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Abstract—Glauber dynamics, a method of sampling a given
probability distribution via a Markov chain, has recently made
considerable contribution to the MAC scheduling research, pro-
viding a tool to solve a long-standing open issue – achieving
throughput-optimality with light message passing under CSMA.
In this paper, we propose a way of reducing delay by studying
generalized Glauber dynamics parameterized by β∈ [0, 1], rang-
ing from Glauber dynamics (β=0) to the Metropolis algorithm
(β = 1). The same stationary distribution is sustained across
this generalization, thus maintaining the long-term optimality.
However, a different choice of β results in a significantly different
second-order behavior (or variability) that has large impact on
delay, which is hardly captured by the recent research focusing
on delay in the large n (the number of nodes) asymptotic. We
formally study such second-order behavior and its resulting delay
performance, and show that larger β achieves smaller delay. Our
results provide new insight into how to operate CSMA for large
throughput and small delay in real, finite-sized systems.

I. INTRODUCTION

Since the seminal work by Tassiulas and Ephremides
on throughput-optimal scheduling [19], referred to as Max-
Weight, a huge array of research has been made to develop
distributed MAC scheduling with high performance guarantee
and low complexity. The tradeoff between complexity and
efficiency has been, however, observed in many cases, or even
throughput-optimal algorithms with polynomial complexity
have turned out to require heavy message passing (see, e.g.,
[20]). A breakthrough has been recently made, where just
locally controlling the classical CSMA parameters, which
is modeled by Glauber dynamics∗, is enough to achieve
throughput-optimality, see e.g., [4], [8], [12], [17]. We call
this “optimal CSMA” for brevity.

In addition to throughput or utility, delay is another key
performance metric in MAC scheduling. Delay research in
MAC scheduling with performance guarantee has been studied
with mathematical tools such as large deviation theory, heavy
traffic approximation, and Lyapunov bound (see, e.g., [20]
and references therein). However, delay in Glauber-dynamics
based CSMA (or optimal CSMA) has been under-explored,
where only a small set of work has been published with
emphasis on the asymptotic results. Shah et al. [15] showed
that it is unlikely to expect a simple MAC protocol such as
CSMA to have high throughput and low delay. Motivated
by such a “negative” result, Shah and Shin [16] proposed a

∗Glauber dynamics is a Markov Chain Monte Carlo (MCMC) method for
sampling a given probability distribution by constructing a Markov chain
achieving the desired distribution as its unique stationary distribution [7].

modified CSMA requiring coloring operation that achieves
O(1) delay with throughput-optimality for networks with
geometry (or polynomial growth). Lotfinezhad and Marbach
[9] proved that a reshuffling approach, which periodically
reshuffles all on-going schedules under time synchronized
CSMA†, leads to both throughput-optimality and O(1) delay
for torus (inference) topologies. Jiang et al. [3] proved that a
discrete-time parallelized Glauber dynamics achieves O(log n)
delay for a limited set of arrival rates.

Despite these nice results on the delay asymptote for large-
scale networks, it still remains questionable how to improve
the delay performance of (standard) Glauber-dynamics based
CSMA for unscaled, fixed networks without loss of other
important metrics such as throughput and complexity. It is
also unclear which tools to use for such purpose. While mixing
time has been a popular toolkit for delay analysis [16], [3], it
was shown very recently [18] that mixing time based approach
may not be the right way to capture delay dynamics even in
the asymptotic sense. On the other hand, the development of
optimal CSMA, in principle, is equivalent to constructing a (re-
versible) Markov chain to achieve a given, desired stationary
distribution under some constraints due to the interference. We
note that Glauber dynamics is just one such instance. There
can be many other Markov chains with the same stationary
distribution (thus leading to throughput-optimality) and no
additional complexity, but potentially higher efficiency for
smaller delay under the same constraints.

In this paper, we propose, as extensions of the Glauber
dynamics, a class of algorithms with a tunable parameter
β∈ [0, 1], named generalized Glauber dynamics, ranging from
the Glauber dynamics (β = 0) to the Metropolis algorithm
(β=1). We then show that the generalized Glauber dynamics
or corresponding reversible Markov chain achieves the same
stationary distribution regardless of the choice of β, while
the Markov chain, when β∈ (0, 1], is more efficient than that
under the Glauber dynamics (β = 0) in the sense of Peskun
ordering, i.e., a partial order between off-diagonal elements
of transition matrices of different Markov chains. Due to
the invariant stationary distribution property, the generalized
Glauber dynamics, when it comes into play for the problem
of optimal CSMA, guarantees the same long-term throughput
and also achieve throughput-optimality under mild conditions.
Despite the same long-term throughput, their ‘second-order’
behavior can be quite different. This in turn leads to different

†Thus, this is not a Glauber-dynamics based CSMA.



Algorithm 1 Glauber Dynamics (at Time Slot t)
1: Choose a node v ∈ N uniformly at random
2: For node v:
3: if

∑
w∈Nv

σw(t−1) = 0 then
4: σv(t) = 1 with probability λv

1+λv

5: σv(t) = 0 with probability 1
1+λv

6: else
7: σv(t) = 0
8: end if
9: For any node w ∈ N \ {v}: σw(t) = σw(t−1)

queueing delay performance, especially under the network of
a reasonable size, which is hardly captured by any asymptotic
order-wise analysis. However, thanks to the Peskun ordering
and its relationship with efficiency ordering, we are able
to demonstrate, in theory and simulation, that the original
Glauber dynamics (β = 0) in fact gives the worst queueing
delay performance among the generalized Glauber dynamics,
and there are infinitely many different variants that have the
same long-term throughput, but with better queueing delay
performance as β increases, culminating in the ‘Metropolised’
version with β=1 for any finite-sized networks.

II. PRELIMINARIES

A. Glauber Dynamics for the Hard-core Model

Consider a connected, undirected graph G=(N , E) with a
finite set of nodes (or vertexes) N ={1, 2, . . . , n} and an edge
set E . Let Nv ={w∈N : (v, w)∈E} be the set of neighbors
of node v. We define by σ a configuration of the nodes in G,
which is given by σ={σv, v∈N} with σv∈{0, 1} for all v. A
configuration is said to be feasible if the set {v∈N : σv=1}
is an independent set of G where no two nodes in the set
are adjacent (or neighbor of each other), i.e., if σv+σw ≤ 1
for all (v, w) ∈ E . Let Ω ⊆ {0, 1}n also be the set of all
feasible configurations on G. This model under the constraint
of independent sets is called the hard-core model [7].

The (single-site update) Glauber dynamics for the hard-core
model with heterogeneous fugacities {λv, v ∈N}, defined in
Algorithm 1, leads to a (discrete-time) Markov chain achieving
the following stationary distribution π = {π(σ)} over Ω:

π(σ) =
1

Z

∏
v∈N

λσv
v , (1)

with a normalizing constant Z=
∑

σ∈Ω

∏
v∈N λσv

v . Note that
λv > 0 for all v, ensuring that π(σ) > 0 for all σ ∈ Ω.
Specifically, σ(t) = {σv(t), v ∈ N} denotes the state of the
Markov chain (or a feasible configuration by the Glauber
dynamics) at time slot t. It is known that {σ(t)}t≥0 is an
irreducible, aperiodic Markov chain achieving the stationary
distribution π in (1) on the finite state space Ω [7], [17], [16].
The Markov chain {σ(t)} is also reversible with respect to π,
i.e., π(σ)Q(σ,σ′)=π(σ′)Q(σ′,σ) for all σ,σ′∈Ω, where
Q(σ,σ′) is the transition probability from state σ to state σ′.

B. CSMA and Glauber Dynamics

We present how CSMA in wireless multi-hop networks
can be modeled by the Glauber dynamics. In the context of
wireless multihop scheduling (or, simply scheduling), define

σv=1

σw=0

σx=1 σy=0

σz=0σu=0

Fig. 1. Illustration of a wireless multihop scheduling driven by the Glauber
dynamics over a conflict graph G with |N | = 6. Links v, x are active while
all others are silent, forming one instance of independent set on G.

a link as an (ordered) transmitter-receiver pair. It is said that
two links conflict with each other if they cannot be “active”
for communication at the same time due to the interference.
Consequently, we can define a conflict graph G = (N , E) in
which each node represents a link, while an edge between two
nodes (or links) exists if they conflict with each other. Given
a graph G, the scheduling governed by Glauber dynamics
determines which nodes to be active or available for commu-
nication, forming one instance of independent sets (feasible
configuration) over G at each time t in a distributed manner.
For each node v∈N , if σv(t)=1, then node v is active, i.e.,
the transmitter of link (or node) v can transmit a packet to its
receiver pair, and node v should be silent, if otherwise. See
Fig. 1 for an illustrative example. Throughout this paper, the
graph G refers to a conflict graph.

The Glauber dynamics in the context of scheduling is
typically considered under continuous-time (or asynchronous)
setting as used in [17], [16], which is also our target scenario.
Specifically, each node is equipped with its own Poisson
clock of rate 1, leading to the uniform node selection in
Algorithm 1, and then decides its transmission schedule (or
updates its status) accordingly. Here, the ‘master’ clock is
Poisson with rate n and each (master) clock tick corresponds
to a discrete-time slot in Algorithm 1. It is not difficult to
see that the Glauber dynamics captures the following CSMA
features: 1) random back-off : the transmitter of link v waits an
exponentially distributed period of time with mean (1+λv)/λv

before transmitting (provided that the channel is sensed ‘idle’);
2) channel holding time: once the transmitter of link v grabs
the channel for transmission, it keeps the channel for an
exponential distributed period of time with mean 1+λv . It
is worth noting that in the continuous-time setting, since the
master clock rate is n, the time scale is scaled down by
a factor of 1/n, implying the similar parallel-update effect
to the discrete-time parallel Glauber dynamics in [12], [3].
Although our target scenario is such continuous-time update
for scheduling, in our subsequent analysis, time unit of interest
is the unit of master clock ticks (so discrete time).

III. COMPARING REVERSIBLE MARKOV CHAINS

There are potentially many other (discrete-time) reversible
Markov chains with the same π in (1), all of which translate
into distributed algorithms just like the one in Algorithm 1, as
will be shown later. One important question would be how to
compare these reversible Markov chains. As these algorithms
have the same π, they all guarantee the same throughput
optimality, while their ‘second-order’ behavior can be quite
different, leading to different queueing delay performance.



Mixing time has been a popular criterion to compare
competing reversible Markov chains with the same stationary
distribution. The mixing time of a (reversible) Markov chain
indicates the speed of convergence to its stationary distribution
and is mainly determined by the second largest eigenvalue
modulus (SLEM) of its transition matrix [7]. Note that smaller
SLEM leads to smaller (faster) mixing time. In this paper,
however, we look at the comparison of reversible Markov
chains from a different, but important perspective. This is done
based on the following Peskun ordering and its relationship
with efficiency ordering.

Definition 1 (Peskun ordering): [13] For two irreducible
Markov chains on a finite state space S with transition matrices
P = {P (i, j)}i,j∈S and P̃ = {P̃ (i, j)}i,j∈S , it is said that
P̃ dominates P off the diagonal, written as P ≼ P̃, if
P (i, j) ≤ P̃ (i, j) for all i, j ∈ S (i ̸= j). 2

Let {X(t)}t≥0 and {X̃(t)}t≥0 be irreducible Markov
chains on a finite state space S={1, 2, . . . , n} with transition
matrices P and P̃, respectively. Suppose that the Markov
chains {X(t)} and {X̃(t)} have the same stationary distri-
bution π={π(1), π(2), . . . , π(n)}. For a function f : S→R,
define an estimator µ̂m,

∑m
t=1 f(X(t))/m for µ=Eπ(f)=∑

i∈S f(i)π(i). It is well known that limm→∞ µ̂m = µ for
any function f with Eπ(|f |) <∞ [5], [7]. The AVR of the
estimate µ̂m is defined as

ν(P, f) , lim
m→∞

m · VAR (µ̂m) , (2)

which is independent of the distribution of the initial state
X(0) [13]. We similarly define ν(P̃, f) for the chain {X̃(t)}
with P̃. As mentioned before, the estimate µ̂m based on
any finite, irreducible Markov chain with the same π always
becomes µ, as m goes to infinity. However, since the AVR
decides approximately how many samples are required to
achieve a certain accuracy of the estimate µ̂m,‡ it has been
an important criterion to rank the efficiency among competing
Markov chains with the same π, especially for the MCMC
samplers [13], [11]. It is also said that {X̃(t)} is at least
as efficient as {X(t)} if ν(P, f) ≥ ν(P̃, f) for any f with
VARπ(f) < ∞ [11]. In particular, this efficiency ordering
is still in effect even when both chains are already in their
stationary regimes (already mixed). The efficiency ordering
will be the key component in the delay analysis later in the
paper. It is known that the Peskun ordering between two
reversible P and P̃ with the same π provides a sufficient
condition for the efficiency ordering as follows.

Lemma 1: [13] If P and P̃ are reversible with respect to
π, and P ≼ P̃, then ν(P, f) ≥ ν(P̃, f) for any f with
VARπ(f)<∞. 2

It is worth nothing that efficiency ordering does not imply
mixing time ordering in general, although there are related
with each other [11]. (See more review on mixing time, Peskun
ordering, and efficiency ordering in our technical report [6].)

‡This is formally captured by the Central Limit Theorem for an ergodic,
finite Markov chain under VARπ(f) < ∞, saying that

√
m(µ̂m − µ)

converges to a Gaussian random variable with zero mean and variance ν(P, f)
as m → ∞ [5].

Algorithm 2 Generalized Glauber Dynamics with β ∈ [0, 1] (at
Time Slot t)

1: Choose a node v ∈ N according to a given {qv}
2: For node v:
3: if

∑
w∈Nv

σw(t−1) = 0 then
4: if σv(t−1) = 0 then
5: σv(t)=1 with probability

(
λv

1+λv

)1−β
min

{
1, λβ

v

}
6: σv(t)=0, otherwise.
7: else
8: σv(t)=0 with probability

(
1

1+λv

)1−β
min

{
1, 1/λβ

v

}
9: σv(t)=1, otherwise.

10: end if
11: else
12: σv(t) = 0
13: end if
14: For any node w ∈ N \ {v}: σw(t) = σw(t−1)

IV. GENERALIZED GLAUBER DYNAMICS FOR SMALLER
DELAY IN OPTIMAL CSMA

We now introduce a class of algorithms with a controllable
parameter β∈ [0, 1], named generalized Glauber dynamics, as
extensions of the (standard) Glauber dynamics in Algorithm 1.
As shall be shown below, this generalization indicates that
the Glauber dynamics is nothing but one of many possible
ways to achieve the desired stationary distribution in (1) under
the independent set constraints, while its extensions lead to
more efficient reversible Markov chains in the sense of Peskun
ordering (and efficiency ordering).

The generalized Glauber dynamics is summarized in Algo-
rithm 2. This is achieved by judiciously employing a gener-
alization of the procedures by Hastings [2] for constructing
a reversible Markov chain with a given, desired stationary
distribution, which was originally introduced for the devel-
opment of an MCMC sampler. The details are omitted owing
to space constraints but can be found in [6]. As a special case,
if β=0, then Algorithm 2 becomes identical to Algorithm 1 –
the original Glauber dynamics for the hard-core model. Also,
if β =1, then it means that the Metropolis algorithm [10] is
applied properly for the hard-core model. The only difference
between the generalized Glauber dynamics with β∈(0, 1] and
the original Glauber dynamics (β=0) is that for a randomly
chosen node v, if σu(t−1)=0 for all u ∈ Nv , then σv(t) is
decided based on σv(t−1) for any β ∈ (0, 1], while σv(t) is
determined independently of σv(t−1) for β=0. Note also that
the node-selection probability distribution {qv} in Algorithm 2
can be arbitrary as long as qv>0 for all v and

∑
v∈N qv=1.

For any given {qv}, let σ(t, β) be a configuration at time
t by the generalized Glauber dynamics with β ∈ [0, 1]. One
can see that {σ(t, β)}t≥0 is a finite Markov chain with a
transition matrix Qβ = {Qβ(σ,σ

′)}σ,σ′∈Ω. We say that the
Markov chain is ergodic if π(σ′)=limt→∞ Qt

β(σ,σ
′), where

Qt
β(σ,σ

′) is the t-step transition probability from state σ
to state σ′. We then have the following properties of the
generalized Glauber dynamics.

Theorem 1: For any given {qv} and β ∈ [0, 1], the Markov
chain {σ(t, β)} with Qβ is ergodic and reversible with respect
to π in (1). In addition, for any given {qv} and 0 ≤ β1 ≤ β2 ≤
1, Qβ1 ≼ Qβ2 . 2



Proof: See our technical report [6].

A. Throughput Optimality

While our focus in this paper is to analyze the performance
of each queue per node (in a conflict graph) when the
generalized Glauber dynamics comes into play for the problem
of optimal CSMA, we here briefly explain the throughput-
optimality of the generalized Glauber dynamics. Theorem 1
says that the stationary distribution π of the Markov chain
{σ(t, β)} is invariant with respect to β ∈ [0, 1] and {qv}.
Thus, if the fugacity of each node λv can be chosen so that
the long-term service rate (or capacity) at each queue is larger
than its packet arrival rate, which is the typical case for delay
analysis [3], [18], then ‘throughput-optimality’ or ‘per-node
stability’ is achieved irrespective of the choice of β ∈ [0, 1]
and {qv}. However, in reality, it may not be possible for each
node v to adjust its fugacity λv based on the measured arrival
and service rates. Hence, in the literature, the throughput-
optimality has been defined and shown under the following
setting, especially for the original Glauber dynamics (β=0):
the fugacity is now a function of time t, which is given by
λv(t) = exp(f(Wv(t))) where f is some weighted function
and Wv(t) is the queue-length at node v at time t.

Even in this dynamic fugacity set-up, one can establish the
throughput-optimality of the generalized Glauber dynamics
with any given β ∈ [0, 1] and {qv}. There are two different
ways to prove the throughput-optimality in the literature.
The first (and most popular) way is based on the time-scale
decomposition under which the system quickly converges to its
stationary regime before its dynamics changes (see, e.g., [4],
[12]). Under this condition, Theorem 1 immediately implies
that the generalized Glauber dynamics is throughput-optimal.
On the other hand, the second approach in [17] is done without
the time-scale decomposition when qv = 1/n for all v and
β=0, but by choosing a proper weighted function f such as
f(·) = log log(·+e), so that f(Wv(t)) changes much slower
than the system dynamics. The proof technique in [17] can
be similarly used to establish the throughput-optimality of the
generalized Glauber dynamics. A rigorous treatment on the
throughput-optimality without the time-scale decomposition is
another research topic beyond the scope of this paper.

B. Delay Analysis

While not much is known yet about the queueing delay
performance of optimal CSMA algorithms, we emphasize that
the time-varying behavior of λv(t) (in the dynamic fugacity
set-up) makes the analysis even more intractable. So, as used
in [3], [18], we here focus on the following case for delay
analysis: the fugacity of each node λv is given and fixed, but
possibly heterogeneous over v ∈ N , such that the long-term
service rate at each queue is larger than its packet arrival rate.
We then demonstrate that higher efficiency in the extensions
of Glauber dynamics, the choices of β ∈ (0, 1], give rise
to better queueing delay performance, while maintaining the
same long-term throughput. Specifically, the original Glauber
dynamics with β = 0 in fact gives the worst queueing delay
performance, and there are infinitely many different variants

of ‘throughput-optimal’ algorithms with better queueing delay
performance as β increases, culminating in the ‘Metropolised’
version with β = 1. We also support our analytical findings
for the dynamic fugacity case through extensive simulations
under various network topologies and arrival rates.

Fix {qv} and β∈[0, 1]. Since we are interested in the long-
term behavior of the queueing delay performance, without loss
of generality, we can assume that the system is in its stationary
regime.§ Thus, the Markov chain {σ(t, β)}t≥0 is in its sta-
tionary regime, i.e., P{σ(t, β)=σ}=π(σ) for all t≥ 0. We
consider that a packet arrives in each node v at the beginning
of each time slot according to a stationary 0–1 process {Av(t)}
with rate µv in which Av(t) = 1 if there is a packet arrival
to node v with probability P{Av(t)= 1}=µv at time t, and
Av(t)=0, otherwise.¶ On the other hand, whenever node v is
available for communication, i.e., σv(t) = 1, it transmits one
packet backlogged in its FIFO queue (if any) during time slot
t. The communication (or service) availability at node v is
modeled as a 0–1 valued process governed by the generalized
Glauber dynamics. That is,

Sv(t) =

{
1 if node v is available for service, i.e., σv(t)=1

0 otherwise

= 1{σ(t,β) ∈ Bv} (3)

for t = 0, 1, . . ., where Bv , {σ ∈ Ω : σv = 1} ⊆ Ω.
We define πBv ,

∑
σ∈Bv

π(σ), the long-term proportion of
communication availability at node v or its ‘service rate’.
From the stationarity of the Markov chain {σ(t, β)}, we
have P{Sv(t) = 1} = P{σ(t, β) ∈ Bv} = πBv for all t.
Thus, {Sv(t)}t≥0 is a stationary 0–1 process. Also, {Sv(t)}
is independent of {Av(t)}. As mentioned before, we assume
that πBv >µv for all v ∈ N , ensuring that utilization is strictly
less than one at each queue.

Without loss of generality, we below examine the queueing
delay at an arbitrarily chosen node v. From now on, our
exposition will be all about the queue in node v. So, for the
sake of notational simplicity, we drop the subscript v and use
µ, A(t), S(t), B, and πB instead of µv , Av(t), Sv(t), Bv and
πBv , respectively, unless stated otherwise. We first evaluate
the time interval between the two successive communication
availabilities at node v, which corresponds to the service time
of a single-server queueing model. To this end, we define

T1 , min{t≥0 : S(t)=1}, Ti+1 , min{t>Ti : S(t)=1},
and τi , Ti+1 − Ti (i ≥ 1). Here, {τi}i≥1 are such time
intervals, all identically distributed from the stationarity of
S(t), and also called the recurrence times to the state 1 for
{S(t)}. Then, we have the following.

Theorem 2: For a given {qv}, E{τi}=1/πB for all β, and
E{(τi)2} is decreasing in β∈ [0, 1]. 2

§Any initial transient fluctuation will disappear when computing steady-
state metrics for queueing dynamics. For instance, the initial queue-length
doesn’t matter for the analysis of M/G/1 queue in the steady-state.

¶We assume very general class of arrival processes {Av(t)}, satisfying the
usual conditions for the large deviation (large buffer) asymptotic to hold [1].
Such processes include not only Bernoulli arrivals, but correlated arrivals such
as auto-regressive processes whose autocorrelation functions are summable.



Proof: See our technical report [6].
For a fixed {qv}, the average recurrent time, E{τi}, remains

the same for all β due to the invariance property of π with
respect to β in Theorem 1, while the variance of the recurrence
time is decreasing in β. In the standard queueing literature, the
variance of the service time plays a major role in queueing
performance. For example, it is well-known that, for M/G/1
queue, the variance of the service time solely determines the
average queueing delay if the average service time is kept the
same. Similarly, even for G/G/1 queue, more ‘variable’ service
time leads to larger queueing delay [14]. However, our system
is far more complicated than these standard queueing systems;
the recurrence times {τi} can be possibly correlated over i for
|B|>1, as the time instant Ti+1 depends on the configuration
σ(Ti, β) ∈ B at time Ti. Such dependency, thus, makes the
exact analysis of queueing delay performance intractable.∥

Nonetheless, for a given {qv}, the ‘marginal’ distribution of
the service time τi has smaller variance as β increases (with
the same mean regardless of the choice of β), suggesting that
larger β would lead to better delay performance.

In addition, we demonstrate that the efficiency ordering of
Qβ for different β can still order the performance of queueing
dynamics by directly taking into account the dependency
structure in {τi} sequence. To proceed, let W (t) be the queue
length (or workload) at time t, satisfying Lindley recursion:

W (t+1) = max{0,W (t) +A(t+1)− S(t+1)}. (4)

From the large deviation theory, in considerable generality,
the tail distribution of the steady-state queue length W is
asymptotically exponential [1] with the asymptotic decay rate
η given by

η = lim
x→∞

− 1

x
logP{W > x} > 0. (5)

Let I(t)=A(t)−S(t) be the net input into the queue at time
t. Let It,

∑t
i=1 I(i), At,

∑t
i=1 A(i), and St,

∑t
i=1 S(i).

Clearly, E{It} = E{At}−E{St} = t(µ − πB) < 0. In this
setup, we have the following:

Theorem 3: Suppose that the distribution of It is Gaussian
for large t with limt→∞ VAR{At}/t = ν∗ < ∞. Then, η in
(5) is increasing in β ∈ [0, 1]. 2

Proof: See our technical report [6].
Since It =

∑t
i=1(A(i)−S(i)) is the sum of t random

variables, as long as their dependency over i is not so strong,
it is reasonable to assume that It is roughly Gaussian for large
t. Then, Theorem 3 tells us that larger β leads to faster decay
of the tail distribution of the steady-state queue-length, again
suggesting better queueing performance while preserving the
throughput-optimality. The Gaussian approximation and The-
orem 3 are also corroborated by simulation results.

As mentioned before, it may not be possible for each node
v to choose its fugacity λv based on the measured arrival and
service rates for per-node stability. Instead, the fugacity of each

∥If |B|=1, the exact analysis is possible, as {τi} forms an i.i.d. sequence
due to the strong Markov property. For example, if the arrival process is an
independent Bernoulli process, the system is simply the discrete-time case of
M/G/1 queue.

node needs to be an appropriate function of its (time-varying)
queue-length. Nonetheless, if the corresponding temporal dy-
namics is relatively slow or is in ‘almost-stationary’ regime,
from Theorems 2 and 3, we expect that the average queueing
delay per node decreases in β∈ [0, 1] for a given {qv}, which is
also supported by simulation results. Due to space constraints,
all simulation results are omitted and can be found in [6].

V. CONCLUSION

We took a different direction, instead of relying on asymp-
totic delay analysis prevalent in recent studies, to achieve
smaller delay in Glauber-dynamics based CSMA (or optimal
CSMA) for finite-sized networks. By carefully exploring all
possible variants of the traditional Glauber dynamics, we
proposed generalized Glauber dynamics with no additional
complexity, maintaining the same stationary distribution and
thus rendering the long-term optimality unchanged in the
context of scheduling. We then showed that our extensions
lead to better queueing delay performance, by directly taking
into account the second-order system behavior via a notion of
Peskun (or efficiency) ordering and large deviation techniques.
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