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Abstract:
Motivated by the scale and complexity of simulating large-scale networks, recent research has

focused on hybrid fluid/packet simulators, where fluid models are combined with packet models
in order to reduce simulation complexity. However, these simulators still need to track the
queuing dynamics of network routers, which generate considerable simulation time-complexity
in a large-scale network model.

In this paper, we propose a hybrid simulator – FluNet – where queueing dynamics are not
tracked. The FluNet simulator is predicated on a fast-queueing regime at bottleneck routers,
where the queue length fluctuates on a time-scale that is much faster than the time-scale of
end systems. FluNet does not track queue lengths at routers, but instead, uses an equivalent
rate based model at the router queue; and queue-based AQM schemes (such as RED) are re-
placed by equialent rate-based models.This allows us to simulate large-scale systems, where
the simulation “time-step-size” is governed only by the time-scale of the end-systems, and not
the intermediate routers;whereas a fluid model based simulator thattracksqueue-length would
require decreasingly smaller step-sizes as the scale size of system increases. We validate our
model using a Linux based implementation with real traffic. Our results indicate a good match
between packet systems and the associated FluNet system.

1. INTRODUCTION

The Internet has experienced tremendous growth in both scale and speed, and the control
and management of the Internet is becoming an ever more important issue. To model and un-
derstand the behavior of such networks, several widely-used discrete event-driven simulators
are available [1, 11, 23] in the area of simulation. However, event-driven simulation of large
scale network systems with a significant number of users and flows passing over multiple au-
tonomous systems with a large number of routers and complex routing patterns, is difficult due
to computational complexity (leading to excessive time to carry out simulation).

Recently, there have been significant efforts on developing (approximate) fluid model based
simulators to address the time-complexity of discrete event simulators. These simulators can be
classified into(i) pure fluid model based studies, and(ii) hybrid fluid model based studies. Pure
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fluid model based research includes [4, 18, 20, 22], where the authors are primarily interested
in rate based modeling of TCP sources, AQM algorithms, and their interactions. Recent work
in [17] applies network calculus based on the mathematical theory of Min-Plus (or Max-Plus)
algebra to fluid modeling of network dynamics. On the other hand, [5, 12, 19, 24, 28] integrate
packet models along with fluid models to enable hybrid simulation. Hybrid simulators have the
advantage of accurately tracking source dynamics (as the sources in the simulator are typically
modeled using packet networks), while simultaneously using fluid approximations in the core
network, where the system scale (i.e., a large number of flows and a large network capacity)
permits fluid approximations to be accurate [25].

An important source of time-complexity is due to the simulation of queueing dynamics at the
core network routers. Most existing hybrid simulators however still need to track the queuing
dynamics of network routers (by means of fluid queues). In this paper, we propose a hybrid
simulator – FluNet – where queueing dynamics are not tracked. Instead, queue-length based
AQM schemes (such as RED) at intermediate routers are replaced by an equivalent fluid-rate
based model.

The main idea in FluNet is to replace the Internet core by a fluid model based network where
router queues are replaced by equivalent rate-based models, while keeping the dynamics of
end-systems unchanged. The main features of FluNet are summarized below.

(i) Dimensional collapse: Multiple packet flows between each pair of end-systems (such as
between a pair of LANs/WANs) are represented by a single fluid-flow within FluNet,
since congestion controllers at the intermediate routers need only “aggregate (over flows)
rate information” to respond to occurring congestion.

(ii) Absence of queueing dynamics: Queue-length based AQM schemes (e.g., RED [10]) at
intermediate routers are replaced by an equivalent fluid-rate based model, which leads
to simpler modeling of the associated packet network. Further, FluNet has no control-
theoretic approximation of source controllers, but uses actual end-systems in a Linux
platform.

(iii) Fast queue regime: The FluNet simulator is predicated on a fast-queueing regime at bot-
tleneck routers, where the queue length fluctuates on a time-scale that is much faster
than the time-scale of end systems. This regime is reasonable to study, especially for
large-scale systems where sufficient randomness (generated by end-systems, unrespon-
sive flows, as well as intermediate routers) is present, and sufficient traffic aggregation
occurs. FluNet does not track queue lengths at routers, but instead, uses an equivalent
rate based model that depends on the (stochastic) stationary behavior of the router queue.
This allows us to simulate large-scale systems, where the simulation “time-step-size” is
governed only by the time-scale of the end-systems, and not the intermediate routers;
whereas a fluid model based simulator thattracksqueue-length would require decreas-
ingly smaller step-sizes as the size of system increases (see Section 2 for details).

By implementing FluNet in a popular discrete event simulation (ns-FluNet) and in a real
operating system (real-FluNet), we validate our model and its feasibility for both simulation
as well as real-time emulation with real traffic. The simulation/measurement results show a
good match between a packet system and the associated FluNet system under various network



Figure 1. Trajectory of a router queue with system size scaling

topologies and traffic conditions. Due to space limitations, we present only the experimental
results based on real-FluNet (see [27] for more simulations and experimental results).

2. FAST AND SLOW QUEUE REGIME

Hybrid packet/fluid simulators have received much attention [5, 12, 19, 24, 28], because they
have the advantage of accurately tracking source dynamics while using fluid approximations in
the core network, where the system scale (i.e., large number of flows and capacity) permits the
fluid model to be accurate. For instance, in the QFM simulator proposed in [12], the authors
integrate fluid models with packet systems in the ns-2 simulator, by measuring data from packet
flows over discrete time-steps (i.e., measure the total number of packets over a small mea-
surement interval to estimate rate), and using these measurements as the fluid input to a fluid
simulator within ns-2 (fluid queues instead of packet queues), along with differential equation
based fluid models for background traffic.

Our study differs from existing hybrid simulators in that we do not simulate the queueing
dynamics. This is very different from a fluid-queueing simulator that tracks queue lengths (as
in [12]) in the sense that as the system size increases, a fluid-queueing simulator requires smaller
and smaller measurement step-sizes to accurately capture the fluid queue dynamics. Thus, the
simulation time-complexity (which is inversely proportional to step-size) increases with the
system scale. This is because it is well-known from queueing theory that the queue fluctuations
become faster as the arrival and service rates (i.e., the system size) increase. This phenomenon
is illustrated in Figure 1, where packet flows are averaged over a time-interval ofδ1 in the left
figure, but the measurement step size needs to decrease toδ2 (in the right figure) as the number
of flows and the capacity of the router increases, in order to accurately capture the queueing
dynamics.

On the other hand, FluNet does not have any queueing dynamics, becausewe assume that
the system scale is large enough such that the statistically stationary behavior of the queue
can be observed over a small (but fixed) interval of time.This means that with our model,
the measurement step-sizedoes notneed to shrink with system size as ourstep-size is now
governed only by the time-scale of end-systems.Thus, for a fixed step-size, our model will
become progressively better as the scale of the system increases.

For a fixed step-size, we argue that the performance of FluNet will be better if the queue-
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(a) Scale 1: 200 Mbps, 100 TCP and 100 unresponsive (total 30
Mbps)

(b) Scale 2.5: 750 Mbps, 250 TCP and 250 unresponsive (total 75
Mbps)

Figure 2. Normalized throughput of QFM and FluNet with different system scales.

ing dynamics are fast (i.e., the queue-length process changes rapidly over a round-trip time),
whereas a fluid-queueing simulator (such as in [12]) will be better when the queueing dynamics
are slow.

A fast queueing regime corresponds to a small queue regime in a large-scale system (the
system scale corresponds to the number of flows and link capacity). Note that the term ‘small
queue’ corresponds to the queue length when normalized with the system capacity. Such a
regime seems reasonable for large-scale systems based on arguments presented in [2]. The
authors in [2] argue that the required buffer sizeneed notscale linearly with the system size
(i.e., with respect to the link capacity increase). This implies that in large systems, the buffer
fluctuations will be fast, because the buffer size normalized to the link capacity shrinks [2].
Thus, the queue lengthnormalizedwith the capacity will be small, leading to fast dynamics.

We also remark that results in [17] suggest that fluid queue based simulation could perform
poorly when the bottleneck buffers are not saturated. This can be understood from the fact that
unsaturated buffers correspond to a system with fast queueing dynamics, where tracking queue
length trajectories (i.e, a fluid queue based approach) may not be feasible.

To illustrate the effect of fast and slow queueing regimes, in Figure 2, we have plotted the nor-
malized average throughput of FluNet and QFM [12] (normalized with respect to the through-
put measured with a pure packet-only simulation) for different RED parameters (min th and
min th ), and with simulation time-step-size being 5 msec. RED [10] is a queue based AQM
mechanism at routers, that marks or drops packets depending on the queue length. The RED
parameters (min th = a, max th = b) correspond to the case where marking/dropping oc-
curs when the queue-length exceedsa packets/b packets, respectively. Throughout this paper,
max th is set to be three times asmin th [9]. In Section 3, we describe a rate-based equivalent
model of RED that has been implemented in FluNet.

We remark that afast-queueing regimeresults when the RED queue-threshold parameters are
small. Thus, as the queue-size is moderately small, the queue-length fluctuates faster, leading to
a fast-queue regime. As the queue-threshold parameters of RED increase, the queue length is al-
lowed to build up to a larger value before marking/dropping occurs, thus leading to aslow-queue
regime.We observe from Figure 2-(a) that when the queue parameters are small, the throughput
measured from FluNet is close to that of a packet implementation (no fluid approximations);
whereas when the RED parameters are large, QFM outperforms FluNet, and the throughput



measured with QFM is close to that measured with a pure packet implementation. This agrees
with our intuition that FluNet will have better performance in a fast-queueing regime.

However, we comment that for the same step-size and RED parameters, by scaling the num-
ber of flows and the bottleneck capacity, FluNet will again provide good results even with large
RED parameters. This is because the RED parameterswhen normalized by the capacityagain
leads to a fast queue regime.In other words, for a fixed step-size and parameters, our model
will become progressively better as the scale of the system increases.This is illustrated in Fig-
ure 2-(b), where the system size (i.e., number of flows and capacity) is scaled by a factor of
2.5. Thus, we believe thatboth QFM and FluNet are complementary,and hybrid packet-fluid
simulators should incorporate both these approaches, depending on the system scale.

3. FLUID MODEL OF FLUNET

3.1. Intuition and Basic Model
Due to space limitations, we focus on description of the (fluid) model of FluNet in this paper.

See [27] for details on architecture and implementation of FluNet.
An important source of computational complexity in large scale network simulation stems

from the queueing dynamics (asynchronous packet arrivals and departures to a considerable
number of router queues). By reducing or eliminating queueing dynamics of packet queueing
networks, simulation complexity can be significantly reduced. However, the key impediment to
the elimination of queueing is that (asynchronous) queue based marking functions in the Internet
(such as RED [10] and REM [3]) rely on the (weight-averaged) queue-length information at
intermediate routers. In [8,26], the authors showed that a queue based marking function can be
approximated by a rate based marking function, resulting in the elimination of queue dynamics.
We refer to this model asERBM (Equivalent Rate Based Marking) throughout this paper. A
natural application of these results is in the (hybrid) simulation of large scale network systems,
since we could reduce significant computational complexity by replacing the packet network
core with the ERBM model (thus, eliminating discrete queueing events).

Two important assumptions in ERBM are the following:

(i) The buffer size at routers do not need to scale with the number of flows. As link speeds in
modern and future communication networks becomes higher, high-speed memory buffer
with high cost is required in the design of such networks. Therefore, it is questionable if
the queue buffers at intermediate routers need toscale linearlywith the number of flows.
In [2, 7], the authors have argued that buffer sizes need not scale with the link speed in
order to achieve significant multiplexing gains, and the ERBM approximation relies on
this observation.

(ii) There is a sufficient amount of randomness in the Internet mainly due to unresponsive
flows, flow initiation and terminations, and probabilistic marking function implemented
in the routers. Recent studies [6, 13] show that unresponsive sources contribute to about
70% - 80% of the Internet flow counts2. Typical examples of such unresponsive flows
include multimedia (video and audio) flows and web mice (short duration HTTP flows).

2However, the volume of data in unresponsive flows contribute to about 10% - 20% of the total traffic volume of
the Internet.



Under such a regime on sizing of router buffer and a large amount of randomness in the sys-
tem, we could have a considerable number of “cycles” in the queue dynamics of the intermediate
routers even over a small interval of time (see the simulation results in [8]), where one “cycle”
corresponds to the time interval over which an empty router buffer fills up and empties again
(technically, the regeneration time). In other words, the queue dynamics occur on a muchfaster
time-scale than that of the end system controller [8, 16]. In order to understand this intuitively,
consider a router of capacityn×c accessed byn TCP flows andn unresponsive flows. Then, the
time scale of a TCP source rate update is the order of1/c (since its rate update is clocked by the
ACK packets from the receiver), whereas the time scale of a router queue “cycle” is in the order
of 1/(nc). Thus, it is reasonable to expect that queueing dynamics are not visible to the end
system controller. Instead, the queueing behavior at the router affects the end system controller
only throughthe statistical behavior of the queue.The authors in [8, 26] quantified the above
heuristic by showing thatthe queue based marking and the associated queueing dynamics can
be approximated by a rate based marking function.

3.2. Refinement: Queue Averaging Effect
The ERBM model considers a scenario where only packet marking occurs based on the in-

stantaneous queue-length, whereas popular AQM algorithms such as RED [10] usequeue av-
eraging to filter the effect of short packet bursts due to TCP window dynamics [10]. In this
section, we outline results that show that the ERBM model is valid even with queue averaging,
under suitable assumptions. Due to space constraints, we provide only a summary of the model
and the results. The details of the ERBM model as well as proofs, assumptions, and the system
model used in the analysis summarized in this section are available in [27].

The system model can be summarized as follows. The system consists of a single bottleneck
router fed byn TCP flows andn unresponsive flows (web-mice or other short flows), and with
a queue based marking function (denoted bypq(Q̄n(t)), whereQ̄n(t) is the weight-averaged
queue length) is employed at the router. With this system, we will derive the equivalent rate
based marking function for a given queue-based marking function. For a fixedT > 0, and for
largen, we are interested in studying the queue length process (which measures the volume of
data at the router) over the time-interval[0, T

n
]. Thus, we are interested in the queue dynamics at

the router over a short interval of time. Even over this small time interval, we will show that the
queue reaches “steady-state” behavior. This occurs due to the fact that the capacity is very large
(nc), and causes the queue to “regenerate” an arbitrarily large number of times over the interval
[0, T

n
]. However, from a singleend-system(the user) point of view, this corresponds to a very

short interval of time. Thus, one can expect that the end-user will only perceive the statistical
“steady-state” queueing behavior. The results in this section quantify the above heuristic.

Let us denote the instantaneous queue-length process at the router byQn(t) (the subscriptn
indicates that the capacty isnc), and the exponential moving averaged process byQ̄n(t), which
is given byQ̄n(t) = wnQ̄n(t− δn)+ (1−wn)Qn(t), where0 < wn < 1 is the queue-averaging
parameter forn-th system andδn = 1/(nc). In [10], the authors provides a guideline on how
to choose the parameterwn. Essentially, the authors in [10] argue thatwn is chosen such that
a fixed burst of packets (i.e.,L back-to-back packets from a single flow) should be allowed
into the router without this burst being marked. This burst tolerance is chosen to account for
TCP window behavior and cumulative ACKs, which lead to a burst of packets being transmit-
ted from a single TCP source, instead of the packets being spaced apart. However, observe
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Figure 3. Limiting system behavior

that as the number of flows and capacity increases, thenormalized packet burst sizedecreases
(normalization with respect to link capacity).

In particular, consider a bottle-neck router with capacitync, and fed byn independent ar-
rivals each of which has a packet-burst of sizeL packets (i.e.,L back-to-back packets from
a single flow). Then, if the flows are independent, it is unlikely that the packet bursts from
various flows will synchronize and form a single large burst ofnL. This heuristic is supported
by [15], where the authors show that when multiple flows are aggregated, and the individual
flows have different burstiness but equal rates, the burstiness of the aggregate flow is deter-
mined by the burstiness of the individual constituent flow which has the maximum burstiness.
In other words, as the number of flows and the bottle-neck link capacity increases, the burstiness
of aggregate incoming flows remains constant. This implies that the queue averaging parameter
wn needs to become smaller as the system scale increases (because the normalized packet burst
size decreases). Motivated by this argument, we make the following assumption.

Assumption 3.1 wn
n→∞−→ 0.

Next, we define a queue processq(t) as follows:

q(t) = sup
r∈[0,t]

[a(t)− a(r) + (t− r)x(0)− c(t− r) + q(r)], (1)

wherea(t) is a Poisson process with arrival rateλ. Then, we have the following result, andx(0)
is the TCP transmission rate at time 0.

Theorem 3.1 Asn →∞, we have

1

T/n

∫ T
n

0

xi
n(y)pq(Q̄n(y)) dy

n→∞−→ xi(0)
1

T

∫ T

0

pq(q(y)) dy (2)

Theorem 3.1 states that the time-average volume of marks (experienced byi-th TCP flow over
the interval length ofT/n) can be well approximated by the marked volume at the M/D/1 queue
with Poisson arrival rateλ and capacityc−x(0). Note that the original unresponsive arrival rate
is not necessarily Poisson process.Figure 3 also shows a pictorial view of Theorem 3.1. Due to
the fact that the queue dynamics occur on a muchfastertime-scale than that of the end system
controller, the transmission rate of TCP flows seen by the system is “constant” even over a small
interval of time in a large capacity limiting regime (under a suitable scaling). Thus, the system
with aggregate (over flows) unresponsive rate ofnλ, and with aggregate (over flows) TCP rate
of nx can be represented by M/D/1 system of fixed service rate ofc− x, and an arrival process



that is Poisson with parameterλ (even if the actual system does not have Poisson arrivals). We
define an equivalent rate based marking functionpr(x, λ) as follows:

pr(x, λ) =

{
Eπx [pq(Q)] if λ

c−x
< 1 and x < c,

1 if x ≥ c or λ
c−x

≥ 1,
(3)

whereQ is the stationary queue length random variable andπx is the stationary distribution
of an M/D/1 queue with capacity(c − x) and arrival rateλ. In other words, the congestion
controller dynamics with a queue-based marking functionpq(·) can be well approximated by
a equivalentsystem with only a rate-based controllerpr(x, λ) at the router, wherex andλ are
simply the average arrival rate from the TCP and unresponsive flows (averaging over flows, not
time) to the router queue, respectively.

In such a case, popular queue based marking schemes such as RED [10] and REM [3], can
be approximated by an equivalent rate based marking, resulting in simpler system dynamics.
The limiting system consists of a fluid model (rate based system update) and no (asynchronous)
queueing dynamics. A natural implementation of ERBM model is to define a small measure-
ment interval (time step size) that depends only on the end-system time-scale and the time-scale
of the randomness, over which the average TCP and unresponsive arrival rates are measured,
and to apply those rates to the equation (3).

4. EXPERIMENTAL RESULTS WITH REAL IMPLEMENTATION

Due to space limitations, we focus on measurements from real-FluNet implemented over
Linux (see [27] for more simulation/emulation results with various network configurations, as
well as an implementation within ns-2).

100Mb

100Mb

100Mb

100Mb

100Mb, 50ms

FluNet on Linux

Bottleneck

TCP 
Sources

ON-OFF
Sources

TCP 
Sinks

ON-OFF
Sinks

Figure 4. Network configuration with real-FluNet

The network topology for measurement is shown in Figure 4. We consider a simple topology
in this section so that we can implement an actual packet network with the identical topology
and provide base-line measurements for comparison. Our real-FluNet implementation can be
configured for other topologies are well.

Two hosts are responsible for generating 50 TCP sources and a variable number of unrespon-
sive ON-OFF sources. Two routers reside between source and destination pool, and all links are



connected by Fast Ethernet 100 Mbps links (thus, the intermediate link between two routers is
the bottleneck). In real-FluNet, both the bottleneck link as well as two routers are encapsulated
into one real-FluNet computer. Link propagation delays of 50 msec are set using the NistNet
tool [21]. We use a 5 msec step size in real-FluNet. Both the TCP traffic as well as the ON-OFF
traffic are generated using the iperf [14] traffic generator tool. Figure 5 and Table 1 provide
the measurement results of real-FluNet in comparison with measurements with an identically
configured packet network. The results show a good match between the two systems.
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Figure 5. Average CWND Traces:min th =30,
max th =100

Table 1. Average throughput of real-FluNet
UF (#) UF (vol) Tool Avg Th Err(%)

30 30Mb pkt 1210045 ·
· · FN 1179469 2.5

70 30Mb pkt 1287234 ·
· · FN 1221285 5.1

40 10Mb pkt 1550723 ·
· · FN 1496432 3.5

40 40Mb pkt 1037761 ·
· · FN 995533 4.1
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