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ABSTRACT

This paper presents GateScatter, the first backscatter-based gate-
way connecting commodity IoT to WiFi. The backscatter design
of GateScatter is an economic option towards pervasive Internet
connectivity for ever-growing IoT. The carefully designed tag opti-
mally reshapes ZigBee IoT packets with an arbitrary payload into
an 802.11b WiFi packet over the air, such that the payload can be
reliably retrieved at the WiFi receiver (hence a gateway). Gate-
Scatter is highly compatible - it works with a wide range of IEEE
802.15.4-compliant systems, is agnostic to upper layer proprietary
protocols, and does not require any modification to the commodity
IoT platforms. GateScatter is extended to BLE IoT for generality.
We prototype GateScatter hardware on FPGA where the wide ap-
plicability is demonstrated through evaluations on five popular IoT
devices including Samsung SmartThings sensor, Philips smart bulb,
and Amazon Echo Plus. Further extensive evaluations show that
GateScatter consistently achieves throughput above 200 kbps and
range of over 27 m under diverse practical scenarios including a
corridor, dormitory room, and under user mobility.
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1 INTRODUCTION

The Internet of Things (IoT) era is rapidly emerging with the explo-
sive growth of wireless devices covering every corner of our living
spaces, expected to reach 20 billion by 2020 [17]. IoT envisions any-
where and anytime service, where pervasive Internet connectivity
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Figure 1: GateScatter covers blind spots of traditional multi-
radio gateways, inevitable with an ever-growing body of IoT.

is the key. IoT devices are often equipped with low-power radio
(e.g., ZigBee), where they rely on multi-radio gateways for connec-
tion to WiFi networks (and to the Internet). Therefore, IoT Internet
connectivity is fundamentally throttled by the gateway deployment.
In other words, it is crucial to have prevalent deployment of the
gateways in order to provide seamless Internet connectivity as IoT
continuously grows to extreme scale, becomes increasingly mobile,
and produces a greater volume of data.

Despite the criticality of gateway prevalence (i.e., pervasive In-
ternet connectivity) on the performance of IoT services, the current
gateways commonly face a few challenges against massive deploy-
ment that enforce limited installation in practice: (i) Gateways are
equipped with multi-radio interfaces, making them power hungry,
and thus typically wall-plugged [45, 48]. This significantly limits
outdoor deployment as well as mobility. (ii) Gateways are high-
priced, ranging up to 600 USD [12, 21, 45]. (iii) They are vendor-
specific - i.e., Different manufacturers have their own gateway.
Such incompatibility is another limiting factor against prevalent
gateway support. The aforementioned constraints call for a scalable,
low-cost, low-energy, and universal (i.e., across vendors) solution
which brings IoT Internet connectivity where the current gateway
systems fall short.

This paper presents GateScatter, a unique backscatter-based gate-
way with the aim of offering pervasive IoT Internet connectivity. As
depicted in Figure 1, we envision that GateScatter can be a prevalent
technology that fills in the inevitable blind spots of the current com-
mercial gateway systems (due to limited deployments). Specifically,
backscatter-based design essentially enables prevalent installation
of GateScatter at a very low deployment cost (typically < 1 USD
per tag) and near-zero maintenance effort via batteryless operation
with energy harvesting. Furthermore, GateScatter is compatible
with various commodity, readily deployed IoT devices running Zig-
Bee. This is achieved by carefully leveraging common physical layer
properties in the wireless signal.
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GateScatter seamlessly converts arbitrary ZigBee packets with
proprietary upper layer protocols (e.g., [15, 19]) emitted from com-
modity IoT devices into WiFi signal over the air, while preserving
the original bits (hence a gateway). The key technique of Gate-
Scatter is signal reshaping, which converts ZigBee OQPSK chips
into 802.11b WiFi Barker code in an extremely energy-efficient
manner. Thus, it can be performed on batteryless tags by energy
harvesting. This becomes possible by carefully-designed impedance
pattern that selectively and optimally reshapes (i.e., adjusts fre-
quency and phase) only the quadrature of the ZigBee’s OQPSK
(complex signal) to approximate the WiFi’s DBPSK (real signal). In
the meantime, the in-phase component is effectively rejected by
leveraging orthogonality to suppress noise in WiFi signal. Most
importantly, this technique applies to any ZigBee packet with an
arbitrary payload which need not be known a priori regardless of
various proprietary upper layer protocols — an essential property
to operate as a gateway. The general applicability of GateScatter as
an IoT gateway was demonstrated on five popular commodity IoT
systems including Philips Hue, Samsung SmartThings, and Amazon
Echo Plus. We also extend GateScatter to support BLE IoT devices
and evaluate the design on physical testbeds.

The large body of backscatter work [5, 25, 31, 36, 62, 65] com-
monly aims at conveying tag data (e.g., readings from sensors
attached to the tag). As an example of Interscatter [25], the tag
manipulates a dedicated Bluetooth signal (i.e., a single-tone sine
wave) into a WiFi frame that carries the tag’s sensory readings.
On the contrary, tag data is not of interest in GateScatter. Instead,
GateScatter focuses on gateway operation of translating and trans-
parently delivering data between two incompatible commodity
networks - e.g., ZigBee and WiFi. The key technical difference lies
in how to maintain the original content sent by IoT devices and
how to recover this content at the WiFi receiver. That is, our design
suggests a clean slate approach where backscatter is leveraged to
seamlessly reshape the signal over the air to bridge heterogeneous
networks. To the best of our knowledge, GateScatter is the first of its
kind, where the idea can be generally applied to various networks.
Unique technical challenges in the design of GateScatter include:
(i) the tag that optimally reshapes an IoT packet into a WiFi packet
in the presence of significant bandwidth gaps and modulation dif-
ferences among the signals, e.g., ZigBee with 2 MHz OQPSK —
WiFi with 22 MHz DBPSK (Section 3.3), (ii) selectively capturing
quadrature components of the ZigBee signal for signal synchro-
nization with a WiFi receiver (Section 3.4), and (iii) assembling a
standard-compliant WiFi packet (Section 3.5). The contributions of
our work are three-fold:

o We design GateScatter, a novel backscatter-based gateway

that connects IoT devices to the Internet. This is achieved
by reshaping ZigBee packets into WiFi while keeping the
original contents intact. GateScatter does not require mod-
ifications on the commodity IoT devices, indicating high
practicality. We further extend GateScatter for BLE to show
the generality of GateScatter.
GateScatter incorporates a technique of signal selection where
it selectively backscatters a signal portion of interest (i.e.,
quadrature). This is a fundamental technique for conversion
between complex signals (e.g., ZigBee) and real signals (e.g.,
WiFi 802.11b).
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e We implement GateScatter on FPGA platform for extensive
evaluation. We demonstrated GateScatter working as the IoT
gateway with commodity IoT devices from various vendors
such as Samsung, Amazon, and Philips. Throughput and
communication ranges under various environments were
also tested, where GateScatter achieved a high throughput
of 222 kbps and 662 kbps for ZigBee and BLE IoT devices,
respectively, reaching near the maximum throughput limited
by the standards. Communication ranges were 27 m and 23
m for ZigBee and BLE, respectively.

Table 1: Vendor-specific gateways

Vendor | Samsung | Philips Hive Xiaomi | IKEA
Prop-| - Smart | pp | Hive | Mijia | Tradfii
rietary | Things
PHY 802.15.4 | 802.15.4 | 802.15.4 | 802.15.4 | 802.15.4

2 MOTIVATION

While traditional multi-radio gateways are highly effective, preva-
lent deployment of such gateways is limited in practice, due to
their high power consumption!(thus wall-plugged), high cost, and
incompatible proprietary protocols. Here, we discuss the possibility
of backscatter-based gateway that can be pervasively deployed to
augment the current IoT systems.

2.1 Opportunity of Backscatter-based Gateway

Various commodity IoT systems running vendor-specific (=propri-
etary) protocols (Table 1) share the same physical (i.e., PHY) layer
of IEEE 802.15.4 [34]. This applies to diverse standard-compliant
IoT systems (e.g., ZigBee [67], WirelessHART [50], ISA100.11a [23],
TSCH [1]). Such consistency offers backscatter with a unique oppor-
tunity to operate as a unified gateway, by essentially leveraging the
known waveform following the same modulation. This is because,
applying the fixed and simple signal manipulation at the passband
- which is achievable with a backscatter - transforms arbitrary IoT
packet into a target signal (WiFi in GateScatter). This indicates a
potential of backscatter-based unified gateway compatible with a
wide range of IEEE 802.15.4-compliant IoT systems.

2.2 Potential for Pervasive Deployment

Backscatter-based design has significant benefits in power and cost
efficiencies. Specifically, as signal is processed in the passband,
it consumes only tens of microwatts. This is a three-fold power
efficiency compared to traditional multi-radio gateways (with base-
band signal processing) that typically consume more than tens of
milliwatts [14, 54]. This enables GateScatter to be powered solely
by energy harvesting, while power-hungry multi-radio gateways
need to be wall-plugged. Furthermore, the cost of backscatters can
be projected from commodity RFID tags, ranging at 1-3 USD [2, 51].
Such low power and cost enable GateScatter to be pervasively
deployed with a minimum maintenance and deployment cost, to
effectively support mobile scenarios and cover blind spots left out
by the traditional gateways.

!SmartThings [48] and Hue [45] gateways consume 3 W and 1.5 W, respectively.
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Mobility support. The simple backscatter-based design minimizes
the formfactor which can be attached to mobile devices and other
personal items in the form of stickers. For instance, attaching Gate-
Scatter to a mobile WiFi device (e.g., smart phone or tablet) enables
direct interaction with the IoT without the help of traditional gate-
ways. This is especially effective for outdoor scenarios and man-
agement of large-scale IoT deployed across a wide region, such as
smart farm and smart factory. This is demonstrated in Section 7.7.

Blind spot coverage. Explosive growth of IoT devices deployed in
every corner of our living space leads to inevitable blind spots from
the coverage of the traditional gateways — thus disconnection from
the Internet. Deploying GateScatter on those blind spots restores
the Internet access of the IoT devices. In other words, GateScatter
is an economic solution for blind spot coverage to push towards
pervasive Internet connectivity for the ever-growing IoT. This is
demonstrated in Section 7.8.
(i) Query (via Cross-tech. comm.)

— A S .
@ GateScatter

U S~o__ S -_/
(i) Respons_(-: § (ii) Signal (V) Read data

reshaping
Figure 2: GateScatter operation scenario. No changes are
made to the commodity IoT. The WiFi device receives the
reshaped IoT packet as the legitimate WiFi packet.

3 GATESCATTER DESIGN

This section discusses the overview of the GateScatter design, fol-
lowed by the technical background and the detailed design.

3.1 Overview

This section discusses the operation overview of our design via
a walk-through example in Figure 2. In this typical scenario, IoT
devices upload sensor data in response to a query over the WiFi
(or the Internet). (i) The WiFi device (e.g., laptop, smartphone)
transmits a query directly to the IoT device. This leverages the
recently-announced cross-technology communication [37] which
enables a commodity WiFi to transmit ZigBee or BLE packets en-
capsulated in a WiFi frame payload. Briefly, the technique exploits
the high degree of freedom in signal manipulation of WiFi QAM,
to approximate the target signals (i.e., ZigBee or BLE). (ii) Upon
receiving the query, the IoT device responds with a ZigBee packet
carrying sensor data, which is (iii) then reshaped into a WiFi signal
in the air via GateScatter. (iv) The WiFi device receives the reshaped
signal as the legitimate WiFi packet, and then it retrieves the orig-
inal IoT bits from the received packet according to the mapping
from WiFi bits to IoT bits (see Section 3.6 for details).

GateScatter aims at 802.11b because of two reasons: (i) The data
rate of ZigBee and BLE is 250 kbps and 1 Mbps, respectively, and
thus the minimum data rate — 1 Mbps of 802.11b is enough to sup-
port both ZigBee and BLE. (ii) In order to provide wide compatibility
for WiFi devices, almost every WiFi chip is backward compatible.
Hence, choosing 802.11b as the target signal makes any WiFi device
receive 802.11b packets. It is important to note that IoT side remains
as is without any reprogramming or additional operation through-
out the entire scenario. This is often the case under practice since
most IoT devices are difficult to reprogram due to lack of interface,
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if not impossible. Lastly, GateScatter blindly passes IoT data bit by
bit to WiFi without data processing or interpretation. Our back-
scatter approach does not require disclosing packet structures and
therefore bypasses security concerns related to protocol exposure.

ZigBee ZigBee
Baseband Signal Passband Signal

Passband
Module

ZigBee
Symbol

0x0...
—

In-phase chips

1,0,1,0, ...
DSSS OQPSK
Module o Modulation

Quadrature chips

(a) ZigBee Transmitter Architecture
Half-sine

In-phase

0.5 us|. ,
offset |

Quadrature

(b) Example of ZigBee Baseband Signal

Figure 3: (a) ZigBee transmitter architecture and (b) example
ZigBee baseband signal.

WiFi
Passband Signal WiFi Phase sample WiFi bits
— Baseband Signal 0,0,7,0,... 0,0,1,1,...

Baseband Barker code WiFi bits
Module Correlation Demodulation
(a) WiFi Receiver Architecture
| | | | |

| |
I I
‘ Inverted | Barer code

Barker code In-phase

(b) Example of 802.11b Baseband Signal

Barker code [ Barker code ‘

Figure 4: (a) WiFi (802.11b) receiver architecture and (b) ex-
ample 802.11b baseband signal (Barker code).

3.2 Background

Here, we briefly describe ZigBee and WiFi signals, as a background
to understand the GateScatter design.

ZigBee signal. Figure 3(a) depicts the ZigBee transmitter architec-
ture. A ZigBee symbol (0-F) is first spread into 32 chips (either 0 or
1) via the mapping table in the Direct Sequence Spread Spectrum
(DSSS) module. Then, the series of chips take turns to be assigned
to in-phase and quadrature, where chip 1 and 0 are modulated
into 1 ps-long positive and negative half-sine signals, respectively.
Figure 3(b) shows an example baseband signal demonstrating +
half-sine signals. Between in-phase and quadrature is an offset of
0.5 ps (thus Offset Quadrature Phase Shift Keying).

WiFi signal. Figure 4(a) illustrates the WiFi (802.11b) receiver archi-
tecture. Upon reception, the signal is down converted to baseband.
Figure 4(b) is an example of the base WiFi signal made up of 1
ps-long (non-)inverted Barker codes with the phase difference of
7. We also note that WiFi 802.11b signal with 1 Mbps only has
in-phase (i.e., real signal), as opposed to in-phase and quadrature
in ZigBee (i.e., complex signal). The Barker code in the received
signal is detected via correlation with the ideal Barker code, where
the correlation greater than a certain threshold indicates detec-
tion. Finally, the transition between consecutive Barker codes (i.e.,
non-inverted < inverted) indicates bit 1, and 0 otherwise (thus
Differential Binary Phase Shift Keying).
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Backscatter. A backscatter tag is a low-power device which com-
municates by reflecting the wireless signal in the air, powered by
harvesting only or batteries for several years. Recent literature
demonstrates that backscatter is capable of modifying amplitude,
frequency, and phase of the wireless signal [25, 62], where the re-
flected signal can be represented as the time-domain multiplication
between the passband RF signal (i.e., excitation signal) and the sig-
nal generated by the tag (i.e, tag signal). Thus, by manipulating
the tag signal, the passband RF signal can be reshaped over the air.
The GateScatter is built on top of this foundational technique.

3.3 Signal Reshaping

In GateScatter, the ZigBee signals are first transformed to approxi-
mate a WiFi signal; we refer to this process as signal reshaping. This
is applied bit by bit, without any assumption on the data contained
or the packet structure (except for IEEE standard compliance). Sig-
nal reshaping operates at the passband of 2.4 GHz, without the need
for the power-hungry GHz oscillator (required to bring down the
signal to baseband). To that end, GateScatter leverages the prop-
erty where the frequency and phase transition performed at the
passband propagates to the baseband operation at the receiver (i.e.,
WiFi) and directly affects the decoding. This can be easily derived as
follows: let S(¢) and f indicate the baseband signal and the carrier
frequency, respectively. By denoting the GateScatter frequency and
phase as fr and 0r, the reshaped signal becomes:

S(t)el2mfet . oi(2nfri+Or)
R S
passband signal ~ tag signal
which is fed into the a mixer and a low-pass filter at the receiver.
This simply yields S(¢) - e/ (27 frt+07) indicating that the received
WiFi signal directly reflects the frequency and phase of the tag
signal. This validates that the signal reshaping can be performed at
the passband, enabling backscatter operation.

Signal reshaping holds even between the signals with significant
bandwidth gap and disparate modulations. Figure 5 depicts a walk-
through example of signal reshaping for the case of ZigBee (2
MHz OQPSK) to WiFi (22 MHz DBPSK). ZigBee’s quadrature half-
sine signal with 2 MHz bandwidth (Figure 5(a)) is multiplied to
the tag signal in Figure 5(b) to correlate with the WiFi’s 22 MHz
Barker code in Figure 5(c). Quadrature portion of the ZigBee signal
(instead of in-phase) is leveraged to exploit the unique quadrature
bit sequence for lossless decoding at the WiFi receiver, which we
discuss in detail in Section 3.6. Signal reshaping effectively expands
the bandwidth of the 2 MHz ZigBee signal by multiplying higher
frequency tag signal to follow the 22 MHz WiFi.? In other words,
signal reshaping manipulates the ZigBee signal to approximate the
WiFi signal, overcoming the significant bandwidth gap.

We note that, when ZigBee signal is negative half-sine signal,
the reshaped signal correlates to inverted Barker code, and non-
inverted Barker code for positive half-sine. This demonstrates the
key idea of signal reshaping - the fixed tag signal in Figure 5(b)
outputs (non-)inverted Barker codes on the backscattered signal,
directly reflecting the original ZigBee data (i.e., + half-sine). In other
words, interpreting the decoded bits at the WiFi receiver enables

2Tag and ZigBee signals are multiplied in the time domain, or equivalently, convoluted
in the frequency domain, indicating frequency expansion.
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Figure 5: Reshaping the ZigBee signal (i.e., half-sine signal)
with phases 7 or 0.
Reshaped signal (In-phase)

Barker code

|
| |
|
|

(a) ZigBee’s half-sine signal (b) Reshaped signal
(In-phase) (vs. Barker code)
Figure 6: (a) example of ZigBee in-phase signal, and (b) result
of signal reshaping.

recovering the original IoT bits (details in Section 3.6). From the
implementation feasibility point of view, the tag signal in Figure 5(b)
has the dominant frequency component of 22 MHz, with the phase
changing between 0 and  at most every 11—1 s following the Barker
code. This can easily be generated on backscatter devices with a
low-power ring oscillator, which is known to operate reliably more
than 36 MHz with only 9.7 yW power consumption [25].

WiFi decodes with the correlation threshold of % and —% [53]
to detect non-inverted and inverted Barker codes, where the corre-
lation is computed as the cross-correlation between the received
signal and the non-inverted Barker code. The non-inverted < in-
verted transition between consecutive Barker codes are interpreted
as bit 0 (no transition) and 1 (transition). It is worth noting that the
threshold is set to be very low for robustness of WiFi. Due to this
low threshold, there are many feasible tag signals that can be used
for signal reshaping (i.e., has higher correlation than the threshold).
Figure 5(c) depicts an example tag signal, T, that reaches the ab-
solute maximum correlation of 0.69; T =[1-111-1111-1-1-1].
We let S be a set of tag signals with the correlation exceeding
the threshold. Among them, signal selection optimally picks the
tag signal to reshape only the target signal (i.e., the quadrature
component). This is discussed in the following section.

3.4 Signal Selection

In addition to achieving high correlation, GateScatter needs to
precisely select the target signal to backscatter. This is essentially
because the ZigBee signal (OQPSK) contains both in-phase and
quadrature components (i.e., complex signal), while WiFi (DBPSK)
expects only one of the two (i.e., real signal). To address this, Gate-
Scatter selects the quadrature portion of ZigBee (detailed reason in
Section 3.6) when it generates WiFi packet containing IoT data. The
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selection should be done in passband, as backscatters are unable to
perform basedband processing. We note that, due to passband pro-
cessing, reshaping simultaneously affects in-phase and quadrature.
From the system point of view, selecting quadrature is equivalent to
synchronizing the WiFi receiver to the reshaped quadrature signal.

Figure 6(a) shows the in-phase component of the ZigBee sig-
nal, where Figure 6(b) is the corresponding backscattered signal
using the example tag signal T in Figure 5(b). The correlation be-
tween the Barker code and the reshaped in-phase is also beyond
WiFi’s correlation threshold of % (i.e., 0.69), which may induce
false synchronization to in-phase. To avoid this issue, we carefully
reshape (i.e., select tag signal) such that only the quadrature ex-
ceeds the threshold. If reshaping is correctly performed, in-phase
(below threshold) is naturally rejected at the WiFi receiver, only
leaving quadrature in effect. Since S contains all the tag signals
with quadrature above the threshold, the optimal tag signal for
signal selection must be in this set. Finding such a tag signal from
the set S can be formulated as an optimization problem defined
for the ZigBee half-sine signal duration of 1 ps. Let I(t) and Q(t)
be the in-phase and the quadrature of the ZigBee signal at time ¢,
respectively. Then, for some time #( at which the target signal (i.e.,
Q(t)) needs to be synchronized, the problem is given by:

argmax Cor(Q(tp) - T), (1)
TeS

s.t. Cor(Q(ty + At) - T) < Cyp, VAL € (0, 1ps], (2)

Cor(I(to + At) - T) < Csp, VAL € [0, 1ps], 3)

where for X(t) € {Q(¢), I(t)}, X(¢) - T is a multiplication between
X(t) and T for 1 us in the time domain, or equivalently, X (¢) re-
shaped with T. Cor(X(t)-T) is the correlation value between X (¢)-T
and the Barker code, and Cyy, is the correlation threshold of the WiFi
receiver. The intuitive explanation of the optimization problem is
to select the optimal tag signal by setting the tag signal to 0 (i.e., let
the tag absorb the energy without reflecting) for the parts at which
in-phase has the high correlation with the Barker code, where such
segments are denoted as gray boxes in Figure 6(b). We denote the
optimal tag signal as Tge; =[0001-1011 0 0 0]. By doing so, the
optimal tag signal achieves: (i) maximizing the correlation of the
target quadrature signal Q(#o) at time #j so as to be synchronized
correctly (Equation 1), (ii) limiting the correlation under the thresh-
old at time ty + At for any At # 0 (Equation 2), and (iii) making
the in-phase signal (i.e., I(#)) always have the correlation below
the threshold so that the WiFi receiver avoids being synchronized
with the in-phase signal (Equation. 3). This tag signal is validated to
satisfy the optimal conditions, and is used for GateScatter design.

Figure 7 demonstrates empirical measurement of the time and
frequency domain representations of the backscatter signal, under
the optimal tag signal Ty,;. (a) clearly shows that in-phase signal
is suppressed for successful selection of quadrature, where (c)-(d)
demonstrate the similarity between the backscattered signal and
the actual Barker code. In summary, by implementing the tag signal
of T, GateScatter reshapes ZigBee’s positive and negative half-
sine quadrature signals such that it can be reliably decoded as
non-inverted and inverted Barker codes at the WiFi receiver.
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Figure 8: WiFi (802.11b), ZigBee (802.15.4) packet structures.

3.5 WiFi Packet Assembly

To assemble a WiFi (802.11b) packet, a valid WiFi header should
be constructed, where GateScatter exploits the predefined nature
of both ZigBee and WiFi headers. Since both headers are known a
priori, assembly only involves a fixed sequence of signal reshaping.

Figure 8 presents ZigBee and WiFi packet structures and how the
ZigBee header is reconstructed to various fields of the WiFi packet.
Among various fields, SYNC, SFD, and PHY header are strictly re-
quired in order for a packet to be received by the WiFi (i.e., decoded
and passed to the application), where they are predetermined.
GateScatter assembles the fields from the ZigBee header (preamble
and SFD), which is also predefined. Hence, the packet assembly
turns out to be a process of reshaping between fixed ZigBee and
WiFi headers. Note that the ZigBee header is shorter (160 us) than
that of the WiFi (192 pus). This is addressed simply by constructing a
slightly shorter SYNC field of 96 s (out of 128 us) — our experiment
showed negligible impact as SYNC length is defined conservatively.

Recall that signal reshaping uses the optimal tag signal T, to
convert positive and negative half-sine ZigBee signals to be decoded
as non-inverted and inverted Barker codes, respectively. Conversely,
by adopting T,.; and —T,; and given the predetermined sequence
of positive and negative half-sine ZigBee signals, GateScatter is able
to reconstruct the non-inverted and inverted Barker codes pattern
(i.e., WiFi bit pattern) that corresponds to the target WiFi header. In
other words, WiFi header reconstruction from the ZigBee header is
merely presetting a sequence of Ty.; and —Ty,;. Finally, converting
the ZigBee payload to WiFi is achieved by simply keeping the tag
signal as Tg,;, which yields inverted and non-inverted Barker codes
depending on the variable payload data.

3In PHY header, modulation and packet length are always set to DBPSK and the
maximum packet size, respectively, to ensure reception of the entire ZigBee bits.
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Figure 9: Procedure to retrieve the original ZigBee symbol
at WiFi. The example ZigBee symbol 0x01 is successfully re-
trieved at the WiFi device.

3.6 WiFi Receiver

The reconstructed WiFi packet is fully compatible with any com-
modity WiFi device and therefore, the packet is decoded as is. The
last step needed to operate as a gateway is retrieving the original
ZigBee symbols from the received WiFi packet. Figure 9 illustrates
the procedure to retrieve the ZigBee symbols at the WiFi receiver
from the reshaped ZigBee signal. As noted earlier in Section 3.3,
the signal is reshaped such that the WiFi DBPSK demodulator syn-
chronizes to the quadrature component of the signal from which
the received WiFi bits are extracted. At the receiver, as defined in
the 802.11b standard [22], the reshaped signal passes through the
DBPSK demodulator and descrambler with the fixed scrambling
seed* where the result from the descrambler is received WiFi bits.

In order to retrieve the original ZigBee symbols, we find a map-
ping from the WiFi bits to the ZigBee symbols considering different
protocol stacks (i.e., ZigBee and WiFi), since the original packet fol-
lows the ZigBee stack, but it is decoded by the WiFi stack. First, the
WiFi bits should be processed by the scrambler and BPSK modulator
so as to recover the original quadrature chips. Since the scrambler
and descrambler have the fixed seed defined by the standard, the
WiFi device can easily recover the quadrature chips sent by the
ZigBee device. For the last part, the DSSS demapper retrieves the
ZigBee symbols from those quadrature chips. ZigBee communicates
using 16 different DSSS symbols, where each symbol consists of
16 quadrature and in-phase half-sine signals. While DSSS symbols
contain both quadrature and in-phase components, we figure out
that the symbols can be uniquely identified with only the quad-
rature portion (this does not hold for in-phase). Thus, GateScatter
enables the entire information in the ZigBee packet to be recovered
from the WiFi bit sequence naturally decoded on commodity WiFi
devices.

More specifically, for every 16 chips from the recovered quad-
rature chips, the WiFi device computes the hamming distance be-
tween the 16 chips and the quadrature components of DSSS symbols,
and outputs a symbol that has the minimum hamming distance.
Then, the output symbol is the same as the symbol sent by the
ZigBee device (e.g., 0x01 in Figure 9), unless link loss occurs. Thus,
any ZigBee symbol reshaped by GateScatter can be recovered at
the WiFi receiver. Lastly, due to the different packet structures of
ZigBee and WiFi, the reshaped ZigBee signal inevitably has a check-
sum (CRC) error at the WiFi receiver. This issue can be handled
simply by configuring the WiFi receiver into monitor mode [4, 8, 46]
which allows those packets to be received with the checksum er-
rors. Even though the requirement for disabling CRC may limit
GateScatter’s applicability, many commodity WiFi devices allow
disabling CRC by modifying software without any firmware or
hardware modification.

4The scrambling seed is determined by [1101100] in the standard.
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Figure 10: (a) example of the BLE GFSK signal in time do-
main and (b) reshaped signal by GateScatter vs. Barker code.

4 BLE GATESCATTER

To show the generality of our design, we demonstrate GateScatter
for Bluetooth Low Energy (BLE). While the general idea of sig-
nal reshaping (Section 3.3) applies to various IoT communication
technologies, the signal reshaping needs to be fine-tuned so as
to achieve our goal as a IoT gateway for the BLE’s Gaussian Fre-
quency Shift Keying (GFSK) [7] signal (vs. OQPSK in ZigBee). BLE’s
GFSK signal modulates bits by switching between two frequencies,
where the phase is changed accordingly”. Figure 10(a) illustrates
the time-domain representation of BLE’s GFSK signal - with 1 MHz
bandwidth, bits 1 and 0 are represented as phase offsets of +7 for
every 1us (e.g., t; — t;j4+1 in Figure 10(a)) corresponding to quarter-
sine signals. BLE signals are reshaped into WiFi (802.11b) DQPSK
signal by GateScatter.

BLE GateScatter utilizes the same tag signal introduced earlier
in Figure 5(b), where the difference from the ZigBee version is that
in-phase and quadrature are both utilized to construct WiFi DQPSK.
This is because, unlike ZigBee, BLE does not use spreading code
(and hence has no duplication) and therefore both in-phase and
quadrature components are required to recover the BLE data. Fig-
ure 10(b) demonstrates the reshaped signal for in-phase (upper) and
quadrature (lower) components. The reshaped signals are compared
to the correlated (non-)inverted Barker code as interpreted by the
WiFi receiver, from which the BLE signal is recovered.

The example in Figure 10(a) shows a phase shift of =7 int; — 2,
indicating BLE bit 0. This can be inferred from the received (non-
)inverted Barker codes pattern at the WiFi; i.e., two consecutive
non-inverted Barker codes for in-phase between ty and tz, where it
is non-inverted followed by inverted for the quadrature. There exist
16 combinations of such (non-)inverted Barker codes, each of which
either indicates BLE bit 1 or 0. This is applied to the entire packet
to recover the BLE data at the WiFi receiver. Lastly, the header in
BLE packets is too short (56 us) to fully reconstruct the WiFi header
(192 ps). To address this issue, BLE simply starts the payload with
the predetermined bit sequence, which is collectively (with the BLE
header) reshaped to a legitimate WiFi header.

SFrequency and phase shift keying are interchangeable, i.e., cos(27(f + f/)t) =
cos(27ft + ®(t)), where ®(t) = 27 f't.
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Figure 11: GateScatter hardware design.

5 IMPLEMENTATION

In this section, we present the implementation details and entire
process of GateScatter.

5.1 Hardware Design

We implement GateScatter by redesigning the open source design
presented in HitchHike [62]. Figure 11 illustrates the core compo-
nent, where we focus the discussion on ZigBee backscattering. We
use a ring oscillator based PLL module [25] to provide clocks for the
entire system including the frequency shifter and tag signal modu-
lator. As the frequency shifter, the clock is delayed to reflect the 0.5
s offset of the quadrature signal and connected to the XOR gate.
To implement our tag signal, we note that the tag signal modulator
requires three operations: 1 (e/%), -1 (¢/7), and 0. Delay at the *-1°
path implements the phase offset 7. The absorption of the RF signal,
denoted by 0, is implemented by matching the impedance of an
antenna, such that the RF signal is absorbed into the ground. In our
prototype, we use Igloo Nano AGLN250 FPGA [42] to control MUX
so that the output of the tag signal modulator becomes the optimal
tag signal Tg,;. The delayed clock for shifting frequency and the
optimal tag signal are multiplied through the XOR gate, and then
injected to the RF switch, where we choose ADG902 switch [3] to
backscatter or absorb the RF signal. As a result, a ZigBee signal
is backscattered into a WiFi signal. BLE GateScatter also uses the
same system with a slightly adjusted FPGA control signal.

5.2 Frequency Shifter

GateScatter shifts the frequency of backscattered signals to WiFi
channels 4 or 8 so as to (i) avoid the self-interference by IoT signals,
and (ii) avoid interference from and to WiFi as much as possible
[31, 65], since WiFi normally uses the channel 1, 6, and 11 to avoid
overlaps. By doing so, we make GateScatter and WiFi networks
co-exist (see the evaluation results in Section 7.5). Moreover, when
GateScatter backscatters the signal with shifting the frequency,
it also generates mirror copies of the backscattered signals as ad-
dressed in prior works [25, 62], incurring frequency inefficiency.
Thus, we adopt the idea from those works [25, 62] to generate sin-
gle sideband backscattering. Thus, GateScatter does not disturb
communication on unintended frequencies.

5.3 Putting Everything Together

Figure 12 shows how GateScatter works. To collect data from an
IoT device, (i) a WiFi device directly queries the IoT device via CTC
(Cross-technology Communication), i.e., WEBee [37]. This is done
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Figure 12: (i) a WiFi device sends query packets to an IoT
device (e.g., ZigBee) via CTC, where those packets are to turn
on GateScatter using OOK. (ii) the IoT device responses to
the query. (iii) GateScatter backscatters the ZigBee signal to
a WiFi signal.

in a series of short packets modulating OOK (On-Off Keying) to turn
on GateScatter. To decode OOK (represented by the presence and
the absence of packets) at the tag, we choose an ultra-low-power
envelope detector design similar to the state-of-the-arts [25, 30, 39].
After it is turned on, GateScatter waits to begin backscattering. (ii)
Upon receiving the query, the IoT device replies with the requested
IoT data. The beginning of this packet is captured by the GateScatter
using the envelope detector, where (iii) it then starts backscattering
the IoT packet into a WiFi packet of IoT data.

We note that GateScatter is a general solution applicable to a
wide-range of commodity IoT devices, where a WiFi-side software
(installed on the WiFi device) should be provided by the vendor. This
is because both (i) and (iii) require knowledge on the upper-layer
protocols, including encryption and error detection algorithms,
which are often proprietary and closed.

6 DISCUSSION

In this section, we discuss GateScatter compatibility to encryption
and error detection code adopted in commodity IoT packets and
operating GateScatter in a non-disruptive fashion.

6.1 Compatibility to Encryption/Error Code

Commercial IoT vendors adopt proprietary encryption and error
detection codes (e.g., CRC) for privacy and reliability. GateScatter
works transparently to such algorithms, as IoT packets are con-
verted to WiFi in a bit-by-bit fashion. This uniquely enables Gate-
Scatter to operate as a unified gateway across IoT vendors with
proprietary algorithms. This is because GateScatter keeps the origi-
nal encryption and CRC intact, regardless of the applied algorithms.
In fact, GateScatter avoids security concerns for vendors as it does
not require the algorithms to be revealed at all.

6.2 Non-disruptive Operation

GateScatter requires a WiFi receiver to be configured in monitor
mode so as to receive the backscattered IoT packet with a checksum
error. This implies disconnection of the WiFi device from the AP.
This impact can be minimized by operating GateScatter on demand.
This is a feasible approach since: (i) GateScatter operates in a query-
response fashion, thus IoT data can be collected on demand only
when a short WiFi disconnection is affordable (e.g., when WiFi
connection is idle). (ii) IoT data is sparsely generated at a level of
seconds-minutes [13, 41], and therefore only occasional switch to
monitor mode suffices.
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Figure 14: Experimental map for line-of-sight (LoS) and non-line-of-sight (NLoS) scenarios.

7 EVALUATION

To validate the performances of GateScatter, we perform extensive
experiments under various environments.

7.1 Experimental Environment

We evaluate GateScatter performance using commodity IoT devices
(i.e., ZigBee and BLE), a WiFi receiver, and the prototyped tag. As
the IoT devices, we choose two types: (i) IoT smart home devices
from various vendors to show the possibility to operate as a unified
IoT gateway, and (ii) an RF chip CC2650 [55], which is the multi-
standard (i.e., ZigBee and BLE) low-power device. The transmission
(tx) power of CC2650 can be configured up to 5 dBm, where we
choose 5 dBm and 0 dBm in our evaluations which are usually
acceptable for low-power IoT devices. To receive 802.11b packets,
we use a MacBook Pro laptop which is equipped with a Broadcom
BCM4360 WiFi chipset [8]. That commercial WiFi chipset supports
802.11 a/b/g/n/ac, so that it can receive the reshaped 802.11b signals
by GateScatter. In addition, we configure the laptop as monitor
mode to receive packets with checksum errors. Figure 14 shows
the map at which we perform our evaluation with positions of the
transmitter (TX), the tag, and the receiver (RX) in both i) the Line-
of-Sight (LoS), and ii) the Non-Line-of-Sight (NLoS) scenarios. We
measure three metrics: throughput, BER (Bit Error Rate), and RSSI
(Received Signal Strength Indicator). The throughput is measured
by the number of correctly received bits divided by the number
of transmitted bits per second and the BER is calculated by the
correctly received bits over the transmitted bits for the successfully
detected packets at the WiFi receiver.

7.2 GateScatter Performance as Gateway

Evaluation on IoT Smart Home. To verify that GateScatter works
as a unified IoT gateway, we evaluate GateScatter on IoT smart

Table 2: GateScatter performance on commodity IoT

Sn.lart Echo Hue | IKEA Mijia
Things Plus Smart | Smart Sensor
Sensor bulb bulb
BER (1073) 1.59 | 1.49 | 258 | 4.89 7.56
RSSI (dBm) 74| -68 -80 -78 -80

home devices from various vendors such as Samsung, Amazon,
Philips, IKEA, and Xiaomi. In this evaluation, we choose 5 smart
home devices which are ZigBee compliant with proprietary upper
layer protocols from the vendors. Figure 13(a) shows pictures of
the devices. To demonstrate that GateScatter can convert ZigBee
packets sent by the smart home devices into WiFi packets, we place
the laptop to capture the reshaped WiFi packets and a USRP device
with 802.15.4 PHY [49] to sniff the ZigBee packets.

Table 2 shows the evaluation result on the smart home devices
with BER and RSSI. We measure the BER performance by comparing
the reshaped WiFi packets received by the WiFi laptop and the orig-
inal ZigBee packets sniffed by the USRP device. RSSI is captured on
the WiFi laptop. Figure 13(b) shows the received WiFi packets (en-
closing the ZigBee packets from those vendors) at the WiFi laptop
(Wireshark screen capture), and the ZigBee symbols are retrieved
from the received WiFi bits (Figure 13(c)). These results demon-
strate that even though those devices may have different upper
layer protocols, GateScatter is compatible with those IoT devices
and is able to retrieve the original ZigBee payload (thus operating as
a gateway). More precisely, when the IoT devices transmit ZigBee
packets which include ZigBee data such as temperature, motion
detection, or status reports, GateScatter converts those packets into
WiFi packets; thus, the WiFi laptop receives the WiFi packets and
reads the original ZigBee data from the packets. In addition, due to
the robustness of 802.11b, the achieved BER and RSSI results are
enough to support many IoT applications.
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Figure 17: Evaluation of BLE to WiFi in the line-of-sight scenario.

ZigBee to WiFi: Line-of-Sight. Figure 15 shows the GateScatter
performance of ZigBee to WiFi communication in the LoS scenario.
We fix the distance between TX and the tag as 50 cm, and measure
the throughput, BER, and RSSI by increasing the distance between
the tag and RX. As shown in Figure 15(a), at the closest distance (1
m), the achieved throughput results are 222 kbps and 192 kbps at
the tx powers 5 dBm and 0 dBm, respectively, which are very close
to the maximum throughput of ZigBee (250 kbps). As the distance
increases, the throughput performance also decreases due to de-
graded RSSI (see Figure 15(c)), while we achieve the communication
distance at most 27 m with the tx power 5 dBm and 11 m with 0
dBm. At the same time, the result of BER is also degraded at longer
distances, from 10~ to 107! as depicted in Figure 15(b).

ZigBee to WiFi: Non-Line-of-Sight. As shown in Figure 14, we
also perform the NLoS evaluation of ZigBee to WiFi, where TX
and the tag are located in the room, while RX moves along the
aisle. We observe that when RX is close to the tag, the achieved
throughput performances (203 kbps and 163 kbps at 5 dBm and
0 dBm, respectively) are similar to the result of the LoS scenario,
even though the received signal is much weaker than the signal
of the LoS scenario (see Figure 16(c)). However, as the distance
increases, the throughput and BER performances drop rapidly, so
that the communication distance is only achieved up to 9 m and
6 m at tx powers 5 dBm and 0 dBm, respectively, as shown in
Figures 16(a) and 16(b). In the NLoS scenario, GateScatter suffers
from high BER which requires multiple retransmissions, resulting

in additional energy consumption. Under this environment, we let
GateScatter have dwell time after finishing backscattering to deal
with the retransmission without starting from the beginning. Due
to an obstacle between the tag and RX, although the communication
distance becomes shorter, GateScatter can still achieve reasonable
communication ranges in various applications (e.g., home IoT, Near-
Field Communication (NFC)).

BLE to WiFi: Line-of-Sight. As explained in Section 4, Gate-
Scatter can also convert BLE packets into WiFi packets. Under
the same experiment environment as the ZigBee to WiFi evaluation
for the LoS, we present the result of the BLE to WiFi evaluation in
Figure 17. In terms of throughput, GateScatter achieves 662 kbps
and 531 kbps at 5 dBm and 0 dBm powers, respectively, as shown in
Figure 17(a). Since the maximum throughput of BLE is 1 Mbps, the
achieved throughput is much higher than that of the ZigBee to WiFi
communication. On the other hand, because there is no coding in
the BLE signal, it suffers high BER as depicted in Figure 17(b) while
a large portion of bit errors in the ZigBee to WiFi communication
can be recovered due to the DSSS coding of the ZigBee signal. It
is worth noting that the RSSI of the BLE to WiFi communication
is higher than that of the ZigBee to WiFi communication. This is
because the GateScatter uses the whole BLE signal to generate the
WiFi signal while only half of the ZigBee signal is backscattered to
generate the WiFi signal. Interestingly, due to the characteristics of
the WiFi receiver which uses the correlation to decode the signal,
the available communication ranges are quite similar in both cases.
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Figure 18: Evaluation of BLE to WiFi in the non-line-of-sight scenario.

BLE to WiFi: Non-Line-of-Sight. Figure 18 shows the evalua-
tion result of BLE to WiFi under the NLoS scenario. As expected, in
terms of throughput, BER, and RSSI, all performances are degraded
compared to that of the LoS scenario. However, with the existence
of the obstacle between the tag and RX, GateScatter achieves the
throughput up to 415 kbps and 377 kbps, when TX sends 5 dBm and
0 dBm signals, respectively (see Figure 18(a)). The communication
ranges that can be achieved by GateScatter are at most 14.5 m (at 5
dBm) and 12.5 m (0 dBm). The performances of BER and RSSI are
depicted in Figures 18(b) and 18(c), which show the same tendency
with the previous results. The dwell time can be applied to BLE to
WiFi for minimizing energy cost under unreliable environments
similar to ZigBee to WiFi. We claim that for low-power IoT de-
vices, the achieved communication ranges which are longer than
10 m are suitable for many applications that require short-range
communication.
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Figure 19: Impact of varying the TX-Tag distance in the Zig-
Bee to WiFi communication.

7.3 Impact of TX-Tag Distance

In the previous evaluations, we fix the distance between TX and
the tag (TX-Tag distance). Since the performance of backscatter
communication also depends on the TX-Tag distance, we evaluate
the impact of varying the TX-Tag distance from 1 m to 4 m with
different Tag-RX distances for the ZigBee to WiFi communication.
As shown in Figure 19, the throughput performance highly depends
not only on the Tag-RX distance, but also the TX-Tag distance. At
the closest distances (i.e., both are 1 m), GateScatter achieves about
175 kbps throughput while it degrades as either of the distances
increases. When the TX-Tag distance is 4 m, it can achieve up to
100 kbps. Thus, the TX-Tag distance does not severely limit the
deployment of GateScatter.

Table 3: GateScatter power consumption

Oscillator | Modulator | Net power

Power

. 9.7 uWw
consumption

29 yw 38.7 yW

7.4 Power Analysis

In order to show the feasibility of the low-power operation of
GateScatter, we analyze the power consumption of GateScatter, as
shown in Table 3. The ring oscillator based clock source (denoted
by Oscillator in Table 3), which is used for the frequency shifting,
and supplies the clock for the rest of GateScatter consumes 9.7
#W. The main modulation module of GateScatter including the RF
switch (denoted by Modulator in Table 3) consumes 29 W power,
which is obtained using a power analysis tool provided by the FPGA
vendor. In practice, it is possible to fully implement GateScatter
by converting the FPGA design to ASIC (Application-Specific Inte-
grated Circuit). The power analysis tool estimates how much power
this FPGA consumes when it is implemented as an integrated cir-
cuit; thus, we estimate the net power consumption of GateScatter
(as implemented in ASIC) at 38.7 uW. Since energy harvesting de-
vices can produce more than 100 W (e.g., from indoor lights [6]),
GateScatter can operate without battery as the backscatter gate-
way or be powered by a coin cell (1000 mAh) for 9 years. When
implemented in ASIC, the main difference from our prototype is
requiring a customized antenna (e.g., patch antenna), where we
believe well-customized patch antennas can provide similar perfor-
mances.

7.5 Impact on WiFi and GateScatter

In this section, we verify the impact on existing WiFi networks by
backscattering of GateScatter and vice versa. One laptop repeatedly
transmits 802.11b (1 Mbps) or 802.11n (65 Mbps) packets on the
WiFi channel 6 (2.437 GHz). Another laptop which is 1 m away from
the transmitter receives the WiFi packets and measures through-
put. When a CC2650 transmitter sends ZigBee signals, GateScatter
backscatters the ZigBee signal, where the tag is located 1 m away
from the receiver laptop.
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-#- Tag On Ch.4 ==~ Tag On Ch.4
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; Q 554
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(a) GateScatter — 802.11b (b) GateScatter — 802.11n

Figure 20: Impact on WiFi networks by GateScatter.
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Impact on WiFi networks. As explained in Section 5.2, we shift
the frequency of the ZigBee signals into WiFi channel 4 (2.427 GHz)
or channel 8 (2.447 GHz) to minimize the interference on WiFi
networks, since WiFi uses channels 1, 6, or 11 to avoid overlap-
ping. To validate that, we measure the throughput of 802.11b and
802.11n, when GateScatter does not backscatter (Tag Off), backscat-
ters on the WiFi channel 4 (Tag On Ch.4), or on the WiFi channel 6
(Tag On Ch.6), as shown in Figures 20(a) and 20(b), respectively. In
both cases, it is easy to see that the highest throughput is achieved
when the tag is absent. When there exists interference from Gate-
Scatter (i.e., the backscattered signal is overlapped with WiFi), WiFi
throughput performances are degraded, especially for Tag On Ch.6,
but it shows still high throughput, since the power of the back-
scattered signal is relatively small. In other words, because of the
capture effect® [33, 35] the stronger WiFi signal can be success-
fully decoded while the weak backscattered signal by GateScatter
is naturally suppressed.
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] -= WiFi On Ch.6
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Figure 21: Impact on GateScatter by WiFi networks.

Impact on GateScatter. We also investigate the impact of WiFi
interference on the backscattered signal. Figures 21(a) and 21(b)
show the throughput performances of GateScatter when the WiFi
signal is absent or the signal (802.11b or 802.11n, respectively) is
sent on the channel 6. Since the backscattered signal is weaker
than the WiFi signal, it is inevitable to have performance loss when
there exist ongoing WiFi signals in adjacent channels. However, the
robustness of 802.11b makes the WiFi receiver capable of receiving
the backscattered signal (converted into 802.11b by GateScatter)
on the WiFi channel 4, despite of WiFi interference on the WiFi
channel 6 (denoted by WiFi On Ch.6). Moreover, Figure 21(b) shows
better throughput performance, since 802.11n occupies smaller
bandwidth than that of 802.11b due to OFDM modulation (thus,
smaller interference). This is why we choose WiFi channels 4 and
8 to backscatter the ZigBee signal to avoid bi-directional impact on
the existing WiFi network and the backscattered signals.

GateScatter with multiple IoT devices. GateScatter is naturally
applied under multiple devices by virtue of CSMA for collision
avoidance. That is, assume that multiple IoT devices and GateScatter
tags are deployed in a certain area. Because of carrier sensing,
the IoT devices transmit signals one at a time, so that collisions
among the IoT devices are naturally minimized. Hence, GateScatter
operates as is without collision, unless CSMA fails.

7.6 GateScatter with Multiple Tags

In this section, we show that deploying multiple tags improves the
GateScatter performance of the throughput and communication

®When there exist more than two wireless signals, the stronger signal of them will be
demodulated.
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Figure 22: Evaluation on multiple tags.

distance. Under our operation scenario, it is easily assumed to
deploy multiple tags on site for pervasive IoT gateways, since the tag
is very cheap and easy to deploy. In order to verify the performance
improvement by multiple tags, we configure the same environment
in the ZigBee to WiFi: Line-of-Sight evaluation with varying the
number of tags from 1 to 3, where the tx power is 0 dBm.

Figure 22 shows GateScatter performances in terms of the through-
put and RSSIL. As the number of tags increases, we observe that the
throughput performances as well as the communication distances
are improved up to 189 kbps and 21 m, respectively. Obviously,
the more tags are deployed, the better RSSI can be observed due
to aggregated backscattered power from multiple tags. This result
indicates that whenever an IoT device transmits a packet, some of
deployed tags nearby the IoT device can start to backscatter so as to
convert the IoT packet into a WiFi packet. Since GateScatter targets
802.11b which is resilient to multipath fading, the aggregated power
of the backscattered signals can help GateScatter to improve the
performance even under multipath fading.

Figure 23: Mobility map of fixed RX scenario. For mobile RX
scenario, TX/Tag and RX change their positions.
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Figure 24: Evaluation of mobile scenarios. (a) RX is fixed,
while TX and the tag are mobile. (b) RX is mobile against
fixed TX and the tag.

7.7 In-situ Deployment #1: User Mobility

We evaluate GateScatter under mobility. Some IoT applications
require data collection from moving objects (e.g., animals and hu-
mans) under fixed receivers. In other cases, static IoT sensors remain
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static, where receivers are mobile (e.g., smartphone). GateScatter is
applicable to both scenarios. We measure the mobility performance
as in Figure 23. The first scenario is fixed RX (in blue rectangle),
where we move back and forth 8 m between red circles while hold-
ing TX and the tag. The second scenario is for mobile RX; we fix TX
and the tag, and let RX follow the same mobility pattern in the first
scenario. Figure 24 shows the throughput performances in both
scenarios with different movement speeds from 0.5 m/s to 2 m/s,
where GateScatter consistently achieves up to 140 kbps. Mobile tag
and TX decrease the performance by a larger margin due to the
bigger impact on the backscattered signal. Under such scenario, the
throughput was kept above 63 kbps.

(i) On thé wall A (i) On the shelf

(i) On the desk
e
P

Figure 25: Experimental map: deployed in home. RX is lo-
cated at the center of the room (at the bottom right). The tag
and TX change their positions for each scenario (red boxes).
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Figure 26: Smart home evaluation: (i) on the wall, (ii) on the
shelf, and (iii) on the desk.

7.8 In-situ Deployment #2: Smart Home

As the second application, we consider real deployment scenarios
of IoT with GateScatter. When IoT sensors are deployed in our
environment (e.g., home, office), by deploying GateScatter near the
sensors, we show that GateScatter can operate as a gateway from
IoT to WiFi. To validate this application, we place RX at the center
of our room and deploy TX and the tag in different positions, where
RX and the others are at most 3 m apart, as shown in Figure 25. We
measure throughput and RSSI performances for each scenario (see
Figure 26). Wherever TX is located, all scenarios with GateScatter
show high throughput and reasonable RSSI performances, which
are at most 190 kbps and -76 dBm, respectively. Thus, it indicates
that by attaching GateScatter around IoT sensors, GateScatter can
lead the pervasive IoT gateways to our real life.

8 RELATED WORK

Our work is inspired by the state-of-the-art backscatter works and
is assisted by the latest cross-technology communication technique.
In the following, we discuss the two streams of works in relation
to GateScatter.

Backscatter: In recent years, a large number of backscatter works
on various RF sources were proposed, where most of them are be-
tween homogeneous wireless systems or require specialized (i.e.,

Jinhwan Jung, Jihoon Ryoo, Yung Yi, and Song Min Kim

non-commodity) hardware for signal sources or readers [5, 16, 18,
20, 24, 29, 31, 36, 39, 40, 43, 44, 47, 52, 56-60, 62-65]. For example,
Passive-ZigBee [36] requires specialized readers for a tag to gen-
erate a ZigBee packet. HitchHike [62] and FreeRider [64] leverage
homogeneous devices (e.g., WiFi) as signal sources and readers.
Our design is fundamentally different as it considers backscattering
among heterogeneous (WiFi, ZigBee, and BLE) commodity devices.

GateScatter is most closely related and inspired by the pioneering
work of Interscatter [25], where a single tone signal, generated via
a commodity BLE device, is converted to a WiFi signal to read data
of the tag. Nevertheless, the technical contributions of GateScatter
are clearly distinctive, mainly in two aspects: First, unlike Interscat-
ter, GateScatter converts an uncontrolled IoT packet emitted from
commodity IoT devices into a WiFi packet, such that the original
IoT data is recoverable at a WiFi receiver. Also, GateScatter focuses
on unique challenges related to ZigBee OQPSK (complex signal) to
WiFi DBPSK (real signal) backscattering, such as reshaping quad-
rature while suppressing in-phase component.

Cross-Technology Communication (CTC): In recent years CTC
was introduced, where it refers to a set of techniques that enable
direct communication between different wireless technologies [9-
11, 26-28, 32,37, 38, 61, 66]. Among them, the latest WiFi to ZigBee
CTC [37] (implemented on WiFi side) was leveraged in combination
with GateScatter for a complete gateway operation. GateScatter is
fundamentally different from CTC as it does not require reprogram-
ming and operates silently over the air. This is the key feature that
enables GateScatter to be adopted on unprogrammable commodity
IoT platforms running proprietary protocols.

9 CONCLUSION

We proposed a novel backscatter-based gateway that connects com-
modity IoT to the Internet, called GateScatter. Our tag is able to
convert [oT (ZigBee and BLE) packets to WiFi packets by reshaping
IoT signals over the air. The reshaped IoT packets with an arbitrary
payload are received on the commodity WiFi receiver, from which
the original IoT payload can be recovered at the WiFi side; thus
GateScatter operates as an IoT gateway connecting IoT to WiFi.
GateScatter is compatible with IEEE 802.15.4-compliant systems
and is agnostic to vendor-specific upper layer protocols. We im-
plemented GateScatter prototype based on FPGA and orchestrated
with commodity IoT devices and WiFi receivers. We demonstrated
the compatibility and wide applicability through the evaluation on
smart home IoT devices. We envision that GateScatter will be an
economic option towards pervasive Internet connectivity for IoT
ecosystems.
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