (or relaxation time). Recalling the analysis in Section
IV, we know that the case with non-resolving peers is identical
with the fully cooperative case with small query-generating
probability (i.e., fromp to (1 − σ)p). In a fully cooperative
p2p system, the server load is directly related to how quickly a
query-issuing peer searches a peer possessing the content.The
search time is closely related to the second largest eigenvalue
and random walk search is effective in an expander family [6].
With this rationale, in a hybrid p2p system with non-resolving
peers, the server load drastically increases for 2-regulargraphs,
compared with that for the random non-regular graphs with
uniform degree distribution [3]. We tookβ = 0.5 for the
case of probabilistic (blackhole or non-resolving) peers for both
cases. Figure 2 and Figure 3 also show thatsPNR

σ,β ≤ sSNR
φ for

φ = σ × β, which is consistent with Proposition 4.
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Fig. 2: Server load with non-resolving peers: non-regular graphs
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Fig. 3: Server load with non-resolving peers:2-regular graphs
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Fig. 4: Server load with blackhole peers: non-regular graphs

In Figure 4, the total load on the serverµpNsSBHσ and
µpNsPBHσ,β are depicted for static and probabilistic blackhole
peers, respectively. Here, we observe that the load on the
server is unbounded in both plots as Theorem 1 suggests.
We took β = 0.5 for the case of probabilistic (blackhole or
non-resolving) peers. Figure 4 shows thatsPBHσ,β ≥ sSBHφ for
φ = σ×β in Proposition 4. Under blackhole peers, there is little
change on the server load between 2-regular graphs and the
random non-regular graphs with uniform degree distribution.

VII. SUMMARY AND CONCLUSION

This paper has analyzed the impact of selfish behaviors
on the performance of content distribution of an unstructured



hybrid p2p system, which exhibits good scalability for an
expander graph family when allN peers are cooperative and the
time to live of a query request is designed asΩ(N). We clas-
sified different selfish behaviors and analyzed mathematically
and numerically how the asymptotic server load changes by
the selfish behaviors. Our analysis revealed that non-resolving
selfish behavior does not compromise the scalability while
selfish behaviors of non-forwarding and direct-accessing the
server cause the server load of the hybrid p2p system to
increase with the number of peersN . These results suggest
that a hybrid system can be designed to be scalable without
an incentive mechanism for content sharing. But the system
does need incentive mechanisms for query request forwarding
and access to peers for contents. We are currently working on
spectral analysis of the average time to find a peer with the
content withinTmax for the probabilistically selfish scenario.

APPENDIX

Proof of Lemma 1:We first show thats(p) and T(p) are
decreasing inp. By direct differentiation,

s′(p) =
∑

B:1≤|B|≤N−1

fB|B|p|B|−1(1− p)N−1−|B|

∑

A:0≤|A|≤N−2

(N − 1− |A|)fAp
|A|(1− p)N−2−|A|

=

N−2
∑

k=0

pk(1− p)N−2−kH(k),

where

H(k) =
∑

B:|B|=k+1

(k + 1)fB −
∑

A:|A|=k

(N − 1− k)fA.

To show thatH(k) < 0 for 0 ≤ k ≤ N − 2, first note that for
any j ∈ Ac, x ∈ Ac, j 6= x,

Pj(TA > Tmax) ≥ Pj(TA∪{x} > Tmax).

Then, for anyx ∈ Ac,

NfA = Px(TA > Tmax) +
∑

j∈Ac−{x}

Pj(TA > Tmax)

≥ Px(TA > Tmax) +
∑

j∈Ac−{x}

Pj(TA∪{x} > Tmax)

= Px(TA > Tmax) +NfA∪{x}

Summing both sides over allx ∈ Ac, we have
∑

x∈Ac

NfA ≥ NfA +
∑

x∈Ac

NfA∪{x}

⇒ (N − |A| − 1)fA ≥
∑

x∈Ac

fA∪{x}

⇒
∑

A:|A|=k

(N − k − 1)fA ≥
∑

B:|B|=k+1

(k + 1)fB. (17)

Similarly, by substitutingfA by gA and Pj(TA > Tmax) by
Ej min{TA, Tmax}, we can show thatT′(p) < 0.

Now we show the convexity ofs(p). Note thats(0) = 1.
So, s(p) is a convex function ofp because, for anyp > 0 and
σ > 0,

s((1− σ)p) ≤ sSBHσ (p) = s(0)
σ

κSBH
σ

+ s(κSBH

σ )
(1 − σ)p

κSBH
σ

.

A similar argument works forT. This completes the proof of
Lemma 1.
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