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Hop-by-hop Congestion Control over a Wireless
Multi-hop Network

Yung Yi and Sanjay Shakkottai

Abstract— This paper focuses on congestion control over multi-
hop, wireless networks. In a wireless network, an important
constraint that arises is that due to the MAC (Media Access
Control) layer. Many wireless MACs use a time-division strategy
for channel access, where, at any point in space, the physical
channel can be accessed by a single user at each instant of time.

In this paper, we develop a fair hop-by-hop congestion control
algorithm with the MAC constraint being imposed in the form
of a channel access time constraint, using an optimization based
framework. In the absence of delay, we show that this algorithm
are globally stable using a Lyapunov function based approach.
Next, in the presence of delay, we show that the hop-by-hop
control algorithm has the property of spatial spreading. In other
words, focused loads at a particular spatial location in the
network get “smoothed” over space. We derive bounds on the
“peak load” at a node, both with hop-by-hop control, as well as
with end-to-end control, show that significant gains are to be had
with the hop-by-hop scheme, and validate the analytical results
with simulation.

Keywords: Control theory, Mathematical program-
ming/optimization

I. I NTRODUCTION

We consider the problem of congestion control over wire-
less, multi-hop networks. Nodes in such networks are radio-
equipped, and communicate by broadcasting over wireless
links. Communication paths between nodes which are not in
radio range of each other are established by intermediate nodes
acting as relays to forward data toward the destination. The
diverse applications of such networks range from community
based roof-top networks to large-scale ad-hoc networks.

Over the past few years, the problem of congestion control
has received wide-spread attention, both in the Internet context
[1], [2], [3], as well as in an ad-hoc network context [4]. Most
of this research has focused on modeling, analysis, algorithm
development of end-to-end control schemes (such as TCP),
and adaptation of such schemes to ad-hoc networks. Given
routing path and bandwidth constraints, algorithms have been
developed which converge and have a stable operation.

In a wireless context, however, an important additional
constraint that arises is that due to the MAC (Media Access
Control) layer. Many wireless MACs use a time-division
strategy for channel access [5], [6], where, at any point in
space,the physical channel can be accessed by a single user at
each instant of time (a time constraint).This paper formulates
an optimization framework for congestion control algorithm in
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Fig. 1. Spatial Spreading with hop-by-hop controllers

wireless multi-hop networks with the constraint imposed by
the MAC. We develop a distributed,hop-by-hopcongestion
control scheme, which is shown to be stable in the absence of
propagation delays.

Hop-by-hop congestion control algorithms have been stud-
ied in the Internet context [7], [8], [9]. Such schemes provide
feedback about the congestion state at a node to the hop
preceding it. The preceding node then adapts its transmission
rate based on this feedback. Feedback is typically provided
[7], [8], [10], [11], [9] based on the queue length at the
congested node. If the queue length exceeds a threshold,
congestion is indicated and the preceding node is notified in
order to decrease its transmission rate. It is well known that
such schemes, by reacting to congestion faster than end-to-end
schemes (the bottleneck node would send feedbackbackward,
thus decreasing the delay in the control loop), result in better
performance than a corresponding end-to-end scheme. How-
ever, Internet congestion control has been dominated by end-
to-end schemes (in particular, TCP), and research in alternate
mechanisms in the recent past has focused on the same [1],
[3], [2], primarily due to scalability and deployability. Hop-
by-hop schemes require to have per-flow state management
in intermediate nodes, which generates scalability problems.
However, in a wireless network, the number of flows per
node is of a much smaller order than in the Internet. Further,
wireless networks usually have per-flow queueing for reasons
of packet scheduling [5], and the fact that different users are
at different locations, thus requiring different physicallayer
strategies (such as the channel coding and modulation scheme
of the power level). Thus, we argue that hop-by-hop schemes
are feasible over a wireless network.
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In this paper, we develop a hop-by-hop control scheme,
which is shown to converge in the absence of delay, and
allocates bandwidth to various users in a proportionally-fair
manner. In the presence of delay, we show that it has the
property ofspatial spreading. In other words, focused loads
at a particular spatial location in the network get “smoothed”
over space. In Figure 1, we illustrate this effect. Consider
a node accessed by a number of flows. While an end-to-
end control scheme could result in large transient overloads
(due to delayed feedback) at a single node, a hop-by-hop
scheme will “push-back” and cause congestion to occur over
space, resulting in smaller peak overloads. Thus, even if the
bottleneck node is very close to the receiver (the “worst-case”
for a hop-by-hop scheme), there are potential gains to be
had due to spatial spreading.Hence, even if the total buffer
requirement over the network is the same, the hop-by-hop
scheme ensures that the buffers required are spatially spread.

II. M AIN CONTRIBUTIONS

The main contributions in this paper are:

(i) We develop (weighted) proportionally-fair congestion
control algorithms (both hop-by-hop as well as end-to-
end) with the MAC constraint being imposed in the form
of a channel access time constraint, using an optimization
based framework. In the absence of delay, we show that
these algorithms are globally stable using a Lyapunov
function based approach.

(ii) We consider the evolution of these algorithms in the
presence of propagation delay. We analytically show the
effect of spatial spreading, by explicitly deriving the
reduction in peak buffer overload under the hop-by-hop
scheme for a tree network. We show that at a bottleneck
node, the difference in the peak queue length between an
end-to-end scheme and a hop-by-hop scheme is at least
of orderLαN, whereL is the number of hops,N is the
number of sessions, and for someα ≥ 1.

A. Related Work

The work of [12], [2] provides an optimization based frame-
work for Internet congestion control and derives a differential
equation based distributed solution. Works of [13], [1], [14],
[3], [15], [16] study the stability of such end-to-end controllers
in the presence of feedback delay.

In [8], [17], [7], [9], using a simulation based approach, the
authors provide hop-by-hop control algorithms and show that
the hop-by-hop schemes react faster than end-to-end schemes,
thus reducing buffer requirements. In [10], the author proposes
a framework for congestion control and routing based on push-
back, where-in, queue buildup at a down-stream node causes
upstream nodes to decrease rate and use alternate paths. This
has been extended to the multicast case in [11].

Related work includes [18], where the authors consider
max-min fair scheduling in the context of a wireless network
using a similar model as that considered here for media access
control (MAC). The authors develop a token based local
scheduling policy at each node to ensure max-min fairness.

This paper differs in that we develop rate based (end-to-end
and hop-by-hop) controllers with the objective of (weighted)
proportionally-fair resource allocation among users, andwith
MAC constraints. We derive explicit bounds on queue lengths
in the presence of propagation delay, both with an end-to-end
and hop-by-hop scheme, and demonstrate spatial spreading
with hop-by-hop control.

B. Organization

We begin with a description of the system model in
Section III, and discuss an utility function based network
optimization framework.

Next, in Section VII, we illustrate spatial spreading in a hop-
by-hop algorithm by means of deriving bounds on the peak
queue lengths in the presence of feedback delay. We provide
simulation results in Section VIII to validate the analysis.

III. SYSTEM MODEL

Consider a network with a setL of links, a setV of vertices
(nodes), and letcl be the finite capacity of linkl, for l ∈ L.
Each vertex corresponds to a node in the network. Each data
flow r in the network corresponds to an ordered sequence of
links l ∈ L, and we denoteR as the set of possible sessions1.
Thus, we model a wireless link between any two nodes in the
network to have a finite positive capacity.

In reality, wireless channels are time-varying [19], each with
some average capacity which will depend on the physical layer
scheme. However, in this paper, we model the link to have a
fixed capacity. Such a model is accurate in two regimes: (i)
where the channel changes aremaskedby the physical layer
coding and modulation scheme so as to present a “constant
channel” to the higher layer, or, (ii) the channel changes much
slower than the congestion control scheme. In this case, using
a time-scale decomposition argument, we can then formally
justify a constant channel model at the time-scale of the
congestion controller (thus leading to a fluid model for the
MAC). Further, as in [18], we assume that at any instant of
time, data flows that do not share nodes can transmit/receive
simultaneously, but data flows that share a node cannot do
so. In other words, simultaneous transmissions can take place
over links (i.e., between a pair nodes) as long as the links do
not share a common node.

This, for instance, models a wireless system where mul-
tiple frequencies/codes are available for transmission (using
FDMA/CDMA), and enables parallel communications in a
neighborhood using such orthogonal FDMA/CDMA channels
(see [18] for additional discussion). In addition, allowing
simultaneous parallel transmissions could also model wireless
systems that employ interference cancellation [19].

Thus, access constraints at the MAC/PHY layers arise due
to the fact that each node has only a single transceiver, and
hence cannot perform multiple transmissions or receptions
simultaneously. We next describe the constraints on the data
flows that follows from this wireless system model.

1We use the words ’session’ and ’flow’ interchangeably throughout this
paper.
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Fig. 2. Example network for time and link constraint

TABLE I

L INK AND TIME CONSTRAINTS FOR THE EXAMPLE NETWORK INFIGURE 2

Link Constraint Time Constraint
x1+x2

c1
≤ 1 x1+x2

c1
≤ 1

x2+x3
c2

≤ 1 x2+x3
c2

≤ 1
x1+x3

c3
≤ 1 x1+x3

c3
≤ 1

x1+x2
c1

+ x2+x3
c2

+ x1+x3
c3

≤ 1

There are two types of constraints that are imposed, namely,
(i) the link constraint and (ii) the time constraint. The link
constraint corresponds to the fact that the sum of date rates
of all sessions that traverses through linkl ∈ L is not greater
thancl, the capacity of linkl.

The time constraintmeans that at any instant of time, there
can be only one instance of communication at a given node.
To illustrate a fluid model for this constraint, we consider an
example shown in Figure 2.

The network consists of three sessionsS1, S2 andS3, with
each of the sessions traversing two links as shown in Figure 2.
Let xi, i = 1, 2, 3 be the data rate of the sessions respectively.
We observe that the time constraint is imposed on eachnode
in the network. Let us consider node ’C’ in the figure, and
defineyij , i, j ∈ {1, 2, 3}, by

yij =
xi

cj

Observe thaty11 can be interpreted as thefraction of time
node ’C’ expends to receive data of session1 from nodeA
over anunit interval of time. Similarly, y13 is interpreted as
the fraction of time expended by node ’C’ to transmit data
of session1 to nodeD over anunit interval of time. Similar
interpretations hold for allyij . Thus, as total fraction of time
expended at node ’C’ cannot exceed ’1’, thetime constraint
at node ’C’ is

∑

i,j

yij ≤ 1.

Similar time constraints apply for all other nodes in the
network. Table I presents various link and time constraintsfor
the network in Figure 2. As we can observe from the table,
the link constraints are subsumed by the time constraints. Any
link constraint is trivially a time constraint, if it is the only
flow and terminates at the node. In all other cases, the time
constraint is strictly stronger than a link constraint. Thus, we
do not need to consider link constraints, and will henceforth

restrict ourselves to only time constraints. In general, the
time constraints presented above arenot sufficientto ensure
that a feasible MAC protocol exists [18], [20]. However, a
feasible MAC always exists if the time constraints are relaxed
by replacing the RHS of the expressions (i.e., the term ’1’)
by a parameterρ ≤ 2/3. This corresponds to the fact that
100% utilization of resources at each node may not be always
feasible because of the network topology (see [18] for an
example). However, it has been shown in [20] that if the time
constraint is relaxed to2/3, a feasible MAC always exists.

A. An Optimization Problem

Let us denoteN(L), N(V ), and N(R) as the number of
links, nodes, and sessions, respectively. For any linkl and
sessionr, let Alr = 1

cl
if link l is in the path of flowr, and0

other-wise. Thus, we define the matrixA ∈ RN(L)×N(R) by

A =

{
Alr = 1/cl if link l in session r,

0 otherwise
(1)

Similarly, defineGvl = 1 if link l is incident on nodev, and
0 other-wise. Thus, define the matrixG ∈ {0, 1}N(v)×N(L) is
defined by

G =

{
Gvl = 1 if link l incident on node v,

0 otherwise
(2)

UsingG andA, time constraint for a given network can be
expressed as:

GAx ≤ (1 − ε)1 (3)

for someε ∈ [0, 1], and x corresponds to the vector of user
data rates. The parameterε corresponds to the “efficiency” of
the MAC protocol used, and additionally models the feasibility
of a MAC protocol for the given network topology (see
Section III, as well as later in this section for additional
discussion).

For each user (session)r, let xr be the data transmis-
sion rate. Associated with each user (session) is a utility
function Ur(·), which is the “reward” or utility that userr
gets by transmitting at the rate ofxr (see [12] for further
discussion). Assume that the utilityUr(xr) is an increasing,
strictly concave, and continuously differentiable function of
xr over the rangexr ≥ 0. In this paper, we restrict ourselves
to weighted proportionally fair utility functions of the form
Ur(·) = wr log(·). From a resource allocation point of
view, the resource allocation achieved under any concave and
increasing utility functions can be achieved by a weighted
proportionally-fair allocation2 [21] through appropriate choice
of weights{wr}.

The objective is to maximize total utility in the network
subject to the link and time constraints. In this paper, we
develop congestion control mechanisms to share the time
resources in the network in a (weighted) proportionally fair
manner. We consider a fluid model for the MAC, and do

2However, the transient dynamics of a decentralized controller may be
different.
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not focus on the actual implementation of the resource shar-
ing mechanism at each node. For example, an ideal MAC
algorithm would allow the maximum possible (subject to
MAC feasibility) time-resources at each node to be used for
successful data transfer. However, an ALOHA based MAC
would have inefficiencies associated with it, which would
allow only a fraction of the time resources at a node to be
used for successful data transfer. At the fluid time-scale, the
details of these different MAC protocols manifest only as an
efficiencyfactor that is captured by the parameterε in (3),
which governs the fraction of time that the time resource
at each node can be used for successful data transfer. As
discussed earlier, the efficiency factor is chosen such thatsome
MAC protocol is feasible for the given network topology. From
our earlier discussion,ε ≥ 1/3 ensures that a time-division
MAC is always feasible independent of the network topology
[20]. Further, an inefficient MAC scheme (such as random
access) would be associated with a larger value ofε.

Thus, with session ratesx = (xr, r ∈ R), we need to solve

P : max
∑

r∈R wr log(xr)

subject to
GAx ≤ (1 − ε)1

over
x ≥ 0

As the cost function is strictly concave and the constraint set is
convex, there is a unique solution toP. In following sections,
we develop a decentralized congestion control algorithms
(both hop-by-hop and end-to-end) to addressP.

IV. D ISTRIBUTED END-TO-END ALGORITHM

A. Algorithm Description

In this section, we develop an end-to-end congestion control
algorithm to solveP. As the optimization problem has a
strictly concave cost function, and convex constraints, wesolve
P using Lagrange multipliers. The Lagrangian of the problem
P is:

L(x, λ) =
∑

r∈R

wr log(xr) + λT (GAx − (1 − ε)1). (4)

We denote the input and output link of a sessionr on v when
a sessionr goes throughv asli(v, r) andlo(v, r), respectively
(for instance, in Figure 2, areli(C, 1) = 1 and lo(C, 1) = 3).
For completeness, for the source and destination nodes, we
definecli(s(r),r) = ∞ andclo(d(r),r) = ∞ respectively, where
the source and the destination of sessionr are denoted bys(r)
and d(r). Let us denoteAj(r) as the set of all downstream
nodes fromj in the path of sessionr. Thus,As(r)(r) is the
collection of all nodes in the path of sessionr.

By differentiating (4), we have

dL

dxr
=

wr

xr
−

∑

j∈As(r)(r)

(
(

1

cli(j,r)
+

1

clo(j,r)
)λj

)
= 0 (5)

Therefore, the unique solution to the problemP is given by
the following condition:

xr =
wr∑

j∈As(r)(r)

(
( 1

cli(j,r)
+ 1

clo(j,r)
)λj

) (6)

We now present rate adaptation mechanisms for session
sources. At each timet, we denote the transmission rate of
sessionr by xr(t). Suppose thatxr(t) adapts according to

ẋr(t) = κ
(
wr − xr(t)

∑

j∈As(r)(r)

(
(

1

cli(j,r)
+

1

clo(j,r)
)λj(t)

))
,

(7)
where

λj(t) = pj

( ∑

s∈D(j)

xs(t)
( 1

cli(j,s)
+

1

clo(j,s)

))
, (8)

pj(y) is a marking functionat nodej, and determines the
fraction of flow to be marked. Here,D(j) corresponds to the
set of sessions incident on nodej.

This function is an indicator of (time) congestion at a node,
and sources adapt based on the congestion indication [12],
[2]. As in the Internet context, this function is assumed to be
a continuous, increasing function with range[0, 1].

Observe that (7) is analogous to the differential equation
developed in [12]. However, (7) differs from the algorithm of
[12] in that (7) handles relative transmission or receptiontimes
instead of actual rates.

To understand the intuition for (7), observe thatλj is
interpreted as the price for using nodej per unit time. In
addition, xr(t)(

1
cli(j,r)

+ 1
clo(j,r)

) is the fraction of time the
MAC at node j expends in receiving and re-transmitting
(to the next hop) the data from sessionr. As time is the
resource in our formulation, the total cost of using nodej
equalsxr(t)(

1
cli(j,r)

+ 1
clo(j,r)

)λj . Thus, the source conges-
tion control mechanism tries to equalize the aggregate cost
xr(t)

∑
j∈As(r)(r)

(
( 1

cli(j,r)
+ 1

clo(j,r)
)λj(t)

)
with wr.

B. Marking function

As discussed earlier, corresponding to each nodej in the
network is a marking functionpj(·). In this paper, we consider
a marking function of the form

pj(y) =
(y − t̃j

y

)+

(9)

As seen in (8), the parametery of pj(y) is the sum of MAC
time utilizations byall flows, both incoming and outgoing, at
nodej.

Thus,pj(y) marks the fraction of flow which exceeds atime
threshold̃tj . Observe that the total time utilization at the MAC
cannot exceed1. Thus, t̃j < 1 is a parameter thatcontrols
the desired time utilizationat the link. For instance, for an
inefficient MAC (say, random access), one would sett̃j ¿ 1.
We will discuss the choice of this parameter in Section IV-C.

C. Stability Analysis

In this section, we show that the system of controllers
defined in (7) is globally stable. The proof is analogous to
that in [12]. Let the functionU(x) be defined by

U(x) = −
∑

j∈V

∫ ∑
s∈D(j) xs(t)( 1

cli(j,s)
+ 1

clo(j,s)
)

0

pj(y) dy

+
∑

r∈R

wr log xr (10)
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We can show thatU(·) is a strictly concave function, with
a unique equilibriumx

∗. Analogous to controlling utilization
by using a virtual capacity [22], [15], the equilibrium rate
x
∗ can be suitably chosen by choosing appropriate values for

the time thresholds{t̃j}. In particular, this choice could be
such that the equilibriumx∗ solves the optimization problem
P discussed in Section III-A. Adaptively choosing these pa-
rameters in a manner similar to that in [23], [22] is a topic for
future research. We now show that the congestion controllers
described by (7) and (8) converge to this equilibrium point.

Proposition 4.1:U(x) is a strictly concave, Lyapunov func-
tion for the system of differential equations (7). The unique
value ofx maximizingU(x), denoted byx∗ is a stable point
of the system, to which all trajectories converge.

Proof: We skip the details for brevity.

V. D ISTRIBUTED HOP-BY-HOP ALGORITHM

In this section, we develop a distributed hop-by-hop al-
gorithm for congestion control. First, we observe that the
congestion controller at the source of each session reacts based
on the sum of the congestion prices at each node. Instead
of passing this feedback downstream as in the end-to-end
algorithm, one could envisage a scheme where each node
passes the (partial sum) price upstream. In other words, each
node adds its current congestion cost to that it received from
a downstream node, and passes this information toward the
upstream node. The source will ultimately receive the sum
of all price information from the corresponding downstream
nodes and use the information for controlling rates. We refer
to Figure 3 for the illustration of the hop-by-hop algorithm.

A B C : Destination

++
1 2

feedback Cfeedback Bfeedback A

session 1

Source

feedback C: 1

c2
λC(t)

feedback B:
(

1

c1
+ 1

c2

)
λB(t) + 1

c2
λC(t)

feedback A: 1

c1
λA(t) +

(
1

c1
+ 1

c2

)
λB(t) + 1

c2
λC(t)

a
1
1(t) a

2
1(t)

Fig. 3. hop-by-hop Congestion Control Algorithm

The basic idea of a hop-by-hop algorithm is that every
node in the path of the session operates a congestion control
algorithm. In Figure 3, the congestion price at nodeC is
passed to the upstream nodeB. Node B computes its local
congestion price and adds it to the congestion price from node
C. NodeB adapts its transmission rate to nodeC based on
this sum of congestion prices. In addition, nodeB passes this
sum of two prices to the upstream nodeA. Using this “price
passing” method, the source of session1 receives aggregate

congestion price from its downstream nodes and controls its
transmission rate based on it.

Let us denoteai
r(t) as theactual transmission rateat the

i-th hop of sessionr in the hop-by-hop control algorithm.
Corresponding to each nodei along the path of sessionr, is
a virtual transmission rateci

r(t), which is described by

ċi
r(t) = κ

(
wr − ai

r(t)
∑

j∈Ak(r)

(
1

cli(j,r)
+

1

clo(j,r)

)
λj(t)

)
,

(11)
ai

r(t) = min[ci
r(t), a

i−1
r (t)], (12)

wherek is the node corresponding to thei-th hop of session
r. {λj(t)} are defined similar to that in (8), but with the
actual transmission rates instead of the source transmission
rates. Along the path of each flowr, and for each hopi, the
initial conditions for the virtual transmission rates are assumed
to satisfyci

r(0) ≥ ci−1
r (0) (in particular, all of them could be

equal).
Thus, in the above algorithm, we sum over all prices

downstream along sessionr. Thus, each node operates a (per-
flow) controller based on the perceived congestion due to
downstream nodes, and determines the maximum rate it can
transmit at (the virtual transmission rate). The actual rate it
chooses transmits at the rate of the minimum of theincoming
data rate3 from i − 1-th hop node in the session’s path (the
previous hop node), i.e,ai−1

r (t), and the maximum possible
rateci

r(t).
We comment that at each intermediate node, the controller

has knowledge of the local link rates, as well as the “ramp-
up” constantwr for each of the sessions that is incident
on the node. It can be shown that the stability analysis
and later analysis are valid even if the node uses an upper
bound on the ramp-up constant. Thus, from an implementation
perspective, one could assume that{wr} are globally bounded
by some valuew, and use this value at each intermediate
node. Heuristically, the convergence proofs are valid even
when a bound is used because the data transmission rate into
the network is ultimately governed by the source, which will
use the correct value ofwr. However, to keep the exposition
simple, we will use the exact value ofwr at each node in this
paper.

Proposition 5.1:The transmission rates for the hop-by-hop
controller described in (11) and (12) converge to the equilib-
rium valuex

∗ = (x∗
1, . . . , x

∗
R)T given in Proposition 4.1. In

particular, for each router, and for each hopi, ai
r(t) → x∗

r

as t → ∞.
Proof: We skip the details. The proof is available in [24].

VI. CONGESTIONCONTROL WITH DELAY

In the previous section where we proved stability, we
assumed that the time resource was large enough so that
queueing did not occur (or equivalently, the time threshold
t̃ are suitably chosen). In this section, we do not make such

3For the source node for each flow, (12) is not considered, as there is no
upstream node. Instead we let the actual and virtual transmission rates to be
the same.
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an assumption. We will study the dynamics with queueing in
the presence of feedback delay.

For the end-to-end algorithm, we denote the output trans-
mission rate of sessionr at k-th hop traversing the linkl by
xk

r,l(t). The superscriptk corresponds to the fact that linkl is
k-th hop of the path of the sessionr. Thus,xk−1

r,li(j,r)
(t) and

xk
r,lo(j,r)(t) are the incoming input and outgoing transmission

rate in the end-to-end algorithm respectively.
Similarly, for the hop-by-hop algorithm, we denote the

actual and maximum (virtual) sending rate of sessionr at k-th
hop traversing the linkl. by ak

r,l(t) and ck
r,l(t), respectively.

Thus,ak
r,li(j,r)

(t) andak
r,lo(j,r)(t) are the actual incoming input

and actual outgoing transmission rates of sessionr at nodej
respectively.

Finally, each node has a per-flow buffer to temporarily store
data before forwarding. We denote the queue length of session
r at nodej by qrj(t).

A. The End-to-End Controller with Delay

Unlike in the delay-free case considered in Section IV,
queueing can occur at intermediate nodes due to feedback
delay. In this section, we describe the detailed dynamics of
rates for a session at each node.

For each nodej, let us defineEj
I (t) by

Ej
I (t) =

∑

r∈D(j)

xk−1
r,li(j,r)

(t)

cli(j,r)

Thus,Ej
I (t) is the fraction of the time resource at the MAC of

nodej consumed by incoming flows, andD(j) corresponds to
the set of sessions incident on nodej. We will assume that the
MAC protocol at the nodes ensure thatEj

I (t) < 1. Thus, if a
timing overload occurs at a node, data loss will occur, causing
unsuccessful transmissions to be queued at the preceding hop
(where the data was transmitted from). We assume a suitable
error and collision detection mechanism exists such that data
is queued in case of timing overload. Thus, from a fluid
model perspective, we can assume that the successful data
transmission into a nodej satisfiesEj

I (t) < 1. In addition,
a poor MAC protocol may not be able to support a time
utilization of ’1’ (for instance an ALOHA based MAC would
have a maximum time utilization less than0.36). However,
in the following discussions, we will assume that the MAC
can support a time utilization of ’1’ for notational ease. The
results that are presented can be easily generalized to non-ideal
MACs by suitable scaling. Let us now define

Ej
O(t) =

∑

r∈D(j)

xk−1
r,li(j,r)

(t)

clo(j,r)

The interpretation ofEj
O(t) is the following: If there is no

congestion at the nodej, the output transmission rates would
simply be equal to the incoming rate.Ej

O(t) is the time
utilization at the MAC in such a case.

We now consider the following two cases.

(i) Ej
I (t) + Ej

O(t) > 1
As the time utilization at the node will exceed ’1’ if the

output flow rates equal the input flow rates, we decrease
the transmitted output rates such that the time constraint
is met. In other words, we chooseα(t) ∈ (0, 1] such that
Ej

I (t) + α(t)Ej
O(t) = 1, and set the output transmission

rate by xk
r,lo(j,r)(t) = α(t)xk−1

r,li(j,r)
(t). The remaining

flow (of fraction 1 − α(t)) is queued at nodej.
(ii) EI(t) + EO(t) ≤ 1

In this case, the output flow rate for each session can
be set toat least the input rate of the corresponding
session. If some of the sessions have strictly positive
queue lengths, i.e., users with backlogged queues (cor-
responding to congestion in the past), these users are
allocated output rates that are greater than their input
rates. The rates will be allocated in some fair manner (for
example, a proportional rate increase to all backlogged
users), subject to the timing constrain being met. Let us
denoteQ+

j (t) be the set of backlogged sessions at node
j at time t. We chooseα(t) > 1 such that the time
utilization at the node is less than or equal to one, and for
all sessionsr ∈ Q+

j (t), xk
r,lo(j,r)(t) = α(t)xk−1

r,li(j,r)
(t).

B. The Hop-by-Hop Controller with Delay

We now develop the dynamics of the hop-by-hop controller
with delay. As in the Section VI-A, we define the total time
utilization due to incoming flows at nodej, by

Hj
I (t) =

∑

r∈D(j)

ak−1
r,li(j,r)

(t)

cli(j,r)

Let us denoteQ+
j (t) be the set of backlogged sessions at node

j at time t, and define

Hj
O(t) =

∑

r∈D(j)

r∈Q+
j

(t)

ck
r,lo(j,r)(t)

clo(j,r)

+
∑

r∈D(j)

r/∈Q+
j

(t)

min[ck
r,lo(j,r)(t), a

k−1
r,li(j,r)

(t)]

clo(j,r)

whereck
r,lo(j,r)(t) is the maximum possible rate for flowr at

nodek, and is described by (11). We now consider two cases:

(i) Hj
I (t) + Hj

O(t) ≤ 1
In this case, there is no scarce time resource at this node.
If the user queues are zero, the output rate is simply equal
to the input rate. In general, the output rate for sessionr
is given by

ak
r,lo(j,r)(t) ={

min[ck
r,lo(j,r)(t), a

k−1
r,li(j,r)

(t)] if qrj(t) = 0,

ck
r,lo(j,r)(t) if qrj(t) > 0

(ii) Hj
I (t) + Hj

O(t) > 1
In this case, the time resource at nodej is potentially not
sufficient to handle the output rate. Similar to Case (i)
for the end-to-end controller in Section VI-A, we choose
α(t) ∈ [0, 1) such thatHj

I (t) + α(t)Hj
O(t) = 1, and set

the output transmission rate correspondingly.
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VII. SPATIAL SPREADING

In this section, we derive the peak occupied buffer size
with the end-to-end controller as well as with the hop-by-hop
controller described in Section VI. We consider the evolution
of these algorithms in the presence of propagation delay. We
analytically show the effect of spatial spreading by explicitly
deriving the reduction in peak buffer overload under the
hop-by-hop scheme. Consider the tree network in Figure 4,

bottleneck 
node      N 

sessions

L links

Level 0Level 1Level 2

Source 1

Source 2

Source N

Destinations

Fig. 4. A tree network with delay

with N sessions andL links between each of the sources
and the common destination. Such a network could model a
community roof-top wireless network, with the common node
being connected to a wired infrastructure. The source node for
each session resides on a (different) node as shown in Figure4.
We assume that each link has a round-trip delay ofd, and the
corresponding end-to-end delay for the session beingD = Ld.

We assume that the intermediate links (each accessed by
only one flow) are well provisioned so that congestion occurs
only at the common access point for all the flows (the
bottleneck node in Figure 4). Since we consider a system
with N flows, we scale the capacities of the bottleneck node
with the input and output capacities of the bottleneck node
being NcI and NcO respectively. This scaling ensures that
the steady-state rate allocated to each user is invariant with
the number of sessions.Physically, this would correspond to
a bandwidth scaling at the bottleneck.

We first consider the end-to-end scheme and compute max-
imum queue length at the bottleneck node. As we scale the
number of flowsN, we need to scale the congestion price
appropriately such that the equilibrium rate for each user is
invariant with N (this is analogous to scaling the marking
function in [15], [25]). To do so, we let the fraction of the flow
xj(t) that is marked be invariant toN. This in-turn implies
that the controller marks based on thenormalizedtime utilized
at the node. Hence, the dynamics of each flowxj(t) is given
by

ẋj(t) = κ
[
wj − xj(t − D)

( 1

cI
+

1

cO

)

p
(( 1

NcI
+

1

NcO

) N∑

k=1

xk(t − D)
)]

(13)

Thus, the steady-state rate of flowj, denoted byx∗
j is given

by

x∗
j =

wjx
∗

x∗(1/cI + 1/cO) − t̃
,

wherex∗ is the average steady-state rate over all flows, and
is invariant withN.

We finally comment that we have assumed that the feedback
(marks) do not experience congestion, and that the delay in the
feedback is solely due to propagation delays. As we have per-
flow queueing, a packet implementation to approximate this
could be the following. When congestion occurs at a node,
instead of marking the incoming packet (implemented via
setting the ECN (Explicit Congestion Notification) bit [26]),
one could mark the head-of-line (outgoing) packet in the queue
of the corresponding user. This would ensure that the queueing
delays are minimized for the feedback, and that the source
gets the appropriate feedback. Such a scheme is feasible in
a wireless context, as per-flow queueing is expected to be
implemented for scheduling as well as physical layer reasons.

Let x(t) = 1
N

∑N
j=1 xj(t) and w = 1

N

∑N
j=1 wj . By

summing (13) across all sessions, we obtain

ẋ(t) = κ
[
w −

(
x(t − D)

( 1

cI
+

1

cO

)
− t̃

)+]

=
( 1

cI
+

1

cO

)
κ
[ w(

1
cI

+ 1
cO

)

−
(
x(t − D) − t̃(

1
cI

+ 1
cO

)
)+]

(14)

Now, denotingc̃ = t̃(
1

cI
+ 1

cO

) , κ̃ = κ( 1
cI

+ 1
cO

)
, and w̃ =

w/( 1
cI

+ 1
cO

)
, we have

ẋ(t) = κ̃[w̃ − (x(t − D) − c̃)+] (15)

Next, for each timet, under the end-to-end control scheme,
let us denote the average queue length (across sessions) at the
bottleneck node byqe(t), and the average input and output
rates byxI(t) andxO(t) respectively. Observe that congestion
occurs at the node ifxI(t)

cI
+ xO(t)

cO
> 1. Further, observe that

xI(t) ≤ cI . We now describe the dynamics of the queue length
process. We consider several cases:

(i) cIcO

cI+cO
< xI(t) ≤ cI

q̇e(t) = xI(t) − xO(t)

= cI
xI(t)

cI
− cO

(
1 − xI(t)

cI

)

=
(cI + cO

cI

)[
xI(t) −

cIcO

cI + cO

]
(16)

(ii) xI(t) ≤ cIcO

cI+cO
andqe(t) > 0

The dynamics ofq̇e(t) are identical to that in Case (i).
(iii) xI(t) ≤ cIcO

cI+cO
andqe(t) = 0

In this case, as the buffer at the bottleneck node is empty,
and there is no congestion, we haveq̇e(t) = 0.

Thus, with
˙̃q
e
(t) =

q̇e(t)

(cI + cO)/cI
, (17)
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we have

˙̃q
e
(t) =

{
xI(t) − c if q̃e(t) > 0,

(xI(t) − c)+ if q̃e(t) = 0
(18)

wherec = cIcO

cI+cO
.

We next derive the “worst-case” peak queue lengths at the
bottleneck node under the end-to-end controller as well as a
hop-by-hop controller, due to initial transients. LetQmax

e(δ)
be the (unscaled) maximum queue length at the bottleneck
node with end-to-end control with the round-trip delay for
each session beingδ. Thus, this would correspond to the tree
network in Figure 4 havingL links per session, witheach
link having a round-trip delay ofδ/L. Also let qmax

e(δ) =
Qmax

e(δ)/N be the peak queue length for the scaled system
defined by (15) and (18). With this definition, we have

Lemma 7.1:Fix anyδ > 0. Then,∃(Lo, α) with α ≥ 1 and
Lo ≥ 1, such that∀L ≥ Lo, LαQmax

e(δ) ≤ Qmax
e(Lδ).

The proof is presented in Appendix A. Using this result, we
prove the main result of this section. LetQmax

h(δ) be the
(unscaled) maximum queue length (due to initial transients)
from with the hop-by-hop control, and qmax

h(δ) be the
corresponding scaled queue-length. We then have

Proposition 7.1:Fix anyδ > 0. Then,∃(Lo, α) with α ≥ 1
andLo ≥ 1, such that∀L ≥ Lo, Lαqmax

h(Lδ) ≤ qmax
e(Lδ).

Proof: Observe that an upper bound on the queue length
at the bottleneck node with the hop-by-hop control can be
derived by assuming an infinite backlog of data at all the nodes
preceding the bottleneck node (the Level 2 nodes in Figure 4).
As the control loop for this hop has round trip delayδ, with
no intermediate nodes, it follows thatqmax

h(Lδ) ≤ qmax
e(δ).

Thus, from Lemma 7.1, the desired result follows.
Remark 7.1:As we are computing the peak load due to

initial transients, let us interpretN as the number of flows
which start up at approximately the same time. Then, from
Proposition 7.1, we have for someα ≥ 1,

Qmax
e(Ld) − Qmax

h(Ld) ∼ O(LαN)

Thus, even if number of flows are relatively small, potentially
significant gains are to be had due to the multiplicative effect
of the delay in the control loop. In Section VIII, we will see
that we achieve significant gains even with only five flows.

VIII. S IMULATION RESULTS

In this section, we present simulation results that compare
the hop-by-hop algorithm with the end-to-end algorithm. We
show that there is a significant decrease in the peak load with
the hop-by-hop algorithm.

The topology used in the simulation is a tree network shown
in Figure 4, with N = 5 and L = 5. In other words, we
consider a network with five hops, and five sessions. Each
input and output link of the bottleneck node is set to have a
capacity of40. Thus, the equilibrium sum rate over sessions at
the bottleneck node is20 under timing constraint. The round-
trip delay per hop is assumed to be4 units, leading to an
end-to-end round trip propagation delay ofD = 20 units. For
example, if time is measured in milli-seconds, and capacity
in bytes per unit-time, this system would correspond to a2
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Fig. 5. Sum Rates of both controllers withκ = 1, w = 0.13, andt̃ = 0.415.
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Fig. 6. Occupied queue length at the bottleneck node (D = 20)

msec one-way delay per hop, with the capacity of the link
being 40 kbytes/sec. However, due to the time constraint at
the MAC, this capacity will be shared by the incoming and
outgoing components of each flow.

Figure 5 shows the aggregate rate at the bottleneck node
with the end-to-end controller as well as the hop-by-hop
controller. We see that the convergence times to steady-
state are approximately the same, as the end-to-end delay
is the same, and the bottleneck node is very close to the
destination (the “worst-case” for the hop-by-hop controller).
However, if we consider the corresponding peak queue lengths
at the bottleneck, we see that there is a significant difference,
as predicted by the analytical results in Section VII. This
illustrates the effect of spatial spreading. Even though the
convergence properties are about the same, the peak queue
length at the bottleneck node under the hop-by-hop scheme is
smaller.

In Figure 7, we increase the round trip delay toD = 40
(corresponding to a one-way per hop delay of 4 msec), this
effect is exacerbated. Thus, the results in this paper arguefor
considering hop-by-hop controllers for a wireless multi-hop
network.
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Fig. 7. Occupied queue length at the bottleneck node (D = 40)
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APPENDIX A: PROOF OFLEMMA 7.1

Lemma 9.1:Fix anyδ > 0. Then,∃(Lo, α) with α ≥ 1 and
Lo ≥ 1, such that∀L ≥ Lo, LαQmax

e(δ) ≤ Qmax
e(Lδ).

Proof: Let us define the following time epochs. Lett1
be the time such thatx(t) crosses̃c, t2 be the first time aftert1
such thatx(t) crossesc, t3 = t1 + δ, t4 = t2 + δ, t5 = t3 + δ,
andt6 be the first time aftert4 such thatx(t) crossesc. These

times are illustrated in Figure 8 and Figure 9. Formally, we
can define these time epochs by

t1 = inf{t > 0 : x(t) > c̃}
t2 = inf{t > t1 : x(t) > c}
t3 = t1 + δ

t4 = t2 + δ

t5 = t3 + δ

t6 = inf{t > t4 : x(t) < c}

We note that depending oñκδ, t6 can be greater (Figure 8) or
less (Figure 9) thant5. Also denote the corresponding values
of the trajectories byRA = x(t4) andRB = x(t3).

Now observe that the peak queue length at the bottleneck
node is given by

qmax
e(δ) =

∫ t6

t2

x(t) dt (19)

We assume that the initial condition satisfiesx(s) ≤ c̃, ∀s ≤ 0.
First, we note that for fixed̃κ such thatδκ̃ < 1, we have
qmax

e(δ) < qmax
e(1/κ̃), which follows from a monotonicity

property of the peak queue length with respect to delay
(we skip the proof due to space constraints). Thus, we will
henceforth consider the case whereδκ̃ ≥ 1.

By the assumption about the initial condition, over[t1, t3],
we have

ẋ(t) = κ̃w̃ (20)

Using the fact thatc − c̃ = κ̃w̃(t2 − t1), we have

t2 − t1 =
c − c̃

κ̃w̃
=

1

κ̃
(21)

In addition,

t4 − t3 = t2 − t1 =
1

κ̃
(22)

We can see thatx(t) achieves the maximum att4 sinceẋ(t4) =
0. This follows from the fact that

ẋ(t4) = κ̃(w̃ − x(t2)p(x(t2)))

= κ̃(w̃ − cp(c))

= 0.

Now, let x̄(t) be the input arrival rate at timet to the bottleneck
node. We havēx(t) ≤ cI , from the input link bandwidth
constraint at the bottle neck node4 Recall thatRB = x(t3).
As RB − c̃ = (t3 − t1)κ̃w̃, we have

RB = δκ̃w̃ + c̃ (23)

Depending the relative values oft5 and t6, the trajectory of
x̄(t) is either of the form shown in Figure 8 or that in Figure 9.
We now derive a sufficient condition onδκ̃ such thatt5 ≥
t6. It can be shown that the upper bound ont6, denoted by
t̂6, occurs when the input link bandwidth constraint does not
limit the arrival rate at the bottleneck node (i.e.,x̄(t) = x(t)),

4Thus, it is possible that̄x(t) < x(t), in which the MAC could cause data
to be temporarily buffered at nodes preceding the bottlenecknode, see Case
(i) in Section VI-A.
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which corresponds to the caseRA > cI in Figure 9. We define
y(t) = x(t + t3), and we have

y(t − δ) = x(t + t3 − δ)

= κ̃w̃t + c̃

Thus, fort ∈ [0, δ], we have

ẏ(t) = κ̃(w̃ − (κ̃w̃t + c̃)p(κ̃w̃t + c̃))

= κ̃(w̃ − κ̃w̃t) (24)

Using the fact thaty(0) = RB , from (23) and (24), we have

y(t) = κ̃(w̃t − κ̃w̃t2

2
) + dκ̃w̃ + c̃ (25)

By definition, we havey(δ) = x(t5). We now derive the
condition on δκ̃ such thaty(δ) = c. This will correspond
to t̄6 = t5.

y(δ) = c ⇔ κ̃(w̃t − κ̃wt2

2
) + dκ̃w̃ + c̃ = c

⇔ κ̃(w̃δ − κ̃w̃δ2

2
) + δκ̃w̃ − w̃ = 0

⇔ (κ̃δ)2 − 4κ̃δ + 2 = 0 (26)

Solving, we get̃κδ = 2 +
√

2. Thus, for allδ > 0 such that
κ̃δ ≥ 2+

√
2, this condition ensures that the trajectory ofx(t),

and thusx̄(t), is of the form shown in Figure 9.
Further, from the monotonicity property of the queue length

with respect to delay, for fixed̃κ, and anyδ such that̃κδ ≤
2+

√
2, we haveqmax

e(δ) ≤ qmax
e
(

2+
√

2
κ̃

)
. Henceforth, we

only consider the case wherẽκδ ≥ 2 +
√

2 (corresponding to
Figure 9).

The peak queue-length computation differs depending on
the relative position ofcI with RA andRB. We first consider
the case wherecI > RA (see Figure 9).

Let us denote the area of the regionS1 (over the time
interval [t2, t3]) in Figure 9 byA(S1). Then,

A(S1) =
1

2
(t3 − t2)(RB − c)

=
w̃

2κ̃
(δκ̃ − 1)2 (27)

By definition, we have

A(S2) =

∫ s

0

y(t) dt, (28)

where s is chosen such thaty(s) = c. From (25), we have
s = 1+

√
2δκ̃−1
κ̃ . Thus, we have

A(S2) =

∫ s

0

(y(t) − c) dt

=
−

((
1 +

√
−1 + 2δκ̃

)3
κ̃w̃

)

6 κ̃2

+

(
1 +

√
−1 + 2δκ̃

)
(δκ̃w̃ − w̃)

κ̃

+

(
1 +

√
−1 + 2δκ̃

)2
w̃

2 κ̃
(29)

Thus, from the equations (27) and (29), when we havecI >
RB, the peak queue length is given by

A(S1) + A(S2) =
w̃

2κ̃
(δκ̃ − 1)2+

+
−

((
1 +

√
−1 + 2δκ̃

)3
κ̃w̃

)

6 κ̃2

+

(
1 +

√
−1 + 2δκ̃

)
(δκ̃w̃ − w̃)

κ̃

+

(
1 +

√
−1 + 2δκ̃

)2
w̃

2 κ̃
(30)

Next, we consider the case wherecI < RB . Let tcI
be the first

time aftert2 such that̄x(t) hits cI . Let us define∆t = tcI
−t2,

and we have

∆t =
cI − c

κ̃w̃

Next, define fort ∈ [0,∆t],

ȳ1(t) = x̄(t + t4)

and for t ∈ [0, δ − ∆t], define

ȳ2(t) = x̄(t + t4 + ∆t)

Thus, we have

ȳ1(t − δ) = κ̃w̃t + c

ȳ2(t − δ) = cI (31)

Thus, fort ∈ [0,∆t], we have

˙̄y1(t) = κ̃(w̃ − (κ̃w̃t + c)p(κ̃w̃t + c))

= −κ̃2w̃t (32)

Similarly, for t ∈ [0, δ − ∆t], we have

˙̄y2(t) = κ̃(w̃ − cIp(cI))

= −κ̃(cI − c) (33)

Also, by definition, we have

ȳ1(0) = cI

ȳ2(0) = ȳ1(∆t) (34)

Thus, integrating, we have

ȳ1(t) = −κ̃2w̃
t2

2
+ cI

ȳ2(t) = −κ̃(cI − c)t − 1

2w̃
(cI − c)2 + cI (35)

In addition, defininḡt to be the first time such that̄y2(t̄) = c,

t̄ =
1

κ̃
(1 − cI − c

2w̃
) (36)

Thus, the peak queue length at the bottleneck node whencI <
RB is given by

1

2
(2(t4 − t2) − ∆t)(cI − c) + M

=
1

2
(2δ − ∆t)(cI − c) + M, (37)
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whereM =
∫ ∆t

0
ȳ1(t) dt +

∫ t̄

0
ȳ2(t) dt is independent ofδ.

Finally, we need to perform a similar computation when
RB < cI < RA. We skip the details due to space reasons. In
any case, it can be seen that (37) provides a lower bound, and
(30) provides an upper bound for this case.

To complete our proof, chooseL large enough such that
Lκ̃δ > 2 +

√
2. From (37) and (30), the result follows.
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