Solving Continual Combinatorial Selection via Deep Reinforcement Learning

Hyungseok Song' , Hyeryung Jang >, Hai Tran Hong'!, Seeun Yun',
Donggyu Yun®, Hyoju Chung®, Yung Yi',
'First Affiliation

2Second Affiliation
3Third Affiliation

{first, second } @example.com, third @other.example.com, fourth@example.com

Abstract

We consider the Markov Decision Process (MDP)
of selecting a subset of items at each step, termed
the Select-MDP (S-MDP). The large state and ac-
tion spaces of S-MDPs make them intractable to
solve with typical reinforcement learning (RL) al-
gorithms, especially when it comes to real-world
problems where the number of items is often huge.
In this paper, we present a deep RL algorithm to
solve this issue by adopting the following key ideas.
First, we convert the original S-MDP into an Itera-
tive Select-MDP (IS-MDP), which is equivalent to
the S-MDP in terms of optimal actions. IS-MDP de-
composes a joint action of selecting K items simul-
taneously into K iterative selections resulting in the
decrease of actions at the expense of an exponential
increase of states. Second, we overcome this state
space explosion by exploiting a special property that
exists uniquely in IS-MDPs - the equi-invariance.
Equi-invariance paves way for the design of our sig-
nificantly simplified K-cascaded deep Q-networks
based on a method named progressive-parameter
sharing. Various experiments demonstrate that our
approach works well even when the item space is
large and that it scales to environments with item
spaces different from those used in training.

1 Introduction

Imagine yourself managing a football team in a league of
many matches. Your goal is to maximize the total number
of winning matches during the league. For each match, you
decide a lineup (action: a) by selecting K players among
N candidates (item) to participate in it and allocating one
of C' positions (command) to each of them, with possible
duplication. You can observe a collection (state: s) of the
current status (information) of each candidate player. During
the match, you cannot supervise anymore until you receive
the result (reward: 7), as well as the changed collection of the
status (next state: 5') of N players. In order to win the long
league, you should pick a proper combination of the selected
players and their positions to achieve not only a myopic result
of the following match but also to consider a long-term plan
such as the rotation of the members. We model an MDP for

these kinds of problems, termed Select-MDP (S-MDP), where
an agent needs to make combinatorial selections sequentially.

There are many applications that can be formulated as an S-
MDP including recommendation systems [Ricci ef al., 2015;
Zheng er al., 2018], contextual combinatorial semi-bandits
[Qin er al., 2014; Li et al., 2016], mobile network scheduling
[Kushner and Whiting, 2004], and fully-cooperative multi-
agent systems controlled by a centralized agent [Usunier et
al., 20171 (when N = K). However, learning a good policy
is challenging because the state and action spaces increase
exponentially in K and N. For example, our experiment
shows that the vanilla DQN [Mnih et al., 2015] proposed to
tackle the large state space issue fails to learn the Q-function
in our test environment of N = 50, even for the simplest case
of C' =1, K = 1. This motivates the research on a scalable
RL algorithm that produces a good policy for tasks modeled
by an S-MDP.

In this paper, we present a novel DQN-based RL algorithm
for S-MDPs by adopting a synergic combination of the follow-
ing two design ideas:

D1. For a given S-MDP, we convert it into a divided but equiv-
alent one, called Iterative Select-MDP (IS-MDP), where
the agent iteratively selects an (item, command) pair one
by one during K steps rather than K items at once. This
transformation significantly relieves the complexity of
the joint action space per state in S-MDP; the agent only
needs to evaluate X NC' actions in IS-MDP, whereas it
should compute () C* actions for each step in S-MDP.
We design K-cascaded deep Q-networks for IS-MDP,
where each Q-network selects an item with an assigned
command respectively while considering the selections
by previous cascaded networks.

D2. Although we significantly reduce per-state action space
in IS-MDP, the state space is still large as N or K grows.
To have scalable and fast training, we consider two differ-
ent parameter sharing methods: I-sharing and U-sharing.
I-sharing is a weight sharing method for each cascaded
Q-network to handle the complexity by N. This is done
by exploiting a special symmetry in IS-MDP called equi-
invariance where the order of items does not matter. We
further simplify those cascaded Q-networks by sharing
weight parameters among them, which reduces the train-
ing complexity for large K. In pactice, we propose to use
a mixture of I- and U-sharing, which we call P-sharing

(progressive sharing), by starting from a single parame-
ter set as in U-sharing and then progressively increasing
the number of parameter sets, approaching to that of
I-sharing.

The superiority of our ideas is discussed and evaluated in
two ways. First, despite the drastic parameter reduction, we
claim that I-sharing does not hurt the expressive power too
much by proving (i) relative local optimality and (ii) universal-
ity of I-sharing. Note that this analytical result is not limited
to a Q-function approximator in RL, but is also applied to any
neural network with parameter sharing in other contexts such
as supervised learning. Second, we evaluate our approach on
two self-designed S-MDP environments (circle selection and
selective predator-prey) and observe a significantly high perfor-
mance improvement, especially with large N (e.g., N = 200),
over other baselines. Moreover, the trained parameters can
generalize to other environments of much larger item sizes
without additional training, where we use the trained parame-
ters in N = 50 for those in N = 200.

1.1 Related Work

Combinatorial Optimization via RL Recent works on
deep RL have been solving NP-hard combinatorial optimiza-
tion problems on graphs [Dai ez al., 20171, Traveling Salesman
problems [Kool et al., 2019], and recommendation systems
[Chen et al., 2018; Deudon et al., 2018]. In many works for
combinatorial optimization problems, they do not consider
the future state after selecting a combination of K items and
some other commands. [Chen et al., 2018] suggests similar
cascaded Q-networks without efficient weight sharing which
is crucial in handling large dimensional items. [Usunier et al.,
2017] suggests a centralized MARL algorithm where the agent
randomly selects an item first and then considers the command.
Independent Deep Q-network (IDQN) [Tampuu et al., 2017] is
an MARL algorithm where each item independently chooses
its command using its Q-network. To summarize, our contribu-
tion is to extend and integrate those combinatorial optimization
problems successfully and to provide a scalable RL algorithm
using weight shared Q-networks.

Parameter Sharing on Neural Networks and Analysis
Parameter shared neural networks have been studied on vari-
ous structured data domains such as graphs [Kipf and Welling,
2017] and sets. These networks do not only save signifi-
cant memory and computational cost but also perform usu-
ally better than non-parameter shared networks. For the
case of set-structured data, there are two major categories:
equivariant [Ravanbakhsh er al., 2017a; Jason and Devon
R Graham, 2018] and invariant networks [Qi et al., 2017,
Zaheer et al., 2017; Maron et al., 2019]. In this paper, we de-
velop a parameter shared network (I-sharing) which contains
both permutation equivariant and invariant properties. Em-
pirical successes of parameter sharing have led many works
to delve into its mathematical properties. [Qi ef al., 2017,
Zaheer et al., 2017; Maron et al., 2019] show the universality
of invariant networks for various symmetries. As for equivari-
ant networks, a relatively small number of works analyze their
performance. [Ravanbakhsh et al., 2017b; Zaheer er al., 2017,
Jason and Devon R Graham, 2018] find necessary and suffi-
cient conditions of equivariant linear layers. [Yarotsky, 2018]

. @ = {(iz 1), (i3,¢2)}

§= (i1 12 03)

s)
§'= (i, i5,5)
(a) Select-MDP (S-MDP) 7

=0 97 @D s (e ’
= Guiaiy) BSICTON Li= i)
s=(x,10) s =(x, i) s=(x10)
r=0 r=7

(b) Iterative-Select MDP (IS-MDP)

Figure 1: Example of an S-MDP and its equivalent IS-MDP for
N =3and K = 2.

designs a universal equivariant network based on polynomial
layers. However, their polynomial layers are different from
widely used linear layers. In our paper, we prove two theo-
rems which mathematically guarantee the performance of our
permutation equi-invariant networks in different ways. Both
theorems can be applied to other similar related works.

a=(izc) [x=0)

2 Preliminary
2.1 Iterative Select-MDP (IS-MDP)

Given an S-MDP, we formally describe an IS-MDP as a tuple
M = (S, A, P,R,) that makes a selection of K items and
corresponding commands in an S-MDP through K consecu-
tive selections. Fig. 1 shows an example of the conversion
from an S-MDP to its equivalent IS-MDP. In IS-MDP, given
a tuple of the N-item information (iy,...,iy), with i, € Z
being the information of the item 7, the agent selects one
item 4, and assigns a command c € C at every ‘phase’ k for
0 < k < K. After K phases, it forms a joint selection of
K items and commands, and a probabilistic transition of the
N-item information and the associated reward are given.

To elaborate, at each phase k, the agent observes a state
s= ((z1,...,2k), (i1,...,iN—k)) € Sk which consists of a
set of k pairs of information and command which are selected
in prior phases, denoted as * = (z1,...,z)), with z; €
7 x C being a pair selected in the kth phase, and a tuple of
information of the unselected items up to phase k, denoted as
i = (i1,...,in—). From the observation s € Sy, at phase
k, the agent selects an item n among the N — k unselected
items and assigns a command c, i.e., a feasible action space for
state s is given by A(s) := {(n,¢) | n € {1,...,N—k}, c €
C}, where (n, c) represents a selection (i, c). As a result,
the state and action spaces of an IS-MDP are given by S =
Uo<r<r Sk and A = | J, s A(s), respectively. We note that
any state § = (i1, ..., 4y) in an S-MDP belongs to Sy, i.e., the
Oth phase. In an IS-MDP, action a = (n, c¢) € A(s) for state
s = (x,1) € Sy results in the next state s’ = (& + (in,), % —
in) € Skﬂl and a reward r, which are characterized by the
transition probability P of S-MDP as

k<K-1, P(s,0]|s,a)=1, .
k=K -1, P(s,7]|sa)=PE, 7|5 a). M

The decomposition of joint action in S-MDPs (i.e., selecting K
items at once) into K consecutive selections in IS-MDPs has

'We use +,— as & + x := (21, --,2x,2) and 4 — 4, =
(ks "y n—1,0nt1, "+, IN).

equivalence in terms of the optimal policy [Maes et al., 2009].
Important advantage from the decomposition is that IS-MDPs
have action space A of size K NC' while the action space of
S-MDPs is (X)CX. However, two challenges are added: (i)
the state space S of IS-MDPs is exponentially increasing as
K grows, and (ii) the dimensions of state space Sy, and action
space {A(s)}ses, are different from phase to phase. We aim
at proposing a method to address (i) and (ii) in Sec. 3.

2.2 Deep Q-network (DQN)

We provide a background of the DQN [Mnih e al., 2015], one
of the standard deep RL algorithms, whose key ideas such as
the target network and replay buffer will also be used in our
proposed method. The goal of RL is to learn an optimal policy
7*(als) : S x A+ [0,1] that maximizes the expected dis-
counted return. We denote the optimal action-value functions
(Q-function) under the optimal policy 7* by Q*(s,a). The
deep Q-network (DQN) parameterizes and approximates the
optimal Q-function Q*(s, a) using the so-called Q-network
Q(s, a;w), i.e., a deep neural network with a weight parameter
vector w. In DQN, the parameter w is learned by sampling
minibatches of experience (s, a,r, s") from the replay buffer
and using the following loss function:

2
1) = (Qs.ai0) = (r 47 max, Q' a'5w))” @)

a’€A(s’
where ' is the target parameter which follows the main pa-
rameter w slowly. It is common to approximate Q(s;w) :
S > RO rather than Q(s, a;w) using a neural network so
that all action values can be easily computed at once.

3 Methods

In this section, we present a symmetric property of IS-MDP,
which is referred to as Equi-Invariance (EI), and propose an
efficient RL algorithm to solve IS-MDP by constructing K
cascaded Q-networks with two-levels of parameter sharing.

3.1 IS-MDP: Equi-Invariance

As mentioned in Sec. 2.1, a state s = (¢, ¢) at phase k includes
two sets « and ¢ of observations, so that we have some permu-
tation properties related to the ordering of elements in each
set. To elaborate, we denote as o5 = (0,,0;) € Sk X Sn—k
a permutation of a state s at phase k, which is defined as
US(S) = (Uw(w)vai(i))7 3
where S is a group of permutations of a set with & elements.
Under the optimal policy, the equivalent states s and o4(s)
should be treated equally. If the action a = (n,c¢) € A(s) is
the best action for s, then for state o5(s), an optimal policy
should choose a proper associated action o;(a) := (0;(n), ¢).
As aresult, we have Vs € S,Va € A(s),
Q" (s,a) = Q*(0s(s),04(a)). “)
Focusing on Q-value function Q*(s) = [Q* (s, a)]ac.a(s)
as discussed in Sec. 2.2, a permutation o5 = (0, 0;) of a state
s permutes the output of the function Q*(s) according to the
permutation o;. In other words, a state s and the permutation
thereof, o4(s), have equi-invariant optimal Q-value function
Q*(s). This is stated in the following proposition which is a
rewritten form of (4).

Proposition 1 (Equi-Invariance of IS-MDP). In IS-MDP, the
optimal Q-function Q*(s) of any state s = (x,i1) € S is
invariant to the permutation of a set x and equivariant to the
permutation of a set 1, i.e. for any permutation o5 = (0, 0;),

Q" (04(s)) = 0i(Q"(s))-)

As we will discuss later, this EI property in (5) plays a
critical role in reducing state and action spaces by considering
(s, a) pairs and permutations thereof to be the same. We follow
the idea in [Zinkevich and Balch, 2001] to prove Proposition 1.

3.2 Iterative Select Q-learning (ISQ)

Cascaded Deep Q-networks As mentioned in Sec. 2.1, the
dimensions of state and action spaces differ over phases. In
particular, as the phase k progresses, the set x of the state
increases while the set ¢ and the action space A(s) decrease.
Recall that the action space of state s € Sy is A(s) = {(n,¢) |
n € {1,...,N — k},c¢c € C}. Then, Q-value function at
each phase k, denoted as Q(s) = [Q(s,a)]qeca(s) for s €
Sk, is characterized by a mapping from a state space S to
RN=F)XC "where the (n, c)-th output element corresponds to
the value Q(s,a) of a = (n,c) € A(s).

To solve IS-MDP using a DQN-based scheme, we con-
struct K deep Q-networks that are cascaded, where the kth
Q-network, denoted as Qy(s; wy), approximates the Q-value
function Qi (s) with a learnable parameter vector wy. We
denote by w = {wito<k<k and W’ = {w)}o<k<i the
collections of the main and target weight vectors for all K-
cascaded Q-networks, respectively. With these K-cascaded
Q-networks, DQN-based scheme can be applied to each Q-
network Qi (s;wg) for 0 < k < K using the associated
loss function as in (2) with w = wy and W’ = wj; (since
s' € Sky1), which we name Iterative Select Q-learning (ISQ).

Clearly, a naive ISQ algorithm would have training chal-
lenges due to the large-scale of N and K since (i) number of
parameters in each network wy, increases as [V increases and
(ii) size of the parameter set w also increases as K increases.
To overcome these, we propose parameter sharing ideas which
are described next.

Intra Parameter Sharing (I-sharing) To overcome the pa-
rameter explosion for large /V in each Q-network, we propose
a parameter sharing scheme, called intra parameter sharing
(I-sharing). Focusing on the kth Q-network without loss of
generality, the Q-network with I-sharing has a reduced pa-
rameter vector 62, yet it satisfies the EI property in (5), as
discussed shortly.

The Q-network with I-sharing Q(+; 0) is a multi-layered
neural network constructed by stacking two types of parameter-
shared layers: ¢ and . As illustrated in Fig. 2, where the
same colored and dashed weights are tied together, the layer
@y, 1s designed to preserve an equivariance of the permutation
os = (04,0;) € Sk X Sn_p, while the layer ¢, is designed
to satisfy invariance of o, as well as equivariance of o;, i.e.,

br(os(x, 1)) = 05(Pr(z, 1)),
VYr(os(x, 1)) = oi(Yr(z, 1))

*To distinguish the parameters of Q-networks with and without
I-sharing, we use notations 6 and wy, for each case, respectively.

Qo(-;6o)

Q1(-561)

Q2(-;62) Qo(-;6o)

Figure 2: A simple example of the parameter-shared Q-networks Qx(-;6x) when K = 3, N = 4,|C|= 1. Red and blue colored nodes
represent the nodes equivariant to the selected items « and the unselected items % respectively. Each black node represents the Q value for

selecting the corresponding (item, command) pair.

Then, we construct the Q-network with I-sharing Q(-; 0y) by
first stacking multiple layers of ¢; followed by a single layer
of 1y, as

Qr(s;0k) =Yrodro---0dr(s),

where 6y, is properly set to have tied values. Since composition
of the permutation equivariant/invariant layers preserves the
permutation properties, we obtain the following EI property

Qr(0s(x,7); 0k) = 0i(Qr (2, %; 0%)).

ISQ algorithm with I-sharing, termed ISQ-I, achieves a sig-
nificant reduction of the number of parameters from |w|=
O(N?K) to |6]= O(K), where 8 = {0 }o<k< K is the col-
lection of the parameters. We refer the readers to our technical
report [Report, 2019] for a more mathematical description of
I-sharing.

Unified Parameter Sharing (U-sharing) We propose an
another-level of weight sharing method for ISQ, called unified
parameter sharing (U-sharing). We observe that each I-shared
Q-network Q(-; 0) has a fixed number of parameters re-
gardless of phase k. This is well described in Fig. 2, where the
number of different edges are the same in ()1 and)3. From
this observation, we additionally share 6; among the different
Q-networks Qy, i.e. g = --- = O _1. U-sharing enables
the reduction of the number of weights from O(K) for 6 to
O(1) for g = --- = Ok _1. Our intuition for U-sharing is
that since the order of the selected items does not affect the
transition of S-MDP, the criteria for selecting items is similar
in every phase. This implies that the weight vectors 6, may
also have similar values. However, too aggressive sharing
such as sharing all the weights may experience significantly
reduced expressive power.

Progressive Parameter Sharing (P-sharing) To take the
advantages of both I- and U-sharing, we propose a combined
method called progressive parameter sharing (P-sharing). In
P-sharing, we start with a single parameter set (as in U-sharing)
and then progressively double the number of sets until it
reaches K (the same as I-sharing). The Q-networks with
nearby phases (Qx and Q1) tend to share a parameter set
longer as visualized in Fig. 3, which we believe is because
they have a similar criterion. In the early unstable stage of the
learning, the Q-networks are trained sample-efficiently as they
exploit the advantages of U-sharing. As the training continues,
the Q-networks are able to be trained more elaborately, with
more accurate expressive power, by increasing the number of

(& Wl
@—@

Tep(@ 0@
2 = U3
e @@

Training step progresses

Figure 3: Illustration of P-sharing for K = 4. In the beginning, all
Q-networks share the same weights. As the training progresses, we
double the number of parameter sets until each Q-network Q) is
trained with its own parameter vectors 0.

parameter sets. In P-sharing, the number of the total weight
parameters ranges from O(1) to O(K) during training.

4 Intra-Sharing: Optimality and Universal
Approximation

One may naturally raise the question of whether the I-shared
Q-network Qg (s;0) : Sk — RG] has enough expressive
power to represent the optimal Q-function Q}(s) : S, —
R of the IS-MDP despite the large reduction in the num-
ber of the parameters from O(N2K) to O(K). In this section,
we present two theorems that show Qs ; 0y) has enough ex-
pressive power to approximate Q% (s) with the EI property in
(5). Theorem 1 states how I-sharing affects local optimality
and Theorem 2 states whether the network still satisfies the
universal approximation even with the equi-invariance prop-
erty. Due to space constraint, we present the proof of the
theorems in the technical report [Report, 2019]. We com-
ment that both theorems can be directly applied to other sim-
ilar weight shared neural networks, e.g., [Qi ef al., 2017,
Zaheer et al., 2017; Ravanbakhsh er al., 2017b]. For presenta-
tional convenience, we denote Q07 (s) as Q*(s), Qx(s;wy) as

Q. (), and Q(s;0k) as Qy(s).

Relative Local Optimality We compare the expressive
power of I-shared Q-network)y and vanilla Q-network @, of
the same structure when approximating a function Q* satisfies
the EI property. Let © and 2 denote weight vector spaces
for Qg and @, respectively. Since both), and @)y have the
same network sructure, we can define a projection mapping
w : © — Q) such that Q9 = Qp for any 0. Now, we intro-
duce a loss surface function I (w) of the weight parameter

vector w:

lo(w) == Y _|Qu(s) — Q*(s),

sEB

where B C Sy, is a batch of state samples at phase k and Q*(s)
implies the true Q-values to be approximated. Note that this
loss surface [, is different from the loss function of DQN in
(2). However, from the EI property in Q*(s), we can augment
additional true state samples and the true Q-values by using
equivalent states for all 05 € S, X Sy_p,

Low)=) (ZIQW(%(S)) - Q*(as(s))F) :

0sESEXSN_k seB

We denote the loss surface Lo (6) := Lo(w(0)) in the weight
shared parameter space ©.

Theorem 1 (Relative Local Optimality). If 0* € © is a local
optimal parameter vector of the loss surface Lo (0), then the
projected parameter w(0*) €) is also the local optimal point
of Lo(w).

It is notoriously hard to find a local optimal point by us-
ing gradient descent methods because of many saddle points
in high dimensional deep neural networks [Dauphin er al.,
2014]. However, we are able to efficiently seek for a local op-
timal parameter 8* on the smaller dimensional space ©, rather
than exploring 2. The quality of the searched local optimal
parameters w(6*) is reported to be reasonable that most of
the local optimal parameters give nearly optimal performance
in high dimensional neural networks [Dauphin et al., 2014;
Kawaguchi, 2016; Laurent and Brecht, 2018] To summarize,
Theorem 1 implies that Qg has similar expressive power to
@, if both have the same architecture.

Universal Approximation We now present a result related
to the universality of Qg (s) when it approximates Q*(s).

Theorem 2 (Universal Approximation). Let Q* : S, —
RW=R)XC satisfies EI property. If the domain spaces T and C
are compact, for any € > 0, there exists a 4-layered I-shared
neural network Qg : Sy — RIN=F)XC with g finite number
of neurons, which satisfies

Vs € Sk, |Q*(s) — Qo(s)|< e

Both Theorems 1 and 2 represent the expressive power
of the I-shared neural network for approximating an equi-
invariant function. However, they differ in the sense that
Theorem 1 directly compares the expressive power of the
I-shared network to the network without parameter sharing,
whereas Theorem 2 states the potential power of the I-shared
network that any function f with EI property allows good
approximation as the number of nodes in the hidden layers
sufficiently increase.

5 Simulations

5.1 Environments and Tested Algorithms

Circle Selection (CS) In Circle Selection (CS) task, there
are N selectable and U unselectable circles, where each cir-
cle is randomly moving and its radius increases with random

noise. The agent observes positions and radius values of all
the circles as a state, selects K circles among N selectable
ones, and chooses 1 out of the 5 commands: moves up, down,
left, right, or stay. Then, the agent receives a negative or
zero reward if the selected circles overlap with unselectable or
other selected circles, respectively; otherwise, it can receive a
positive reward. The amount of reward is related to a summa-
tion of the selected circles’ area. All selected circles and any
overlapping unselectable circle are replaced by new circles,
which are initialized at random locations with small initial
radius. Therefore, the agent needs to avoid the overlaps by
carefully choosing circles and their commands to move.

Selective Predator-Prey (PP) In this task, multiple preda-
tors capture randomly moving preys. The agent observes the
positions of all the predators and preys, selects K predators,
and assigns the commands as in the CS task. Only selected
predators can move according to the assigned command and
capture the preys. The number of preys caught by the preda-
tors is given as a reward, where a prey is caught if and only if
more than two predators catch the prey simultaneously.

Tested Algorithms and Setup We compare the three vari-
ants of ISQ: ISQ-I, ISQ-U, ISQ-P with three DQN-based
schemes: (i) a vanilla DQN [Mnih et al., 2015], (ii) a sort-
ing DQN that reduces the state space by sorting the order of
items based on a pre-defined rule, and (iii) a myopic DQN
which learns to maximize the instantaneous reward for the
current step, but follows all other ideas of ISQ. We also con-
sider three other baselines motivated by value-based MARL
algorithms in [Tampuu er al., 2017; Usunier et al., 2017;
Chen et al., 2018]: Independent DQN (IDQN), Random-Select
DQN (RSQ), and Element-wise DQN (EQ). In IDQN, each
item observes the whole state and has its own Q-function with
action space equals to C. In RSQ, the agent randomly selects
items first and chooses commands from their Q-functions. EQ
uses only local information to calculate each Q-value. We
evaluate the models by averaging rewards with 20 indepen-
dent episodes. The shaded area in each plot indicates 95%
confidence intervals in 4 different trials, where all the details
of the hyperparameters are provided in [Report, 2019].

5.2 Single Item Selection (K = 1)

To see the impact of I-sharing, we consider the CS task with
K =1,U =1, and C = {stay}, and compare ISQ-I with a
vanilla DQN and a sorting DQN. Fig. 4a illustrates the learning
performance of the algorithms for N = 5, 20, and 50.

Impact of I-sharing The vanilla DQN performs well when
N = b, but it fails to learn when N = 20 and 50 due to
the lack of considering equi-invariance in IS-MDP. Compared
to the vanilla DQN, the sorting DQN learns better policies
under large N by reducing the state space through sorting.
However, ISQ-I still outperforms the sorting DQN when N is
large. This result originated from the fact that sorting DQN
is affected a lot by the choice of the sorting rule. In contrast,
ISQ-I exploits equi-invariance with I-shared Q-network so it
can outperform the other baselines for all Vs especially when
N is large. The result coincides to our mathematical analysis
in Theorem 1 and Theorem 2 which guarantee the expressive
power of I-shared Q-network for IS-MDP.

— 15Q-l — I5Q-l
0.15 0.8 1SQ-U e o A MISAY 0.8 1SQ-U
- - — sQp v WW-M L isop
$ 0.10 501 5 0.6] — Rsq W 5061 reo
2 Vanilla —— IDON — IDON
Q Sorting @ 0.4 = Q 0.4
< 005 o — MQ — MQ
0.2 EQ o 0.2 EQ
—— 1SQ-I (1) — 1SQ-1 (1)
0.00 0.0 |- 0.0l ===
5 20 50 0 100 200 300 400 500 0 100 200 300 400 500

Number of Items (N)
(a) Single selection (K = 1)

Training steps (X 10000)
b)N=50,K =6

Training steps (X 10000)
(c) N =200,K =6

Figure 4: Performances for CS tasks. (a): final performances of the methods for single selection with N = 5, 20, 50. (b) and (c): learning
curves for K = 6, U = 0 with N = 50, 200. ISQ-I (1) corresponds to the ISQ-I with a single command ‘stay’.

0.8 — I1sQ-l 0.8 0.8
ke Tos Cos
> TR b S 3 04 3 04
(= £Q =P g,
00 L 0.0 0.0
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Training steps (X 10000) Training steps (X 10000) Training steps (X 10000)
(N =10,K =4 b)N=10,K =7 (c)N=10,K =10
Figure 5: Learning curves for the PP task with 10 predators and 4 preys. Each episode consists of 175 steps.
5.3 Multiple Item Selection (K > 1) Impact of P-sharing By sharing the parameters in the be-

To exploit the symmetry in the tasks, we apply I- sharing to
all the baselines. For CS task, the environment settings are
K =6,|C|=5,U = 0and N = 50,200. For PP task, we
test with 10 predators (N = 10) and 4 preys in a 10 x 10
grid world for K = 4,7,10. The learning curves in both
CS task (Fig. 4) and PP task (Fig. 5) clearly show that ISQ-I
outperforms the other baselines (except other ISQ variants) in
most of the scenarios even though we modify all the baselines
to apply I-sharing. This demonstrates that ISQ successfully
considers the requisites for S-MDP or IS-MDP: a combination
of the selected items, command assignment, and future state
after the combinatorial selection.

Power of ISQ: Proper Selection Though I-shared Q-
networks give the ability to handle large NV to all the baselines,
ISQs outperform all others in every task. This is because only
ISQ can handle all the requisites to compute correct Q-values.
IDQN and RSQ perform poorly in many tasks since they do
not smartly select the items. RSQ performs much worse than
ISQ when K < N in both tasks since it only focuses on
assigning proper commands but not on selecting good items.
Even when K = N (Fig. 5¢), ISQ-I is better than RSQ since
RSQ needs to explore all combinations of selection, while
ISQ-I only needs to explore specific combinations. The other
baselines show the importance of future prediction, action se-
lection, and full observation. First, MQ shares the parameters
like ISQ-IL, but it only considers a reward for the current state.
Their difference in performance shows the gap between con-
sidering and not considering future prediction in both tasks.
In addition, ISQ-I (1) only needs to select items but still has
lower performance compared to ISQ-I. This shows that ISQ-I
is able to exploit the large action space. Finally, EQ estimates
Q-functions using each item’s information. The performance
gap between EQ and ISQ-I shows the effect of considering
full observation in calculating Q-values.

ginning, ISQ-P learns significantly faster than ISQ-I in all
cases as illustrated by the learning curves in Fig. 4 and 5.
ISQ-P also outperforms ISQ-U in the PP task because of the
increase in the number of parameters at the end of the training
process. With these advantages, ISQ-P achieves two goals at
once: fast training in early stage and good final performances.

Power of ISQ: Generalization Capability Another advan-
tage of ISQ is powerful generality under environments with
different number of items, which is important in real situa-
tions. When the number of items changes, a typical Q-network
needs to be trained again. However, ISQ has a fixed number of
parameters |@|= O(K) regardless of N. Therefore, we can re-
use the trained 6}, for an item size Ny, to re-construct another
model for a different item size N;.. From the experiments of
ISQ-P on different CS scenarios, we observe that for the case
Ny = 50, Ne = 200, ISQ-P shows an 103% performance
compared to N¢,. = 200, N, = 200. In contrast, for the case
Ny = 200 and Ny = 50, it shows an 86% performance
compared to Ny, = 50 and Ny, = 50. These are remarkable
results since the numbers of the items are fourfold different
(N = 50,200). We conjecture that ISQ can learn a policy
efficiently in an environment with a small number of items
and transfer the knowledge to a different and more difficult
environment with a large number of items.

6 Conclusion

In this paper, we develop a highly efficient and scalable algo-
rithm to solve continual combinatorial selection by converting
the original MDP into an equivalent MDP and leveraging
two levels of weight sharing for the neural network. We pro-
vide mathematical guarantees for the expressive power of the
weight shared neural network. Progressive-sharing share ad-
ditional weight parameters among K cascaded Q-networks.
We demonstrate that our design of progressive sharing outper-
forms other baselines in various large-scale tasks.

References

[Chen et al., 2018] Xinshi Chen, Shuang Li, Hui Li, Shaohua
Jiang, Yuan Qi, and Le Song. Neural model-based rein-
forcement learning for recommendation. arXiv preprint
arXiv:1812.10613, 2018.

[Dai et al., 2017] Hanjun Dai, Elias B Khalil, Yuyu Zhang,
Bistra Dilkina, and Le Song. Learning combinatorial opti-
mization algorithms over graphs. In NeurlIPS, 2017.

[Dauphin ef al., 2014] Yann N Dauphin, Razvan Pascanu,
Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and
Yoshua Bengio. Identifying and attacking the saddle point
problem in high-dimensional non-convex optimization. In
NeurlPS, 2014.

[Deudon et al., 2018] Michel Deudon, Pierre Cournut,
Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin
Rousseau. Learning heuristics for the tsp by policy
gradient. In CPAIOR. Springer, 2018.

[Gybenko, 1989] G Gybenko. Approximation by superpo-
sition of sigmoidal functions. Mathematics of Control,
Signals and Systems, 2(4):303-314, 1989.

[Jason and Devon R Graham, 2018] Hartford Jason and Sia-
mak Ravanbakhsh Devon R Graham, Kevin Leyton-Brown.
Deep models of interactions across sets. In ICML, 2018.

[Kawaguchi, 2016] Kenji Kawaguchi. Deep learning without
poor local minima. In NeurIPS, 2016.

[Kipf and Welling, 2017] Thomas N Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[Kool et al., 2019] Wouter Kool, Herke van Hoof, and Max
Welling. Attention, learn to solve routing problems! In
ICLR, 2019.

[Kushner and Whiting, 2004] Harold J Kushner and Philip A
Whiting. Convergence of proportional-fair sharing algo-
rithms under general conditions. IEEE Transactions on
Wireless Communications, 3(4):1250-1259, 2004.

[Laurent and Brecht, 2018] Thomas Laurent and James
Brecht. Deep linear networks with arbitrary loss: All local
minima are global. In ICML, 2018.

[Li et al.,2016] Shuai Li, Baoxiang Wang, Shengyu Zhang,
and Wei Chen. Contextual combinatorial cascading bandits.
In ICML, 2016.

[Maes et al., 2009] Francis Maes, Ludovic Denoyer, and
Patrick Gallinari. Structured prediction with reinforcement
learning. Machine learning, 77(2-3):271, 2009.

[Maron er al., 2019] Haggai Maron, Ethan Fetaya, Nimrod
Segol, and Yaron Lipman. On the universality of invariant
networks. arXiv preprint arXiv:1901.09342, 2019.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529, 2015.

[Qi et al., 2017] Charles R Qi, Hao Su, Kaichun Mo, and
Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In CVPR, 2017.

[Qin er al., 2014] Lijing Qin, Shouyuan Chen, and Xiaoyan
Zhu. Contextual combinatorial bandit and its application
on diversified online recommendation. In ICDM. SIAM,
2014.

[Ravanbakhsh et al., 2017a] Siamak Ravanbakhsh, Jeff
Schneider, and Barnabas Poczos. Deep learning with sets
and point clouds. In ICLR, workshop track, 2017.

[Ravanbakhsh et al., 2017b] Siamak Ravanbakhsh, Jeff
Schneider, and Barnabas P6czos. Equivariance through
parameter-sharing. In ICML, 2017.

[Report, 2019] Report. Solving continual combina-
torial selection via deep reinforcement learning.
https://github.com/anonybot, 2019.

[Ricci et al., 2015] Francesco Ricci, Lior Rokach, and
Bracha Shapira. Recommender systems: Introduction and
challenges. In Recommender systems handbook. Springer,
2015.

[Tampuu et al., 2017] Ardi Tampuu, Tambet Matiisen, Do-
rian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru,
Jaan Aru, and Raul Vicente. Multiagent cooperation and
competition with deep reinforcement learning. PloS one,
12(4):e0172395, 2017.

[Usunier ef al., 2017] Nicolas Usunier, Gabriel Synnaeve,
Zeming Lin, and Soumith Chintala. Episodic exploration
for deep deterministic policies for starcraft micromanage-
ment. In /ICLR, 2017.

[Yarotsky, 2018] Dmitry Yarotsky. Universal approximations
of invariant maps by neural networks. arXiv preprint
arXiv:1804.10306, 2018.

[Zaheer et al., 2017] Manzil Zaheer, Satwik Kottur, Siamak
Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov,
and Alexander J Smola. Deep sets. In NeurIPS, 2017.

[Zheng et al., 2018] Guanjie Zheng, Fuzheng Zhang, Zihan
Zheng, Yang Xiang, Nicholas Jing Yuan, Xing Xie, and
Zhenhui Li. Drn: A deep reinforcement learning framework
for news recommendation. In WWW, 2018.

[Zinkevich and Balch, 2001] Martin Zinkevich and Tucker
Balch. Symmetry in markov decision processes and its
implications for single agent and multi agent learning. In
ICML, 2001.

Appendix A Intra-Parameter Sharing
A.1 Single Channel
In this section, we formally redefine the two types of the previously defined weight shared layers ¢ (-) and v (-) with the EI
property, i.e., for all o5 := (04, 0;) € Sk X SN_k,
¢1€(03(x7 7’)) = Gs(¢k(m7 Z))) ¢k(0s($a 7’)) = Ui(wk(ma Z))

We start with the simplest case when ¢, : RI®l x RI*l — RI#l x RI?l and ¢, : RI*I x RI*l — RI#l. This case can be
regarded as a state s = (x,4) where © = (z1,---,2;) € R¥and i = (iy,---,iy_x) € RV "% in Section 3.2. Let I, € Rk*¥
and I; € RW=F)X(N=k) are the identity matrices. We denote 1,; € RF*(N=k) 1, ¢ RIN=k)xk 7 . ¢ RF¥1 and
1;1 € RIW=K)X1 are the matrices of ones.

Layer ¢, Let ¢y (x,4) := (X, I) with &, X € R¥ and i, T € RV ~F where the output of the layers X and I are defined as

X = p(WwQB + WI’IiL' + Wa;ﬂ’l, + bw), I.= p(Wl’L + Wi’ii + me + bz) (6)
with a non-linear activation function p. The parameter shared matrices W, - - -, W; ; defined as follows:
w. Wi
Wac = WTIT7 WT,T = ﬁlm,m; W’I‘,’L = ﬁlx,iv bz = b.’r]-m,h
W; = W;L;, Wi = |Tl|’lli,z‘, Wiz = |71’|m1i,zv by :=b;1;1.
The entries in the weight matrices W, - - - | b; are tied by real-value parameters W, - -+, b; € R, respectively. Some weight

matrices such as W, ,, W, ;. W, .. W, ; have normalizing term 1/|x| (= 1/k) or 1/|¢| (= 1/(IN — k)). In our empirical
simulation results, these normalizations help the stable training as well as increase the generalization capability of the Q-
networks.

Layer ¢, The only difference of v, from ¢, is that the range of vy (x, %) is restricted in I of (6), i.e., ¥y (x,3) := I € RNF

where I = p(Wyx + W, ;@ + W, ;i + b;). The weight matrices are similarly defined as in the ¢, case:

Wi Wi o
=1, Wigi=——
|4 ||

Deep Neural Network with Stacked Layers Recall that the I-shared network Qg (- ; %) is formed as follows:
Qo5 0r) ==vrodp o i)

where D denotes the number of the stacked mutiple layers belonging to ¢;. Therefore, the weight parameter vector 6, for
Qo(-; Oy) consists of {W¢, .- d}g for ¢y and {W;, WZ s Wiz, bi } for 1. In contrast, the projected vector w(fy,) consists
of high dimenional weight parameter vectors such as {W4, - .. d}g for ¢y, and {W;, W, ;, W, .., b; } for 9.

A.2 Multiple Channels

Multiple Channels. In the above section, we describe simplified versions of the intra-sharing layers
or s RIEx RIS RIZEcREL g RI=H S RIED 5 RIEL

In this section, we extend this to

Ok le"Pm“Fli"Pi N R\m\~0m+\i|'07,7 Uy : R‘ml'Pm"rlil‘Pi N Rll\oq (7)

W, =WLi, W,;:= iz, bi=101;1.

where Py, P;, O, O, are the numbers of the features for the input a, ¢ and the output X, I of each layer, respectively. The
role of the numbers is similar to that of channels in convolutional neural networks which increase the expressive power and
handle the multiple feature vectors. This wideness allows more expressive power due to the increased numbers of the hidden
nodes, according to the universial approximatin theorem [Gybenko, 1989]. Furthermore, our Theorem 2 also holds with proper
feature numbers in the hidden layers. Without loss of generality, we handle the case for P, = Py, = Pand O, = O, = O. We
use superscripts x(P y'P) and X Y forpe {1,---,P}and o € {1,---, O} to denote such channels. Our architecture
satisfies that cross-channel interactions are fully connected. Layer ¢ (, ¢) with multiple channels is as follows:

X = p (i (W< PPy Wi W<0P) 4 b<">>>

(zp:((o) +W<op> <>+W<o,p> <p>+b§0>)>

\\\\\ ”,/
~ ~ P -
(@ Qu ®) Qo)
Figure 6: The example networks with permuted weight parameter vectors by o € S3 where (1) = 3,0(2) = 2,0(3) = 1. If weights in the

different network have the same color then they also share the same weight values.

where
(0,p) (O‘,p>
wiep) .— wiop [wiop) .— |xf|¢ 1 W<D.’p> o %1) blo) .— plodq .
x x T x,T . T Z,T x,1 . i T, x x z,1
(0,p) (0,p)
W{(‘%P) = W4<0’p>I' W{(?&D) = 1,1 1. Wv<0717> p— i,T 1, b<0> = b<0>1_ 1.
[[1) i,1 |1,| 2,0 1,T |m| ,T) [[1,
Similar to the above cases, the entries in the weight matrices Wéo’p), RN b§0> are tied together by real-value param-
eters Wgﬁo’p >, = -,bl@ respectively. The weight parameter vector 0y for Qg(-; 0;) with multiple channels consists of

{Wd - b3}4=D for ¢y, and {W;, W; ;, W; ., b;} for 1/.. In contrast, the projected vector w(fy,) consists of high dimenional
weight parameter vectors such as {W2, - .. b3}4=D for ¢, and {W;, W, ;, W, .., b;} for).

Appendix B Proofs of the theorems

B.1 Relative Local optimality: Theorem 1

To simplify the explanation, we only consider the case when phase k = 0so s = (i) = (41, --,4x) and Q* is permutation
equivariant to the order of z. Furthermore, we consider the case of a single channel described in Section A.1. Therefore, we
omit to notate k in this subsection and denote o rather than o; € Sx. However, our idea for the proof can be easily adapted to
extended cases such as £ > 0 or multiple channels. To summarize, our goal is to show relative local optimality in Theorem 1
where the loss function L, is defined as

Lo@)i= > 3 |Qu(o(d) - Q(o(@))]:

oc€eSN 1€EB

Skectch of Proof To use contradiction, we assume that there exists at least one local minima 6* € © in the loss function Lg
for I-shared network Qg while w(6*) € is not a local minima in the loss function L for non-weight shared network Q..
Therefore, there must be a vector wy € 2 in © which makes the directional derivative D, Lo (w(6*)) < 0. We first extend the
definition of each o € Sy to the corresponding mapping o : 2 — 2. We can generate N! more derivative vector o (wq) for each
o such that D () La(w(0*)) = Dy, La(w(0*)) < 0. Therefore, the sum of the whole permuted vectors @ := » g o(wo) is
also a negative derivative vector while belongs to w(©) since w has the effect of I-sharing from the summation of the all permuted
derivative vectors. This fact guarantees the existence of a derivative vector 6 € © such that @ = w(f) and DzLe(f) < 0 and
contradicts to the aformentioned assumption that 6* is the local optimal minima of Lg.

Extended Definition for o € Sy In this paragraph, we will extend the concept of the permutation o € Sy from the original
definition on the set {1,2,- -+, N'} to the permutation on the weight parameter vector w in non-shared weight parameter vector
space (2, i.e., o : {1 — (Q to satisfy the below statement,

Vo€ Sy, Vw e, Vi e RN, 0(Qu(i)) = Qo(w)(o(4)). ®)

To define the permutation with the property in (8), we shall describe how o permutes weight parameters in a layer ¢, : RY — RY
in @, which can be represented as

¢u(i) = Wi+b 9)
where W € RV*N is a weight matrix and b € R is a biased vector. In the permuted layer G (w)» the weight matrix W and b
in (9) convert to M, o W o M1 and M,, o b, respectively. M, is a permutation matrix defined as M, := [eg(l), e eU(N)]

where e,, is a standard dimensional basis vector in RY. With the permuted weights, we can easily see 0 (¢w (%)) = Po(w) (0 (7))
for all o, w, and 4. Therefore, the network (), (,,) which is a composite of the layers ¢ (.,)s satisfies (8). Figure 6 describes an
example of the permutation on w.

Note that the projected weight parameter vector w() for an arbitrary § € © is invariant to the permutation o : 2 — (2 since
w(0) satisfies the symmetry among the weights from I-sharing, i.e.,

V0 € ©,%0 € Sy, w(®) = o(w(®)). (10)

Lemma 1 (Permutation Invariant Loss Function). For any weight parameter vectors w € §, 0 € ©, and o € Sy, the below
equation holds.

Lo(w(0) + w) = La(w(8) + o(w)). (11)
(Proof of Lemma 1). We can derive the result of Lemma 1 from the below statement.
2
Lo(@(®) +00@) = 3 3| Quity o (7(3) — Q"(o()
oceSN i€B
2
= 3 Y Qo mnooi o a) - @ (eooo ool@)| (1 (10)
ceSN i€B
2
= 3= Y Jo0(Quysalest 0 0@)) oo (@' (o5 0 0(4)))| (2 5).®)
ceSN 1€EB
2
= Y Y@@ - @ 6)] (¢ = 05" 00)
o'€SN i€EB

= Lo(w(f) + w).
O

(Proof of Theorem 1). We use contradiction by assumping that there exists a local minima 6* € © of Lg while w(6*) € 2 is not
a local minima of Lg,. Since w(6*) is not local minima of Lg,, there exists a vector wy € 2 such that the directional derivative of
Lo (w(0*)) along wy is negative, i.e., D, (La(w(6*))) < 0. We can find N! additional vectors which have a negative derivative
by permuting the wy € S and exploiting the result of Lemma 1.

Doy (Lap(w(8"))) = lim L2+ holwo)) = La(w(®7))

h—0 h
o La(w(0*) + hwo) — La(w(0%)) .
= lim Q }? Q (. (11))

= Doy (La(w(6"))) < 0.

The existence of the above limit can be induced from the differentiability of the activation function p. Furthermore, the activation
function is continuously differentiable, so if we setw :=) Sy o(wop),

Dg(La(@(0%))) = Y Do(u) (La(w(6*))) < 0.

oceESN

From the symmetricity of @ due to the summation of the N! permuted vectors, there exists a vector § € © such that @ = w(f).
Thus, Dgz(Lo(w(0*))) = Dg(La(w(8*))) < 0 which contradicts to the assumption that §* is the local minima on the loss
function Lgq. O

B.2 Proof of Theorem 2

Sketch of Proof We denote X' := 7 x C as the domain of the information of the selected items «. Recall I-shared Q-network
Qo(x,3) : XF x IN—F — RIV=K)XC and the optimal Q-function Q*(x, %) : X* x TN —F — RIN=F)*C for each phase k share
the same input and output domain. We denote [Qg(x,)]; € R® and [Q*(z,%)]; € R as the jth row of output of Qp(z, %) and
Q* (zx, ?) respectively for 1 < j < N — k. In other words,

Kgﬁ(w’iﬂl
(Qg(w,i):: e].

[Qe(mv.i)]N—k-

X1 X2 Y1 Y2

Figure 7: A simplified version of I-shared Q-network Qg(x,i) when N = 4 and & = 2 to approximate Q*(x,i) =
H(Ycp&a(2),d5, 2 c; &i(d)). If the edges share the same color and shape in the same layer, the corresponding weight parameters

are tied together. The yellow dotted lines represent a mapping to approximate &, (x). The blued solid lines represent an identity mapping. The
grey dashed lines represent &; (). Finally, the green edges generate a mapping to approximate H.

In this proof, we will show that each [Q*(x,?)]; can be approximated by [Qs(x,%)];. From the EI property of
Q*(z, 1), the jth row [Q*(z,)]; : &% x ZN-F — R is permutation invariant to the orders of the elements in & and
i = (i1, ,4j-1,%541, -, IN—k) Tespectively, i.e.,

Vo, € Si, Yo, € Sn_k—1, [Q*(x,15,1-)]; = [@" (0(),1j,0:_(i-))];- (12)

In Lemma 2, we show that [Q*(«,i;,%_)]; can be decomposed in the form of H (Y . &x(7), 45,2 ;c; &i(i)) where H, &, &,
are proper continuous functions. Finally, we prove that I-shared Q-network Q9 with more than four layers can approximate the
decomposed forms of the functions: H, §,,and §,.

Lemma 2. If a continuous function F(x,i,i_): X* x T x ZTNF-1 R is permutation invariant to the orders of the items
ineeXandi_ e TN+ je,

Vo, € Sk, Yo,_ € Sn_k—1, F(oz(x),i,0,_(i-)) = F(xz,i,i_).
if and only if F(x,i,1_) can be represented by proper continous functions H, &, and &; with the form of
Fla,ii) :H(Zfr(az),z’, 3 §i(i)>. (13)
TET 1€T_

Proof. The sufficiency is easily derived from the fact that 7 &, (), and)., &;(i) are permutation invariant to the orders

of and i_ respectively. Therefore, H (Domew &a(T)6, D ey 51(2)) must be permutation invariant to the orders of « and ©_.

To prove the necessity, we exploit a result of Theorem 7 in [Zaheer er al., 2017] about the existences of following continuous
functions with proper compact sets Xy and Z, on Euclidean space.

I, : Xé€+1 — Xk, 3 X — Xéﬂ‘l’ N2 (P pen a(x)) =, (14)
W YR INRL 3 T TR (Y ieq &ild)) =i

Therefore, we can define a continuous function H (-, -, -) : XF* x T x TV "% = RC as
H(,w0) = Fne (), - mi()).
It is obvious that the function H satisfies (13). O

(@r<o0 b)yr=0 (c)r>0

Figure 8: Example scenarios of the CS task with NV = 3 selectable (orange colored) and U = 1 unselectable (green dashed) circles, with
K = 2 selected (shaded) circles. The assigned commands are represented by the arrows. The agent receives (a) negative reward if selected
circles overlap with unselectable one; (b) zero reward if only selected circles are overlapped with each other; and (c) positive reward if there is
no overlap.

Proof. With the result of the lemma, the only remained problem to be checked is that I-shared Q-network Qg (x,;,%_) with 4
layers is able to approximate H (3, c,, §o(2), 45,22, c; &y(y)) if the size of the nodes increases. During this proof, we use the

universal approximation theorem by [Gybenko, 1989] which shows that any continuous function f on a compact domain can
be approximated by a proper 2-layered neural network. To approximate functions of the decomposition, we can increase the
number of the channels described in Section A.2. We omit the biased term b for simplicity. Figure 7 describes the architecture of
Qg. For &,, there exist weight parameter vectors M and M’ in 6 such that &, ~ M o M’. We set W} := M’ and Wg?l =M
I 0
0 R
edges). The identity in W' and W? = I (Blue edges) represent the passing i; as the input of H. We set W and W} to satisfy
H ~ W3 o W2 (Green edges). Other weight parameters such as Wi?ji just have zero values. With this weight parameter vector

(Apricot edges). Similarly, we can also find weight parameter vectors W} := } and I/VfZ := R where §; =~ Ro R’ (Grey

for Qp, Qo(x,1;,%_,;) successfully approximates the function H(Domew & (T) 8, D s fL(z)) = [Q*(x,%,1_)]; which is

jth row values of Q*. Furthermore, the EI property also implies that for all j, [Qg(x,¢,4_)]; are the same function, in fact.
Therefore, the I-shared Q-network Q¢ with this architecture can approximate all the rows of Q* simultaneously.
O

Appendix C Detailed Experiment Settings

In this subsection, we explain the environment settings in more detail.

C.1 Evaluation Settings

Circle Selection (CS) As mentioned in Section 5.1, the game consists of NV selectable and U unselectable circles within a
1 x 1 square area, as shown in Fig. 8. Here, circles are the items and i,, := (pos,, DPOSy, rad) are their contexts, where pos,,
and pos,, are their center coordinates. Initially, all circles have random coordinates and radius, sampled from (pos,, pos,) €
[—0.5,0.5] x [—0.5,0.5] and rad € [0,0.45] respectively, After the agent selects K circles with the allocated commands,
transition by S-MDP occurs as follows. The selected circles disappear. The unselectable circles that collide with the selected
circles disappear. New circles replace the disappeared circles, each of initial radius 0.01 with uniformly random position in
[—0.5,0.5] x [—0.5,0.5]. Remaining circles expand randomly by [0.045, 0.055] in radius (until maximum radius 0.45) and move
with a noise sampled uniformly from [—0.01,0.01] x [—0.01,0.01]. The agent also receives reward r after the K'th selection,
calculated for each selected circle k of area Aj, as follows: Case 1. The selected circle collides with one or more unselectable
circle: » = —Ay. Case 2. Not case 1, but the selected circle collides with another selected circle: » = 0. Case 3. Neither case 1
nor 2: r = Ay. We test our algorithm when K = 6 with varying N = 50, 200. This fact is described in Figure 8.

C.2 Predator-Prey (PP)

In PP, N predators and U preys are moving in G x G grid world. After the agent selects K predators as well as the commands,
the transition in S-MDP occurs. In our experiments, we tested the baselines when N = 10, U = 4 with varying K = 4,7,10
while G = 10. A reward is a number of the preys that are caught by more than two predators simultaneously. For each prey,
there are at most 8 neighborhood grids where the predator can catch the prey.

C.3 Intra-sharing with unselectable items

In real applications, external context information can be beneficial for the selection in S-MDP. For instance, in the football league
example, the enemy team’s information can be useful to decide a lineup for the next match. ISQ can handle this contextual
information easily with a simple modification of the neural network. Similar to invariant part for previously selected items

(red parts in Fig. 2) of I-shared Q-network, we can add another invariant part in the Q-networks for the external context: the
information of the unselectable circles (CS) and prey (PP).

C.4 Hyperparameters

During our experiment, we first tuned our hyperparameters for CS and applied all hyperparmeters to other experiments. The
below table shows our hyperparameters and our comments for Q-neural networks.

Table 1: Training hyperparameters

Hyperparameter Value Descriptions
Replay buffer size 50,000 Larger is stable
Minibatch size 64 Larger performs better
Learning rate (Adam) 0.001 Larger is faster and unstable
Discount factor 0.99 Discount factor «y used in Q-learning update
Target network update frequency 1000 Ztlégsl)a {)geiroii%u;ggeiﬁsgssutﬁ?lén number of training
Initial exploration 1 Initial value of € used in e-greedy exploration
Final exploration 0.1 Final value of € used in e-greedy exploration
Number of layers 3 The number of the layers in the Q-network
Number of nodes 48 The number of channels per each item in a layer
R . The number of random seeds for the independent

andom seed 4 .

training

C.5 Computation cost

We test all baselines on our servers with Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz (Cpu). Our algorithm (ISQ-I) able
to run 1.1610° steps during one day in CS (N = 200, K = 6). Usually, ISQ-I is robust to large N from I-sharing. However,
the computation time linearly increases as /' grows since the number of the networks should be trained increases large. This
problem will be fixed if we exploit the parallelization with GPUs.

	Introduction
	Related Work

	Preliminary
	Iterative Select-MDP (IS-MDP)
	Deep Q-network (DQN)

	Methods
	IS-MDP: Equi-Invariance
	Iterative Select Q-learning (ISQ)

	Intra-Sharing: Optimality and Universal Approximation
	Simulations
	Environments and Tested Algorithms
	Single Item Selection (K=1)
	Multiple Item Selection (K > 1)

	Conclusion
	Appendices
	Appendix Intra-Parameter Sharing
	Single Channel
	Multiple Channels

	Appendix Proofs of the theorems
	Relative Local optimality: Theorem 1
	Proof of Theorem 2

	Appendix Detailed Experiment Settings
	Evaluation Settings
	Predator-Prey (PP)
	Intra-sharing with unselectable items
	Hyperparameters
	Computation cost

