
CH-MAC: A Cluster-based, Hybrid TDMA MAC
Protocol over Wireless Ad-hoc Networks

Hoyong Choi†, Jihwan Bang‡, Namjo Ahn†, Jinhwan Jung†, Jungwook Choi∗, Soobum Park∗, and Yung Yi†
† School of Electrical Engineering, KAIST, South Korea, (email: {hychoi, njahn, jhjung}@lanada.kaist.ac.kr, yiyung@kaist.edu)

‡ Search Solutions Inc., South Korea, (email: jihwan.bang@navercorp.com)
∗ LIG Nex1, South Korea, (email: {jungwook.choi, sbpark93}@lignex1.com)

Abstract—In this paper, we propose a distributed TDMA MAC
protocol over wireless ad-hoc networks, called CH-MAC. The
key design component of CH-MAC is the notion of clusters,
where a cluster head maintains the information about how slots
are allocated over the one-hop neighborhood. This cluster-based
operation enables CH-MAC to opportunistically operate in a
hybrid fashion of being both reactive and proactive. In other
words, once a node intends to be allocated some slots, its cluster
head provides the information about the interfering slots over
near-by nodes in a proactive way, and far-away interference such
as the one by hidden nodes is handled in a reactive manner. This
hybrid operation based on clusters offers a wider design space
of appropriately trading off the slot-allocation response time and
the number of control overheads. We validate the efficiency of
CH-MAC over a variety of scenarios in terms of the number of
nodes and the network topology.

I. INTRODUCTION

We consider a MAC protocol that is designed to guarantee
a certain level of QoSes (e.g., reliability and delay) in mobile
adhoc networks, which is frequently considered in military
applications, e.g, battlefields. CSMA, TDMA, or their hybrids
are the major types of MAC protocols, and there exists an
extensive array of MAC protocols based on those design
directions. We refer the readers to [1] and [2] for a nice survey
of representative protocols.

We aim at proposing a dynamic, distributed TDMA protocol
over MANETs, where by dynamic we mean that we support
the dynamic changes of slot schedules in response to time-
varying loads, and by distributed we mean that there exists no
centralized coordinator which is responsible for allocating time
slots to nodes. Supporting time-varying loads in scheduling
time slots is challenging, because it essentially requires to
reschedule slots for multiple nodes. Obviously, we are not
the only one which develops such a type of TDMA protocol.
There exist many criteria under which existing ad-hoc TDMA
protocols are classified. In this paper, we broadly classify
them into two categories: proactive and reactive. In proactive
protocols, nodes advertise their status information (e.g., slot
schedule information) to neighboring nodes, where whenever
a new request for slots arrives, it is quickly served thus a
small delay for new slot scheduling. However, such proactive
protocols suffer from significant control message overhead,
which is often too problematic to be used in a network with
scarce resource, as experienced in many military networks.
On the other hand, reactive protocols utilize network resource

more economically, whereas they experience a long delay of
slot allocation.

In this paper, we take a hybrid approach by operating a
dynamic TDMA protocol in a partially proactive and reactive
manner, with the hope of obtaining the advantages from those
two design choices. The key design component of CH-MAC
is the notion of clusters, where a cluster head maintains the
information about how slots are allocated over its one-hop
neighborhood. This cluster-based operation enables CH-MAC
to opportunistically operate in a hybrid fashion of being both
reactive and proactive. In other words, once a node intends to
request some slots, its cluster head provides the information
about the interfering slots over nearby nodes in a proactive
way, while far-away interference such as the one by hidden
nodes is handled in a reactive manner. This hybrid operation
based on clusters offers a wider design space of appropriately
trading off the slot-allocation response time and the amount
of control overheads.

We evaluate CH-MAC using simulations implemented on
NS-3 simulator under various traffic loads and topologies
which are random and dumbbell networks designed to have
multiple hidden terminal problems. Our results demonstrate
that CH-MAC takes advantages from proactive and reactive
protocols as a hybrid approach of them. More precisely, CH-
MAC has a better delay performance than the reactive protocol
which is significant at high traffic loads. Also, CH-MAC has
up to 5 times lower control overheads compared to that of
the proactive protocol. In terms of a throughput performance,
CH-MAC outperforms the proactive and reactive protocols
measured by the session service time. Finally, we demonstrate
the robustness of CH-MAC under mobility scenarios where
the performance of CH-MAC recovers within 2 frames.

II. RELATED WORK

There exist an extensive array of research papers on TDMA
in literature, where the key focus has been on (i) theoretically
studying the hardness of slot scheduling, (ii) developing algo-
rithmic solutions of scheduling slots in a distributed manner,
and (iii) proposing practical MAC protocols over wireless
multi-hop networks. We refer the readers to these nice surveys
for the exhaustive list of those related works [1] and [2].

We present the related work considering our contribution
that we support load-adaptation in a hybrid manner, i.e.,
partially proactive and partially reactive. TDMA protocols

supporting time-varying loads include [3]–[7]. In the load-
adaptive TDMA protocols, data slots are scheduled depending
each node’s traffic demand. MH-DESYNC [3] is a distributed
TDMA scheduling protocol that operates in a purely proactive
manner, where each node periodically exchanges slot usage
information with all of its interfering nodes. To allocate a
required amount of slots requested by a node, say v, v chooses
contention-free slots based on the pre-advertised slot usage
information. TMRR [4] proposes a flow-based slot scheduling
which schedules slots sequentially over the entire path of
the newly created flow with the goal of minimizing end-to-
end delay. In TMRR, the slot allocation information, also
called resource map, is broadcasted in the beacon slots at
every frame. E-TDMA [5] proposes a contention-based slot
allocation, i.e,. slots are assigned in a reactive manner, which
can adapts to topology and traffic demand changes by incre-
mentally updating schedules. In [6], each node shares only
local information to find feasible schedules that guarantee the
required number of slots, where depending on how the local
information becomes available, it can operate in a proactive
or reactive way. The authors in [7] propose a distributed
TDMA protocol which controls the size of frame depending
on demands. Our work differs from the above in the sense that
CH-MAC explicitly places proactive and reactive features in
the slot scheduling procedure that widens our design space to
have flexible trade-off between latency and control overhead
in scheduling slots.

Other related work on the protocols that try to assign at
least one time-slot to each node/link includes [8]–[12]. The
authors in [9] uses a five-phase reservation protocol (FPRP)
which reserves slots based on contentions, so that the slots
are allocated to some nodes that win the contention. DRAND
[10] is also a contention-based slot scheduling protocol which
exchanges scheduling information between neighbors and al-
locates contention-free slots. In [12], the authors propose a
sequential scheduling algorithm among nodes, implying that
each node is scheduled sequentially a slot which is not used by
its neighbors. TDMA has also been an active medium access
rule in wireless sensor networks, where traffic load is highly
periodic and/or low. Thus, most of protocols are designed
towards energy efficiency and simplicity, finding contention-
free schedule that guarantees one slot to each node is a major
focus [13]–[18].

III. DESIGN OF CH-MAC

In this section, we present the design of CH-MAC (Cluster-
based Hybrid TDMA MAC), by describing the key design
direction, followed by the design details.

A. Key Design Direction

• Session-based slot maintenance. Our protocol allocates
collision-free schedules and releases them when a new
session is initiated and terminated, respectively. This
means that when a node opens a new session, it explicitly
sends a slot allocation request to the network, where
the requested number of slots is determined by the

DATA Sub-frame

… …

REQ
Sub-frame

RESV
Sub-frame

DATA
Sub-frame

CSMA
Sub-frameDATA DATA

Frame Frame Frame Frame FrameFrame

DATA

DATA sub-frame

… …

REQ
sub-frame

RESV
sub-frame

ACK
sub-frameDATA DATA DATA…

Fig. 1: CH-MAC frame structure with sub-frames.

opening session to be serviced. We adopt this session-
based allocation to consider sessions requiring strict QoS
guarantee, which happens in tactical military applications.
This session-based slot maintenance enables dynamic
change of slot allocation/deallocation, since the lifetime
of a session is typically in the order of hundred frames,
thus the gain from slot allocation change offsets the
control message overhead for those changes.

• Cluster-based topology maintenance. In CH-MAC, a
cluster is formed as the collection of a cluster head and
member nodes which are connected to the cluster head
by one hop (thus, each cluster head is connected over
two hops at maximum). Relying on these clusters, all
the information about slot allocation inside a cluster is
managed by its cluster head. The current slot schedules
are informed to all nodes in its cluster by the cluster head
and those nodes request slot allocation to the cluster head
based on the received slot information. Thus, whenever a
new request for slots is generated at some node v, using
the information from v’s cluster head, v is immediately
able to know which slots are collision-free with the nodes
in v’s cluster (intra-cluster phase). The final decision for
the allocated slots is made for assuring that the candidate
slots are collision-free over two hops (inter-cluster phase).

• Hybrid operation: Proactive and reactive. As presented
in the previous paragraph, CH-MAC tries to find a
conflict-free schedule in two phases: intra-cluster and
inter-cluster, each of which operates proactively and
reactively, respectively. This hybrid operation is highly
flexible so that the degree of proactiveness and reac-
tiveness can be adjusted by the designer in a situation-
dependent manner (i.e., the number of nodes, the amount
of usual traffic load, etc). This significantly widens our
design space, which opens a way of positively trading off
those two rationales, i.e., latency and control overhead in
slot allocation.

B. Frame Structure

In CH-MAC, time is divided into multiple frames. Each
frame is repeated over time and it is composed of four sub-
frames: REQ, RESV, DATA, and ACK. Each sub-frame has
its own pre-specified number of fixed-size time slots (simply
slots), where the length of a time slot is chosen such that it
covers one MAC layer packet transmission. The lengths (i.e.,
the number of slots) of an entire frame and of each sub-frame
are the parameters of CH-MAC. The role of each sub-frame
is elaborated in what follows.

Algorithm 1: When the node v requests m data slots

Input: v’s 1-hop neighbors N(v) and its cluster head
CH(v)

Output: Collision-free m slots

S1. Usage Information Update
until v receives UI-ACK from N(v) do

Choose a slot sreq randomly from REQ
Transmit UI-REQ at sreq
Receive UI-ACK from N(v) in ACK

if m data slots are able to be scheduled then Go to S2.
else Wait until m slots become available.

S2. Slot Allocation Request
Choose a slot sreq randomly from REQ
Transmit SL-REQ requesting m data slots at sreq
Receive NOTI in RESV from CH(v)
if m data slots [sac(i)]

m
i=1 are allocated for v then Go to S3.

else Go to S1.
S3. Allocation Double Check

Transmit m TEST messages at [sac(i)]
m
i=1

Receive UI-ACK from all of N(v) in ACK
if v receives UI-ACK from N(v)
and [sac(i)]

m
i=1 are marked in all UI-ACKs then

Data transmission at [sac(i)]
m
i=1

else if {v receives UI-ACK from some of N(v)
and [sac(i)]

m
i=1 are not marked in at least one of UI-ACKs}

or v does not receive UI-ACK from any of N(v) then
Choose a slot sreq randomly from REQ
Transmit SL-RLS at sreq
Go to S1.

◦ REQ: REQ sub-frame is used for two purposes: (i) Usage
Information Request (UI-REQ) for requesting the current
slot usage information from one-hop neighbors and (ii)
Slot Request (SL-REQ) for requesting slot allocation to the
cluster head. This sub-frame is used only when a node
intends to allocate new slots in the network or release a
node’s allocated slots in the network.

◦ RESV: RESV sub-frame is used by the cluster head to
proactively broadcast the slot allocation information to all
member nodes of its cluster.

◦ DATA: As the name implies, DATA sub-frame is used to
perform actual data transmissions, where each data trans-
mission is guaranteed to be collision-free.

◦ ACK: ACK sub-frame is used to reply to the UI-REQ sent
by the REQ sub-frame. When a node has been requested by
UI-REQ, the node collects slot usage status from its one-
hop neighbors in DATA sub-frame, and then sends Usage
Information ACK (UI-ACK) that includes the collected slot
usage status of the one-hop neighbors. Thus, ACK sub-
frame is placed right after DATA sub-frame, since each node
should collect the slot usage status in DATA sub-frame to
send UI-ACK.
For presentational simplicity, we use REQ, RESV, DATA,

and ACK to mean those four sub-frames throughout this paper.

C. Protocol Description: When New Slots are Requested

In this section, we now describe CH-MAC with focus on
how slots are allocated in case new slots are requested as

CH CH

CH CH

CH CH

TEST UI-ACK

SL-REQ NOTI

1. Usage Information Update

UI-REQ

2. Slot Allocation Request

3. Allocation Double Check

UI-ACK

Usage Information :
Data Send
on Slot #1

Schedule
Data Send
on Slot #1

Data Send
on Slot #1

Data Send
on Slot #2

…

0 0 ∙∙∙ 0 1 0 ∙∙∙ 0…

…

Request
1 slot 0 3 ∙∙∙ 0

Usage Information :

…

0 1 ∙∙∙ 0 1 1 ∙∙∙ 0…

B

A

D

E

C

Fig. 2: An example of successful slot allocation procedure. Firstly,
C sends UI-REQ and receives UI-ACK with the usage information
of neighbors. In the second figure, C requests a slot and is allocated
to the slot #2. Lastly, C transmits a TEST message in the slot #2 and
receives UI-ACKs; thus C successes to get the collision-free slot.

in Algorithm 1, which is the most complex part, and briefly
explain CH-MAC for other cases in the next subsection.

Overview. Consider that node v opens a new session and
requires m slots for data transmission. (i) in the Usage
Information Update phase, each node obtains the slot usage
information on which slots have already been allocated by the
member nodes in v’s cluster, (ii) in the Slot Allocation Request
phase, using the slot usage information, v requests m slots
from its cluster head CH(v), which temporarily allocates those
slots if available, and (iii) in the Allocation Double Check
phase, those temporarily allocated slots are checked further
for the possible collisions by hidden terminals. If the slots
passes this check, data transmission finally occurs over the
m scheduled slots. We describe the case where the number
of available slots is less than m in Section III-D. We next
elaborate each step, formally described in Algorithm 1, which
we exemplify using the example scenario in Fig. 2.

S1. Usage Information Update. Once v requires m slots, v
starts the slot allocation protocol in the Usage Information
Update phase. In S1, v transmits UI-REQ at a slot randomly
chosen from REQ. When v’s 1-hop neighbors N(v) receive
UI-REQ, they reply UI-ACK to UI-REQ. UI-ACK includes
the slot usage information of a transmitter of UI-ACK. Since
every node always listens to DATA to check whether each data
slot is used by its 1-hop neighbors or not, every node makes a
list of the data slot usage of its 1-hop neighbors, which we call
the slot usage information. Thus, whenever v collects UI-ACK
from all of its 1-hop neighbors, v knows which data slots are
currently scheduled to its 1-hop or 2-hop neighbors. If there
exists m empty data slots which are not used by the 1-hop nor
2-hop neighbors, v goes to S2, otherwise v waits until m slots
become available and the latency requirement of the session
can be satisfied. If the latency requirement cannot be fulfilled
due to the long waiting, v fails to allocate slots and waits for
a new session.

Example: Fig. 2 shows a situation where C has a session to
open, requesting a slot. C selects the second slot of REQ and
transmits UI-REQ in that slot to its 1-hop neighbors A, B,
and D. Those neighbors receive UI-REQ and then send UI-
ACK which contains their slot usage information. Since the
second data slot is not used by the 1-hop neighbors, the second
column of the Usage Information from A, B, and D is 0.

S2. Slot Allocation Req. In S2, after v obtains the slot usage
information, v transmits SL-REQ which includes the obtained
slot usage information and the number of required slots to
CH(v) in REQ. Then, CH(v) temporally allocates the requested
slots to v, which is announced by NOTI in RECV. CH(v)
uses NOTI to announce the slot allocation information to the
member nodes in its cluster. If the requested slots are allocated
in NOTI for v, it goes to S3, otherwise v should return to S1
to obtain the latest slot usage information again.
Example: C selects the first slot of REQ and transmits SL-
REQ in that slot to its cluster head A so as to request 1 data
slot. When A receives SL-REQ, A decides to schedule the
second data slot to C. This is represented by Schedule which
includes the ID (i.e., 3) of C. Then, A transmits NOTI which
contains the Schedule in the second slot of RESV. As a result,
C is able to be allocated to the second data slot in DATA.

S3. Allocation Double Check and Data TX. Once v moves
to S3, it denotes that the temporally allocated slots for v are
not used by any of its 1-hop or 2-hop neighbors until the last
frame. In S3, for the double check v transmits data packets
with a TEST message to the allocated slots. Similar to UI-REQ
in S1, N(v) transmits UI-ACK as a response to the TEST
message. When v collects all UI-ACKs from N(v) and the
allocated slots are correctly marked in all UI-ACKs, which
means that all 1-hop neighbors receive the TEST message
without collisions, v starts to perform data transmission at the
scheduled data slots. However, those allocated slots can be
scheduled at the same time to another node from a different
clusters (e.g., hidden terminal problem, see the following
subsection). In this case, it is possible that at least one node in
N(v) cannot receive the TEST message at the allocated slots
due to collisions. Thus, if v receives UI-ACK from N(v),
where the allocated slots are not marked correctly or does not
receive UI-ACK from any of N(v), v should request to release
the slots to CH(v) using SL-RLS (Slot Release) and go to S1
so as to start the scheduling protocol again.
Example: Following the schedule received at NOTI, C sends
a TEST message to the second slot in DATA to its neighbors.
When the neighbors A, B, and D receive the TEST message,
they send UI-ACK with the updated usage information where
the second slot is marked. As shown in Fig. 2, all second
columns in the usage information are updated to 1. Thus, the
collision-free slot is successfully allocated to C.

Rationale of Allocation Double Check. Up to S2 Slot Al-
location Request phase, if a node is temporally scheduled
to m data slots, it denotes that those m data slots are not
used until the last frame. However, there still exist some
cases where collisions occur in the m slots; hence we say

CH CH

0 3 ∙∙∙ 0 0 5 ∙∙∙ 0

Data Send
on Slot #2

Data Send
on Slot #2

CH CH

0 3 ∙∙∙ 0 0 5 ∙∙∙ 0

No UI-ACK

Release
Slot #2

Release
Slot #2

B

A

C D

E

Fig. 3: Example of failure slot allocation. After Slot Allocation
Request phase, C and E are allocated to the same slot #2. They
transmit TEST messages in the slot #2 and they are collided in that
slot. Then, C and E cannot get UI-ACK from D because D did not
receive the TEST message due to the collision. Thus, C and E fail
to reserve the slot.

the slots are temporally scheduled. This is because, when the
node is scheduled, some other nodes in different clusters can
be scheduled coincidentally to some of the m slots; thereby
those m slots may not collision-free and CH-MAC introduces
Allocation Double Check. We show an example that illustrates
one of the collision cases in Fig. 3. Let us assume that while
C is allocated to the slot #2 as the example in Fig. 2, E is
also coincidentally assigned to the same slot. Then, in S3
Allocation Double Check phase, D cannot receive any TEST
message in the slot #2 due to the collision which occurs by
concurrent transmissions from C and E. Thus, D will not
transmit UI-ACK. Since both C and E cannot receive UI-ACK
from D, they can detect the collision at the scheduled slot. By
doing so, the collision on the scheduled slot is detected, so
that both C and E should release the slot #2 and go to S1 to
request a different slot again.

D. Protocol Description: Other Cases

(a) When v is a cluster head. v as a cluster head can
also request m slots to transmit data packets. In general, the
protocol of v is almost the same as the protocol explained
earlier. More precisely, in S1, v performs the same as the
above protocol. In S2, since v is a cluster head, it allocates m
data slots to itself rather than requests it to others and transmits
NOTI in RECV to notify the schedule to nodes in its cluster.
Lastly, the process in S3 is also the same as the above protocol
except when at least one of UI-ACKs does not correctly mark
the allocated m data slots. Then, v releases the m data slots
by itself and goes to S1 to retry.
(b) When v does not request a slot. Whenever v does not
open a new session, thus does not request a new slot, it always
listens to DATA and maintains the slot usage information of
v’s 1-hop neighbors, which denotes which data slot is used
by one of the neighbors. While maintaining the slot usage
information, when v receives UI-REQ in REQ or a data packet
with a TEST message in DATA, v transmits UI-ACK that
includes the slot usage information in ACK as a response to
UI-REQ or the data packet with the TEST message.

CH

Transmission range

CH

CH

Transmission range

CH

(a) Dumbbell topology with 30 nodes

CN

CH

(b) Random topology with 30 nodes

Fig. 4: Simulation topologies: CH (Cluster Head), CN (Cluster
member Nodes)

(c) When the number of available slots is smaller than
m. If v requests CH(v) to allocate m slots but only fewer
than m slots are available, then the only available slots are
allocated first to v. In this case, v goes to S3 to double check
the allocated slots and concurrently goes to S1 to wait until
the remaining slots become available.

IV. SIMULATION RESULTS

A. Setup

Topology and sessions. For our performance evaluation, we
use NS-3 which is an open source network simulator, and
implement CH-MAC. We have tested many types of topolo-
gies, but due to space limitation, we only show the results for
dumbbell and random topologies with 30 nodes, as depicted in
Fig. 4(a). Note that dumbbell topologies generate highly chal-
lenging scenarios due to a large degree of hidden terminals.
We generate dynamic arrivals of link-level sessions to each
node through Poisson process, whose characteristic is assumed
to be homogeneous across links in terms of arrival intensity
and session workload. We assume that each session has 100
packets to transmit. The inter-arrival time of two consecutive
sessions follows an exponential distribution, whose average
ranges from 0.33 to 5 secs (corresponding to session arrival
rates from 0.2 to 3 sessions/sec). Since we use a constant
number of packets per session in all plots, we just call session
arrival rate as the traffic load of the system. We have run each
simulation scenario 100 times, each with different random
seed. Simulation duration is set to be 100 seconds which is
long enough to see the stable performance.
Tested algorithms and other parameters. As mentioned ear-
lier, CH-MAC operates in a hybrid manner of mixing reactive
and proactive operations for distributed slot allocation, with
the goal of trading off latency and control overhead. Thus, as
compared protocols, we implement two baselines: Proactive
and Reactive, purely proactive and reactive ones, just by
changing the parameters of CH-MAC. Although we do not
compare CH-MAC with other protocols (e.g., MH-DESYNC
[3] or DRAND [10]) mentioned in Section II, we believe
that these baselines show the performance of two extreme
protocol behaviors, which enables us to purely focus on how
beneficial a mixture of proactive and reactive control in slot
allocation is, for fair comparison. Considering the different
message sizes in different sub-frames, we set the slot lengths
in the sub-frames of REQ, RESV, DATA, and ACK as
2ms, 2ms, 4ms, and 0.5ms, respectively. Proactive can be
made by removing REQ and ACK, whereas we can emulate

TABLE I: # of slots of sub-frame and frame length
of slots in a sub-frame Frame length

REQ RESV DATA ACK Total
CH-MAC 6 6 16 30 103ms
Proactive 0 30 16 0 124ms
Reactive 12 0 16 30 103ms

Reative by removing RESV. Other slot-related parameters
are summarized in the Table I.

B. Results

Delay for slot scheduling. Fig. 5(a) shows the average delay,
measured from traffic generation to slot scheduling. Slot
schedule delay consists of: (a) time for information gather-
ing and (b) time for slot collision check. Since Proactive

exchanges the control information among nodes without slot
allocation requests, there is no information gathering delay,
and we have small delay for slot collision checks. CH-MAC
and Reactive exchange the control information whenever
new sessions arrive, resulting in longer delay of information
gathering compared to Proactive. Since CH-MAC utilizes a
cluster structure to reduce the slot collision inside the cluster,
delay for slot collision check in CH-MAC is much shorter
than Reactive, highlighted when the traffic load is high, as
shown in Fig. 5(a). We observe that the delays of CH-MAC
and Reactive for the random topology does not show much
difference. As shown in Fig. 4(b), the average size of a cluster
and the density of the random topology are relatively smaller
than those of the dumbbell topology, thus collisions resolved
by the cluster heads in CH-MAC are much less frequent.

Control overhead and service time. Next, we examine the
number of control packets per session, which shows how effi-
ciently the protocol exchanges the information through control
messages. As shown in Fig. 5(b), the control overhead of
CH-MAC ranges between Proactive and Reactive, where
only cluster heads send the control packets in a proactive
manner, while all other nodes do in a reactive manner. For the
efficiency metric, we measure the average time duration for
which a session stays in the system. This quantifies how fast
and efficiently each protocol utilizes data slots in each frame.
Proactive uses more control slots in each frame to obtain low
delay, while the portion of data slots in each frame decreases
as a trade-off. Reactive efficiently use the limited number
of control slots to reduce overheads, while delay gets longer.
CH-MAC chooses a nice intermediate point between those
two, wherein CH-MAC requires a small number of control
slots to reduce the control delay, while incurring small control
overheads, as seen in Fig. 5(c).

Robustness to mobility. A MAC protocol for MANETs must
work properly when network topology changes. We test the
robustness of CH-MAC under a topology change at 60 seconds
with a dumbbell topology with 30 nodes. We set two kinds
of mobilities: (a) low mobility where at most two of a node’s
neighbors change and (b) high mobility where at least half
of a node’s neighbors change. We assume that there exists
an external mechanism that can detect the topology changes,
notified to CH-MAC within one second of delay. We measured

CH-MAC

Proactive

Reactive

CH-MAC

Proactive

Reactive

Random Network

 S

e
s
s
io

n
 s

c
h

e
d

u
le

 d
e

la
y
 (

m
s
)

200

400

600

800

1000

0

1000

2000

Traffic Load (sessions/s)
1 2

Dumbbell

(a) Slot schedule delay

CH-MAC

Proactive

Reactive

CH-MAC

Proactive

Reactive

Random Network

#

 o
f
c
o

n
tr

o
l
p

a
c
k
e

ts
 p

e
r

s
e

s
s
io

n

0

1000

0

1000

Traffic Load (sessions/s)
1 2

Dumbbell

(b) Control packets transmitted per session

CH-MAC

Proactive

Reactive

CH-MAC

Proactive

Reactive

Random Network

S

e
s
s
io

n
 s

e
rv

ic
e

 t
im

e
 (

s
)

10

12

14

10

12

14

16

18

20

Traffic Load (sessions/s)
1 2

Dumbbell

(c) Session service time

Fig. 5: Simulation results of CH-MAC, proactive and reactive control protocols with 0 to 3 sessions generated per second.

Load 5 - Mobility
Load 5 - No mobility

Load 10 - Mobility
Load 10 - No mobility

Time (s)

S
e

rv
ic

e
 r

a
te

0

1

Low mobility
60 65

High mobility
60 65

Fig. 6: Session service rates. Scenario with topology change is
drawn with solid lines. Scenario which starts from the changed
topology is drawn with dashed lines, to compare with original
performance without mobility changes.

the service rate of sessions, which is a portion of sessions
whose packet is currently being transmitted. As summarized
in Fig. 6, the service rate drops at 60 seconds, since some
destination sessions already unreachable. The service rate
recovers when CH-MAC is notified of the topology change,
and then it recovers quickly to the original value (dashed lines
in Fig. 6) within just two frames.

V. CONCLUSION

In this paper, we proposed a new TDMA MAC protocol,
CH-MAC, over wireless ad-hoc networks, that schedules slots
in a distributed manner. Considering a fundamental tradeoff
between scheduling delay and control overhead, CH-MAC
proposes a hybrid approach of proactive and reactive oper-
ations for finding a conflict-free schedule. To this end, we
exploit a cluster-based architecture, so that intra-cluster phase
takes the proactive selection of candidate safe slots, and inter-
cluster phase is responsible for clearing out the collision from
hidden terminals in a reactive manner. Despite the extensive
array of researches on TDMA protocols over wireless ad-hoc
networks, we believe that this hybrid type of approach is of
broad interest to a flexible MAC design depending on diverse
traffic conditions and QoS. requirements.

ACKNOWLEDGMENT

This work has been supported by the Small-scale Mobile
Ad-hoc Network with Bio-networking Technology project of

Agency for Defense Development (UC170004ED).

REFERENCES

[1] A. Sgora, D. J. Vergados, and D. D. Vergados, “A survey of TDMA
scheduling schemes in wireless multihop networks,” ACM Computing
Surveys (CSUR), vol. 47, no. 3, p. 53, 2015.

[2] T. Kaur and D. Kumar, “TDMA-based MAC protocols for wireless
sensor networks: A survey and comparative analysis,” in Proc. of
WECON, Oct 2016.

[3] Y.-J. Kim, H.-H. Choi, and J.-R. Lee, “A bioinspired fair resource-
allocation algorithm for TDMA-based distributed sensor networks for
IoT,” International Journal of Distributed Sensor Networks, vol. 12,
no. 4, p. 7296359, 2016.

[4] J.-R. Cha, K.-C. Go, J.-H. Kim, and W.-C. Park, “TDMA-based multi-
hop resource reservation protocol for real-time applications in tactical
mobile adhoc network,” in Proc. of IEEE MILCOM, 2010.

[5] C. Zhu and M. S. Corson, “An Evolutionary-TDMA Scheduling Protocol
(E-TDMA) for Mobile Ad Hoc Networks,” in Proc. of ATIRP, 2000.

[6] P. Djukic and S. Valaee, “Distributed link scheduling for TDMA mesh
networks,” in Proc. of IEEE ICC, 2007.

[7] A. Sayadi, B. Wehbi, and A. Laouiti, “One shot slot TDMA-based
reservation MAC protocol for wireless ad hoc networks,” in Proc. of
IEEE VTC, 2011.

[8] A. Kanzaki, T. Uemukai, T. Hara, and S. Nishio, “Dynamic TDMA slot
assignment in ad hoc networks,” in Proc. of IEEE AINA, 2003.

[9] C. Zhu and M. S. Corson, “A five-phase reservation protocol (FPRP)
for mobile ad hoc networks,” in Proc. of IEEE INFOCOM, 1998.

[10] I. Rhee, A. Warrier, J. Min, and L. Xu, “DRAND: Distributed random-
ized TDMA scheduling for wireless ad hoc networks,” IEEE Transac-
tions on Mobile Computing, vol. 8, no. 10, pp. 1384–1396, 2009.

[11] W. Li, J. Wei, and S. Wang, “An evolutionary-dynamic tdma slot
assignment protocol for ad hoc networks,” in Proc. of IEEE WCNC,
March 2007.

[12] Y. Wang and I. Henning, “A deterministic distributed TDMA scheduling
algorithm for wireless sensor networks,” in Proc. of IEEE WiCom, 2007.

[13] S. Gandham, M. Dawande, and R. Prakash, “Link scheduling in wireless
sensor networks: Distributed edge-coloring revisited,” Journal of Paral-
lel and Distributed Computing, vol. 68, no. 8, pp. 1122–1134, 2008.

[14] S. S. Kulkarni and M. Arumugam, “SS-TDMA: A self-stabilizing MAC
for sensor networks,” Sensor network operations, vol. 6, p. 186, 2006.

[15] W. L. Lee, A. Datta, and R. Cardell-Oliver, “FlexiTP: a flexible-
schedule-based TDMA protocol for fault-tolerant and energy-efficient
wireless sensor networks,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 19, no. 6, pp. 851–864, 2008.

[16] J. Degesys, I. Rose, A. Patel, and R. Nagpal, “DESYNC: self-organizing
desynchronization and TDMA on wireless sensor networks,” in Proc. of
ACM IPSN, 2007.

[17] R. G. Bai, Y. G. Qu, Y. Guo, and B. H. Zhao, “An energy-efficient
TDMA MAC for wireless sensor networks,” in Proc. of IEEE APSCC,
2007.

[18] M. J. Miller and N. H. Vaidya, “On-demand TDMA scheduling for en-
ergy conservation in sensor networks,” University of Illinois at Urbana-
Champaign, Tech. Rep, 2004.

