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ABSTRACT
In this paper we characterize flow-level stochastic stability
for networks with non-convex or time-varying rate regions
under resource allocation based on utility maximization.
Similar to prior works on flow-level stability, we consider
exogenous data arrivals with finite workloads. However, to
model many realistic situations, the rate region, which con-
strains the feasibility of resource allocation, may be either
non-convex or time-varying. When the rate region is fixed
but non-convex, we derive sufficient and necessary condi-
tions for stability, which coincide when the set of allocated
rate vectors has continuous contours. When the rate region
is time-varying according to some stationary, ergodic pro-
cess, we derive the precise stability region. In both cases,
the size of the stability region depends on the resource allo-
cation policy, in particular, on the fairness parameter α in
α-fair utility maximization. This is in sharp contrast with
the substantial existing literature on stability under fixed
and convex rate regions, in which the stability region coin-
cides with the rate region for many utility-based resource
allocation schemes, independently of the value of the fair-
ness parameter. We further investigate the tradeoff between
fairness and stability when rate region is non-convex or time-
varying. Numerical examples of both wired and wireless
networks are provided to illustrate the new stability regions
and tradeoffs proved in the paper.
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ing theory, Stochastic processes
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1. INTRODUCTION

1.1 Motivation
Flows (or equivalently, end-to-end connections) in wired

or wireless networks dynamically share resources (such as
link capacities) according to various resource allocation sche-
mes. These flows can be identified through their “classes”,
which define the set of network resources they require for the
transfer of the corresponding packets. A popular family of
schemes allocate resources to competing flows by distribu-
tively solving a network utility maximization problem [20].
The optimization constraint set captures the feasibility of al-
locations, and is referred to as rate region. The optimization
objective in the form of utility functions can capture impor-
tant notions such as traffic elasticity, user satisfaction, or
fairness.

Extensive work on deterministic models of utility max-
imization has been conducted since the late 1990s, where
flows constitute a static population and are assumed to have
infinite backlog. In practice, the numbers of flows are vary-
ing as they are randomly generated by users and cease upon
completion. This system can be viewed as a queuing net-
work where the service rates depend on the solution to an
optimization problem, which in turn depends on the number
of active flows in each class.

A key performance requirement in data networks is that
all flows are completed within a finite time, or that the num-
bers of active flows do not grow unbounded. Mathemati-
cally, this corresponds to the ergodicity of the process rep-
resenting the numbers of flows of various classes. This prop-
erty is referred to as flow-level stability. As will be briefly
reviewed later in this section, a series of papers over the last
eight years have provided necessary and sufficient conditions
for flow-level stability in various models. With a couple of
recent exceptions, these models assume a fixed and convex
rate region. In this paper, we investigate conditions for flow-
level stability when the rate region is either non-convex or
time-varying.

Indeed, as explained in more detail in Subsection 2.2 and
also the survey in [11], in many applications we cannot as-



sume convexity or time-invariance of rate region in Network
Utility Maximization models when studying flow-level sta-
bility. For example, non-convexity of rate region naturally
arises in wireless cellular and ad-hoc networks [3, 18], and
time-variation arises over time due to mobility, link fail-
ures, route or topology changes, and priority structures in
resource allocation. It turns out that new proof techniques
are needed to prove stability conditions in these scenarios,
and intriguing tradeoffs between fairness and stability are
discovered.

1.2 Related work
The first analysis of the flow-level stability focused on

wired networks supporting data traffic only [5,14]. For such
networks, the rate region is a (convex) polytope formed by
the intersection of a finite number of linear capacity con-
straints, and it has been shown that all α-fair allocations
with α > 0 provide flow-level stability if and only if the vec-
tor representing the average traffic intensities of flow classes
lies in the rate region. In other words, the rate region in
the utility maximization problem is also the stability region
under flow-level stochastic dynamics. This result has been
generalized by many papers, e.g., [22,32,33], in particular, to
the case of networks with arbitrary convex rate regions [6],
and very recently to the case of general flow arrival pro-
cesses and general flow size distributions [10,12,16,21,26,33].
It has also been shown in [6] that if the traffic intensity
vector is outside of the rate region, then there is no allo-
cation stabilizing the network at flow-level. These results
imply that for fixed, convex rate regions, α-fair allocations
maximize the flow-level stability region. This is sometimes
called the throughput-optimality property for the utility-
maximization-based resource allocations.

The analysis of the flow-level stability in case of fixed but
non-convex rate region is generally very difficult, with very
few existing work. In case of networks with two flow classes
only, the stability condition of a large class of allocations can
be exactly characterized [7]. However when the number of
classes is greater than two, it has been generally impossible
to derive an explicit and exact stability condition. This is
mainly due to the fact that the stability condition depends
on detailed statistical characteristics of the flow arrival pro-
cesses, and flow departure processes, which are determined
by the solutions of non-convex optimization problems. Some
papers provide bounds on the stability region for very spe-
cific networks under particular allocations, see, e.g. [3, 25].
These papers study the stability of networks where the rate
region reduces to a single point depending on the set of
classes with active flows. Some other papers aim at pro-
viding exact stability conditions: in [9, 19, 29], a recursive
(with respect to the number of flow classes) stability con-
dition is given for a particular class of networks, including
those studied in [3,25]. Unfortunately this kind of recursive
formula often proves difficult to exploit: the stability con-
dition of networks with S classes of flows depends on that
of the network with S − 1 classes and also on more detailed
characterizations such as the probability that a given class
has no active flows. Usually, these characterizations cannot
be efficiently computed.

The analysis of the flow-level stability of networks with
time-varying rate region has not been extensively studied so
far. To the best of our knowledge, the only existing results
provide the flow-level stability of wireless networks with user

mobility under certain α-fair allocations [4, 8]. In [22] the
largest possible stability region is studied with time-varying
channel capacities under α-fair allocations, but the time-
scale assumptions are completely different from our work.

As will be shown in Section 5, there are interesting trade-
offs between fairness and flow-level stability when rate region
is non-convex or time-varying. This tradeoff is different from
that between fairness and efficiency investigated for a static
population of flows with infinite backlogs (see e.g., [27, 28]
in wired networks, or [15,24] for wireless networks, and [30]
for a discussion on the absence of tradeoff in general topol-
ogy). Here, we investigate the tradeoff between fairness and
stochastic stability region, which quantifies the impact of
fairness on the performance as perceived by users in a dy-
namic population of flows.

1.3 Overview
In this paper, we provide general stability conditions of α-

fair allocations in networks with non-convex or time-varying
rate regions. The main contributions are the followings:

(i) In networks with an arbitrary number of classes and
with fixed but non-convex rate region, we give suffi-
cient and necessary conditions for flow-level stability
of α-fair allocations, for all α > 0. We also prove that
these conditions coincide when the set of allocated rate
vectors is continuous (in a sense that will be defined
in Section 3), leading to an explicit stability condition
for such networks (Theorems 3, 4, 5, and Corollary 1).

(ii) We extend our analysis to networks with time-varying
convex rate regions, for which we also provide the sta-
bility condition of α-fair allocations, for all α > 0 (The-
orems 6, 7). The results and proof techniques in (i)
and (ii) can be readily combined for the general case
of non-convex and time-varying rate region.

(iii) When rate region is either non-convex or time-varying,
the stability condition is proven to depend on the cho-
sen fairness parameter α. The exact degree of sensitiv-
ity with respect to α depends on the considered net-
work, which can be significant (possibly changing the
shape of stability region from concave to convex) or
negligible. We provide examples for both situations.
In two-class networks, we also prove that, as α in-
creases, flow-level stability region shrinks (Corollary
2). In other words, there is a tradeoff between fairness
and flow-level performance. Fairness can be enhanced
but at the expense of reduced network stability. This
is in sharp contrast to the case of fixed and convex rate
region, where fairness has no impact on stability. This
new phenomenon shows that the choice of the utility
function is crucial to ensure a high user-level perfor-
mance under non-convex or time-varying rate regions.

The paper is organized as follows. Section 2 is devoted
to describing the system model and presenting the assump-
tions. In Sections 3 and 4, we provide the stability condi-
tions for non-convex and time-varying rate regions, respec-
tively. We discuss the tradeoff between fairness and stability
in Section 5. We illustrate our theoretical results with con-
crete examples from both wired and wireless networks in
Section 6, and conclude the paper in Section 7.



Notation and definitions. We first provide major defini-
tions and notation used throughout the paper.

• For all A, B in RS , A ≤ B (resp. A < B) means that
A is component-wisely smaller (resp. strictly smaller)
than B.

• A set Y ⊂ RS
+ is coordinate-convex when the following

is true: if B ∈ Y, then for all A: 0 ≤ A ≤ B, A ∈ Y.

• A set Y ⊂ RS
+ is a Pareto-type set if @A, B ∈ Y such

that A < B.

• Y◦ denotes the largest open subset of Y.

• c(Y) denotes the smallest closed set containing Y.

• Define U = {x ∈ RS
+ :

∑
s xs = 1} and D : RS

+ 7→ U the
application giving the direction of vectors, i.e., D(v) =
v/|v|, where |v| =

∑
s vs. We say that a Pareto-type

set Y is continuous in direction u if the two following
conditions are satisfied: (i) there exists ε > 0 such that
{v ∈ U : |v − u| < ε} ⊂ D(c(Y)); (ii) the application
D−1 : U 7→ Y is continuous at u. Condition (i) means
that there are vectors in Y in all directions around u.
Note that D−1 is well defined since Y is a Pareto-type
set.

• A Pareto-type set Y ∈ RS
+ is said to be continuous if

∀u ∈ D(c(Y)), Y is continuous in direction u.

2. SYSTEM MODEL

2.1 Traffic demand and network state
We consider a data network where flows are randomly

generated by users and cease upon completion. Flows are
classified according to the set of resources required to trans-
fer the corresponding packets. For example, in wired net-
works with fixed routing, the class of a flow is defined by
the set of links that the flow traverses from the source to
the destination. We have a finite set S of S classes of flows.
Flows of class s are generated according to a Poisson process
of intensity λs flows per second. The sizes of class-s flows
are i.i.d. exponentially distributed with mean size 1/µs bits.
We define the traffic intensity/offered load of flows of class
s by ρs = λs/µs bit/s.

At time t, the network state is denoted by N(t) = (N1(t),
· · · , NS(t)) where Ns(t) is the number of active class-s flows.
{N(t)}∞t=0 is a stochastic process governed by the random
arrivals and departures of flows.

2.2 Rate region
The rate region R of the network is defined as the set of

achievable rate vectors φ = (φ1, . . . , φS) where φs is the to-
tal rate allocated to class-s flows. A rate vector φ is said
to be achievable if there exist resource allocation mecha-
nisms that can realize this vector. We assume here that
the rate region does not depend on the network state N .
For example, consider a wired network with two links of
respective capacities C1 and C2. Two flow classes com-
pete for the use of these resources, class-1 flows require
the use of both links whereas class-2 flows require that of
the second link only. The corresponding rate region is then
R = {φ : φ1 + φ2 ≤ C2, φ1 ≤ C1}.

As illustrated in the previous example, the rate regions of
wired networks are often convex and coordinate-convex sets.
This is also the case for some wireless systems, mainly when
a centralized resource allocation is permitted and a time-
sharing argument convexifies the rate region. See e.g. [6] for
many other examples of networks with convex rate regions.
However, there are many situations where the rate region
loses its convexity, for example, due to distributed resource
allocation in wireless networks, or due to the fact that the
achievable set of capacities is discrete. In cellular networks,
the fact that the transmissions of the various base stations
are not coordinated leads to non-convex rate regions [3]. In
particular, when the achievable transmission power levels of
a base station form a countable set, the rate region is discrete
[7]. In wireless LANs, mesh or ad-hoc networks, users or
nodes randomly access the radio channel in a distributed
manner, which again induces non-convexity [18]. See [7] and
Section 6 of the present paper for the example on distributed
MAC scheduling. The first contribution of this paper is to
analyze the performance of networks with non-convex rate
region. In Section 3, we do not make any assumption on the
rate region except that it is a compact subset of RS

+.
The second contribution of this paper is to study net-

works with time-varying capacities according to some ex-
ogenous processes (independent of the evolution of the net-
work state). For example, in wired multi-service networks
supporting low-priority data traffic and high-priority real-
time traffic, the available capacity for data traffic is what is
left by real-time traffic. The variations can also stem from
link failures or from routing table changes. In wireless sys-
tems, fading as well as user mobility (in cellular networks)
or node mobility (in ad hoc networks) also generate the ca-
pacity variations. Here we denote by R(t) the rate region at
time t. We assume that the set I of indices of possible states
{Ri} for the process {R(t)}∞t=0 is finite, and that {R(t)}∞t=0

is stationary and ergodic. We denote by π the stationary
distribution of {R(t)}, i.e., P{R(t) = Ri} = πi, i ∈ I.

2.3 Resource allocation algorithms
Resource allocation algorithms allocate network resources

to different flow classes according to the current network
state N(t) and the current rate region R(t). Since the sem-
inal work of Kelly et al. [20], optimization approaches have
been extensively used to model and design the way these al-
gorithms share the network resources. Most of the existing
resource allocations aim at maximizing a certain notion of
utility of the network. The realized allocation is then the
solution of the following optimization problem:

maximize
∑

s Ns(t)Us(φs/Ns(t)),

subject to φ ∈ R(t), (1)

where the utility functions Us are usually assumed to be
concave and non-decreasing. Here we also assume that all
flow classes share the same utility function, i.e., Us = U for
all s.

A large class of resource allocations are obtained based
on the utility functions Uα(·) = (·)1−α/(1 − α) for α > 0,
and log(·), for α = 1 [28]. The parameter α represents the
degree of fairness of the allocation: when α = 0, the total
throughput of the network is maximized but the allocation
may lead to user starvation and thus will not be considered
in this paper; α = 1 gives the Proportional fair allocation;
when α →∞, it corresponds to the Max-min fairness.



We denote the optimal solution of (1) at time t by φ(N(t))
or φ(N(t),R(t)). For time-varying rate regions, this solu-

tion is denoted by φ(i)(N(t)) if R(t) = Ri. Since R(t) is
compact, a solution of (1) exists. However for non-convex
rate region, the solution is not necessarily unique.

Note that we could replace N(t) in (1) by any vector N in
RS

+. We then denote by φ(N ,R(t)) or φ(N) the solution of
optimization problem. When the rate region R(t) is convex,
the solution φ(N) corresponding to any α-fair allocation is
unique and has the following properties:

Property 1 (Continuity): the mapping N 7→ φ(N) is con-
tinuous on RS

+.
Property 2 (Homogeneity): For any N and any scalar

a > 0, φ(aN) = φ(N).
Property 3 (Pareto Efficiency): The set {φ(N), ∀N ∈

RS
+} is a Pareto-type set.
The proof of Properties 1, 2 is provided in [33], and Prop-

erty 3 is due to the fact that any α-fair allocation with a
compact rate region is Pareto efficient.

2.4 Time scale assumptions
The global system dynamics are induced by the flow ar-

rivals/departures, the possible variations of the rate region,
and the packet-level dynamics of the underlying resource
allocation algorithms. The different time-scales of these
sources of system dynamics play an important role in the
performance analysis, denoted as follows:

(i) T1: the time-scale of the flow-level dynamics,

(ii) T2: the time-scale of the rate region variations,

(iii) T3: the time scale of resource allocation algorithm’s
convergence.

We assume that the time-scale of flow-level dynamics is
much larger than that of resource allocation algorithms, i.e.,
T1 À T3. When the network state changes, the resource al-
location algorithms are assumed to converge instantaneously
to adapt the realized rate vector to this change. This as-
sumption is often referred to as the time-scale separation
assumption in the literature.

When the time-scales of rate region variations and of the
resource allocation algorithms are similar, i.e., T2 ≈ T3,
these algorithms can directly take advantage of the rate re-
gion variations. Such systems are said to be opportunistic. A
typical example of such systems is channel-aware scheduling
in cellular networks [2], where fast-fading variations of the
channels are exploited to get a greater throughput. When
the rate region variations are not that fast, i.e. T2 À T3,
being opportunistic proves more difficult and these varia-
tions can be exploited only at the expense of compromising
the delay allowance of users. In this paper, the rate region
variations are assumed to be relatively slow, as they can be
generated by phenomena such as node mobility in wireless
networks and link failures in wired networks.

To summarize, we assume that T1,T2 À T3, which means
that the resource allocation algorithms instantaneously adapt
the rate vector to either the numbers of active flows of var-
ious classes or the rate region variations. No assumption is
made on the relative time-scales T1 and T2.

2.5 Flow-level stability
Our main focus in this paper is to prove necessary and

sufficient conditions for flow-level stability: when will the

durations of flows remain finite (almost surely)? Mathe-
matically, stability means that the process {N(t)}∞t=0 is er-
godic. With the assumptions in Section 2.4, this process is
Markovian and evolves as follows: for each class s,

Ns(t) → Ns(t) + 1, with rate λs

Ns(t) → Ns(t)− 1, with rate µsφs(N(t),R(t)).

The flow-level stability is now equivalent to the positive re-
currence of the Markov process N(t), which implies the al-
most sure finiteness of the number of active flows in the
system, i.e., flows that are being served or remain in the
queues. In the following, we characterize the set of traffic
intensity vectors ρ = (ρ1, . . . , ρS) such that flow-level sta-
bility can be realized. This set is referred to as the stability
region, which also depends on the considered resource allo-
cation algorithm. We say a compact set Γ is the stability
region under certain resource allocation, if ∀ρ ∈ Γo such that
the system is stable, and if ∀ρ /∈ Γ, the system is unstable.

On a related but different notion, the maximum stability
region is defined by the union of all possible stability regions
under all possible resource allocations, i.e., for any traffic
intensity vector outside this set, there exists no resource
allocation algorithm that can stabilize the network at flow-
level. Note that such resource allocation may not be utility-
based or implementable in a distributed fashion.

3. STABILITY WITH ARBITRARY FIXED
RATE REGION

In this section, we investigate the flow-level stability of α-
fair allocations for networks with arbitrary, but fixed rate re-
gion. We first recall the stability result for convex, coordinate-
convex rate region R, see e.g. [6, 22].

Theorem 1 (Convex rate regions). For any convex,
coordinate-convex rate region, the maximum stability region
is the rate region, and is achieved by all α-fair allocations,
provided that α > 0.

The above theorem states that α-fair allocations are opti-
mal w.r.t. the flow-level stability. In particular, they all have
the same stability region. Hence for convex, coordinate-
convex rate region, fairness is not imposed at the expense of
a reduction of the stability region. We now investigate the
case where the rate region is not convex, in which case the
stability region may strongly depend on the fairness param-
eter α. We begin by recalling the result providing the maxi-
mum stability region in case of arbitrary rate region [7]. We
then study the case of discrete rate regions, i.e., rate regions
composed by a finite number of rate vectors, and conclude
this section with an analysis on the stability for arbitrary
continuous rate regions.

3.1 Maximum stability region
The maximum stability region is given in the following

theorem [7].

Theorem 2 (Maximum stability region [7]). For
a network with an arbitrary rate region R, the maximum
stability region is the smallest convex, coordinate-convex set
containing R.

In particular, it has been proven in [7] that the so-called
MaxProjection (MP) allocation introduced in [1] achieves
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Figure 1: Different chosen rate vectors, contours
and stability regions of a two-class network, for α =
0.5 and α = 1, with A(1) = (1, 4), A(2) = (2, 3.5), A(3) =

(3, 2) and A(4) = (6, 1).

the maximum stability. For a given network state N , the
MP allocation allocates rates that form the solution of the
following problem:

max
∑
s∈S

Nsφs, subject to φ ∈ R (2)

It is worth noting that this allocation is not utility-based,
thus it does not guarantee any fairness of resource allocation
and there is no existing distributed implementation of this
kind of allocation.

3.2 Discrete rate region
In case of arbitrary discrete rate regions, the stability con-

dition of α-fair allocations turns out to be sensitive to de-
tailed traffic demand characteristics, such as the flow size
distribution, see e.g. [3, 25]. This explains why deriving an
exact expression for the stability region proves quite chal-
lenging. However for networks with two flow classes only,
the stability region is known and given by Theorem 3 [7]. In
the rest of this paper, we denote byRα the set of rate vectors
actually chosen by the α-fair allocation, i.e., the set of vec-
tors A ∈ R such that there exists a state N with φ(N) = A
for this allocation. Also for notational convenience, we prove
the results of this section for α-fair allocations with α 6= 1.
They can be similarly proved for Proportional fair allocation
given by α = 1.

Theorem 3 (two classes [7]). The stability region of
an α-fair allocation, for α > 0, is the smallest coordinate
convex set containing the contour of Rα.

Here for a two-class network, the contour of Rα ∈ R2
+ is

defined as the broken line joining the allocated rate vec-
tors from left to right. In general, Rα depends on the
allocation considered, which in turn leads to the depen-
dence of the stability region on α. In Figure 1, we present
the example of a two-class network with discrete rate re-
gion R = {A(1), A(2), A(3), A(4)}, and illustrate the depen-
dence of the stability region on α. When α = 0.5, Rα =
{A(1), A(2), A(3)}, and when α = 1, Rα = R. As a conse-
quence, the Proportional fair allocation achieves a smaller
stability region than the 0.5-fair allocation.

We generalize the result of Theorem 3 to the case of net-
works with an arbitrary number of flow classes. As explained
above, deriving an exact expression for the stability region
proves generally impossible. Hence we separately derive suf-
ficient and necessary conditions for stability. Later, we will

show that the gap between the sufficient and necessary con-
ditions vanishes as the set of rate vectors chosen by the
considered allocation gets continuous.

Consider the α-fair allocation in a network with a fixed
discrete rate region R = {A(1), . . . , A(K)}. We use fluid
limits [13] to investigate stability, see [23] for more details.
We denote by n the network state in the fluid limit with a
continuous state space. Following [5, 33], the fluid limit n
evolves according to

dns

dt
=

{
µs(ρs −A

(l)
s ), if ns 6= 0,

max
(
µs(ρs −A

(l)
s ), 0

)
, if ns = 0,

(3)

for all s ∈ S and when the rate vector A(l) is allocated.
The fluid limit is stable if n(t) reaches and stays at 0 within
finite time. If starting from any initial point, the fluid limit
reaches 0 in finite time, then the initial process {N(t)}∞t=0 is
ergodic. The fluid limit is said to be unstable if ‖n(t)‖ grows
at least linearly (after a finite time), and this instability
implies the transience of the process {N(t)}∞t=0.

Define the subset C(j) of the state space RS
+ (in the fluid

limit) where the α-fair allocation allocates the rate vector

A(j):

C(j) =
{

n : φ(n) = A(j)
}

. (4)

Note that each C(j) is a cone due to the Property 2 (i.e.,
homogeneity) of the α-fair allocation. Some cones may be
empty, in which case the corresponding rate vector is never
allocated by the α-fair allocation. The cones defined in (4)
satisfy:

(i)
⋃

1≤j≤K C(j) = RS
+,

(ii) C(j)
o

⋂ C(j′)
o = ∅, for all j 6= j′,

(iii) the rate vector A(j) is allocated, if n ∈ C(j)
o ,

(iv) if n ∈ C(j) ⋂ C(j′), then either A(j) or A(j′) is allocated.

After defining the cone allocation, we will see in the fol-
lowing theorem that the stability condition depends on the
comparison of traffic load and service rate (allocated rate
vector).

Theorem 4 (N classes, sufficient condition). For
a discrete rate region R, the stability region of the α-fair al-
location, for α > 0, contains Λα, the smallest coordinate
convex set containing Rα.

Proof. We prove the stability of the α-fair allocation for
traffic vectors ρ in Λα whose distance to a particular rate
vector A(l) ∈ Rα is sufficiently small so that ρ−A(l) < 0 and

|ρs−A
(l)
s | ¿ minl′ 6=l |A(l)

s −A
(l′)
s |, ∀s ∈ S. This also implies

that A(l) is the only allocated rate vector in R such that
ρ − A(l) < 0. Then stability for more general ρ is ensured
using the fact that the stability region of α-fair allocations
is coordinate-convex.

Denote by δ(j) = ρ−A(j) the drift vector in the cone C(j).
Define

Vj,j′(n) =
∑
s∈S

nα
s

(A
(j)
s )1−α − (A

(j′)
s )1−α

1− α
. (5)

Then at any time t, if the fluid limit is at state n, φ(n) =

A(j) if and only if Vj,j′(n) ≥ 0 for all 1 ≤ j′ ≤ K and the



boundary of cone C(j) and C(j′) is described by C(j) ⋂ C(j′) =
{n : Vj,j′(n) = 0}. Now introduce the function

L(n(t)) =
∑

1≤l′≤K

Vl′,l(n(t))1{n(t)∈C(l′)}. (6)

where we suppress the index of l in the notation of L. This
function is continuous and differentiable almost everywhere
(except at times where n(t) is at intersections of cones C(j)).

Note that, when n(t) ∈ C(l′), for l′ 6= l, then L(n(t)) =
Vl′,l(n) ≥ 0. Also note that when L(n(t)) = 0, then the

rate vector A(l) is scheduled.
Assume now that at time t, L(n(t)) > 0, and that it is

differentiable. This implies that there exists l′ 6= l, such that

n(t) ∈ C(l′). We have:

dL

dt
=

∑
s∈S

αnα−1
s µs(ρs −A(l′)

s )
(A

(l′)
s )1−α − (A

(l)
s )1−α

1− α
. (7)

Divide S(l′) as Sa(l′)
⋃Sb(l

′) where Sa(l′) = {s : A
(l)
s ≥

A
(l′)
s }, Sb(l

′) = {s : A
(l)
s < A

(l′)
s }.

Case (a): for s ∈ Sa(l′), since we have chosen ρ to be suffi-

ciently close to A(l), then either A
(l)
s > ρs > A

(l′)
s or A

(l)
s =

A
(l′)
s . Thus (A

(l′)
s )1−α−(A

(l)
s )1−α

1−α
≤ 0 and ρs − A

(l′)
s ≥ 0,

which gives αnα−1
s µs(ρs −A

(l′)
s ) (A

(l′)
s )1−α−(A

(l)
s )1−α

1−α
≤ 0;

Case (b): for s ∈ Sb(l
′), ρs < A

(l)
s < A

(l′)
s , which also gives

αnα−1
s µs(ρs −A

(l′)
s ) (A

(l′)
s )1−α−(A

(l)
s )1−α

1−α
< 0.

Now we may rewrite L(n(t)) as La(n(t))+Lb(n(t)), where:

La(n(t)) =
∑

l′
1{n(t)∈C(l′)}

∑

s∈Sa(l′)

nα
s

(A
(l′)
s )1−α − (A

(l)
s )1−α

1− α
,

Lb(n(t)) =
∑

l′
1{n(t)∈C(l′)}

∑

s∈Sb(l′)

nα
s

(A
(l′)
s )1−α − (A

(l)
s )1−α

1− α
.

We have La(n(t)) ≤ 0, so that L(n(t)) ≤ Lb(n(t)). We now
prove that Lb(n(t)) reaches 0 in a finite time. Notice that

Lb(n(t)) =
∑

l′
1{n(t)∈C(l′)}

∑

s∈Sb(l′)

bsn
α
s ,

where

bs =
(A

(l′)
s )1−α − (A

(l)
s )1−α

1− α
> 0.

As in (7), for n(t) ∈ C(l′), we write

dLb(n(t))

dt
= −

∑

s∈Sb(l′)

asn
α−1
s (t), (8)

where

as = −αµs(ρs −A(l′)
s )

(A
(l′)
s )1−α − (A

(l)
s )1−α

1− α
,

and it has been shown above that as < 0 for all s ∈ Sb(l
′).

We can then easily deduce that there exists β > 0 such that
for all time t (see [23]):

dLb(n(t))

dt
(t) ≤ −βLb(n(t))

α−1
α . (9)

Figure 2: Lower bound on the stability region (The-
orem 4) of an α-fair allocation in a 3-flow class sys-
tem - α = 0.5, Rα = {(4, 2, 2), (3, 4, 3), (2, 3, 4)}.

Then

Lb(n(t)) ≤
(
Lb(n(0))1/α − βt/α

)α

.

Thus after finite time T1, Lb(n(t)) = 0. This implies that
for all t ≥ T1, Lb(n(t)) = 0. It further implies that the rate

vector A(l) is scheduled after time T1 and that the system
empties in a finite time.

We now provide a necessary stability condition for α-fair
allocations. Note that Theorem 2 already provides a neces-
sary stability condition, since the traffic load cannot exceed
the maximum stability region. The following result gives
tighter necessary conditions.

Theorem 5 (N classes, necessary conditions). For
a discrete rate region R, the α-fair allocation, for α > 0, is
unstable if one of the following conditions holds:

(i) There exists A(l) ∈ Rα such that ρ−A(l) > 0.

(ii) There exists a class s such that ρs > maxA(j)∈Rα A
(j)
s .

Proof. Assume (i) holds. We use similar arguments as
in the proof of Theorem 4 to show instability. Again we
only need to consider the case when ρ is sufficiently close to

A(l), i.e., ρ−A(l) = ε > 0 and |ρs −A
(l)
s | ¿ minl′ 6=l |A(l)

s −
A

(l′)
s |. We use the same Lyapunov-like function L(n), to

prove that after a finite time the rate vector A(l) has to be
scheduled (more precisely we prove that there exists T3 such
that L(n(t)) = 0 if t > T3). This implies that after a finite
time, n(t) grows linearly to infinity when t > T3, which
further implies the the system is unstable.

Now assume (ii) holds, then at any state n(t) and with

any allocated rate vector A(j), δ
(j)
s > 0, i.e., the drift of class

s is strictly positive and ns is always increasing. Thus ‖n‖
linearly grows to infinity, and the network is unstable.

3.3 Continuous non-convex rate region
When the number of rate vectors allocated by the α-fair

allocation is small, there can be a significant gap between
the sufficient and necessary conditions for stability regions



derived in Theorem 4 and Theorem 5 as shown in Figure 2.
When Rα has more points, the gap reduces, and ultimately
tends to 0 when Rα becomes continuous, which is an impor-
tant special case often encountered in utility maximization
models. The following result formalizes this observation.

Corollary 1 (Continuous rate region). If the set
Rα for α-fair allocation is continuous, then the stability re-
gion of this allocation is the smallest coordinate-convex set
containing c(Rα).

Proof. When the set of allocated vectors Rα is contin-
uous, we can approximate it by a sequence of discrete rate
regions with finite number of rate vectors. Let R(k) be a dis-
crete subset of Rα such that R(k) ↑ Rα as k →∞. Now for

the same system with discrete rate region R(k), we let Λ
(k)
suf

denote the sufficient stability region defined by Theorem 4,
which is the smallest coordinate-convex set containing R(k),

and Λ
(k)
nec denote the necessary stability region defined by

Theorem 5 as the complement of the unstable region. Thus
if Λ(k) denotes the exact stability region of the system with
rate region R(k), we must have

Λ
(k)
suf ⊆ Λ(k) ⊆ Λ(k)

nec. (10)

If we let Λα denote the smallest coordinate-convex set con-
taining c(Rα), by letting k →∞, Λ

(k)
suf ↑ Λα and Λ

(k)
nec ↓ Λα,

since R(k) ↑ Rα and Rα is continuous. Hence when k →∞,
the gap between the sufficient and necessary stability con-
ditions vanishes, and the exact stability region is given as
Λα.

In the following section, we will consider time-varying con-
vex rate regions, and in that case the set of allocated rate
vectors is continuous by the convexity of each possible rate
region. Then a similar phenomenon as described in Corol-
lary 1 occurs, which explains why we will be able to exactly
characterize the stability region.

4. STABILITY WITH TIME-VARYING RATE
REGION

We now investigate the stability region of various resource
allocations in networks with time-varying convex rate re-
gion. The network state is described by (N(t),R(t)) where
we assume {R(t)}∞t=0 is a stationary and ergodic process as
described in Subsection 2.2.

The proof techniques applied to obtain sufficient and nec-
essary conditions for stability are similar to those used in
the previous section. We will characterize the maximum sta-
bility region, and then derive the stability region of α-fair
allocations. We first describe the evolution of the network
in the fluid limit for any type of allocation. Consider an
allocation which allocates the rate vector φ(i)(N) at state
N when the rate region is Ri, and satisfies Properties 1-3
defined in Subsection 2.3. The evolution of the system fluid
limit is given by:

dns

dt
= λs − µs

∑
i∈I

πiφ
(i)
s (n), ∀s ∈ S. (11)

The proof of the above statement is presented in [23].

4.1 Maximum Stability Region
The following theorem is the analog of Theorem 2 for net-

works with fixed and arbitrary rate region. In that case,

it turns out that the MP allocation also achieves maximum
stability. Recall that the MP allocation solves (2) with rate
region R(t) at any time t.

Theorem 6 (Maximum Stability region). Consider
a network with time-varying convex rate region R(t). The
maximum stability region is

R =
∑
i∈I

πiRi (12)

and it can be achieved by the MP allocation.

In the above theorem, the addition of sets is defined as fol-
lows: R1 +R2 = {x1 + x2 : x1 ∈ R1, x2 ∈ R2}.

Proof. Necessary condition. Since each Ri is convex,
coordinate-convex, and compact, then the same properties
hold for R. Moreover, the service rate

∑
i∈I πiφ

(i)(n) in

the fluid limit of any allocation belongs to R. If ρ /∈ R, we
show that the fluid limit is unstable using similar arguments
as those used in [6]. By convexity of R, there exists a half-
space H containing R such that ρ /∈ H. Note that by com-
pactness and coordinate convexity of R, we can choose this
half-space such that its boundary intersects each coordinate
axis. We denote by %s the intersection of the boundary of H
with the class-s axis, which meansH =

{
ϕϕϕ | ∑s∈S

ϕs
%s
≤ 1

}
.

Then
∑

i∈I πiφ
(i)
s (n) ≤ %s for all s ∈ S and all state n, and∑

s∈S
ρs
%s

> 1. Now consider the following Lyapunov func-

tion L(n) =
∑

s∈S
ns

µs%s
.

Necessity result follows from:

dL

dt
=

∑
s∈S

ρs −
∑

i∈I πiφ
(i)
s (n(t))

%s
≥

(∑
s∈S

ρs

%s

)
− 1 > 0.

Sufficient condition. Let φ(i),M (n) denote the allocated
rate vector under the MP policy when R(t) = Ri., and also

let φ̄M =
∑

i∈I πiφ
(i),M
s .

By [1, 7], the stability region of the MP allocation is just
the rate region, when the latter is fixed, convex and coordinate-
convex. Then it suffices to check that the service rate φ̄M

corresponds to the MP allocation in case the rate region is
R. We show the optimality of φ̄M at state n. Since for any
x ∈ R, x can be represented as

∑
i∈I πix

(i), with x(i) ∈ Ri,
for all i ∈ I, then we have:

∑
s∈S

ns

∑
i∈I

πiφ
(i),M
s (n) =

∑
i∈I

πi

∑
s∈S

nsφ
(i),M
s (n)

≥
∑
i∈I

πi

∑
s∈S

nsx
(i)
s

=
∑
s∈S

ns

∑
i∈I

πix
(i)
s .

This completes the proof.

Note that even with different time-scale assumptions, a sim-
ilar result of Theorem 6 was provided in [22] for the specific
case whereRi is a convex polytope, where a certain channel-
aware scheduling is adopted to satisfy the maximum stabil-
ity region under time-varying rate regions.

4.2 Stability Region of α-Fair Allocations
We now turn to the characterization of the stability re-

gion of α-fair allocations. Observe that by (11), the possible
service rate for an α-fair allocation in the fluid limit is the



average of the allocated rate vectors in the various rate re-
gions. It is then natural to define the average set of rate
vectors allocated by the α-fair allocation in the fluid limit
as:

∂Rα = {φ : ∃n ∈ RS
+, φ =

∑
i

πi × φ(i)(n)}. (13)

This is the set of all possible service rate vectors in the fluid
limit. We further define the average rate region in the fluid
limit for the α-fair allocation as the smallest coordinate-
convex set containing ∂Rα, i.e.,

Rα = {y : ∃x ∈ ∂Rα s.t. 0 ≤ y ≤ x}. (14)

In the following we assume that ∂Rα is a Pareto-type set,
just like the sets of rate vectors allocated by the α-fair alloca-
tion when the rate region is fixed. In all examples presented
in Section 6, this assumption is valid. In future work, we
will further analyze the properties of ∂Rα. Now, the sta-
bility region for α-fair allocations is given by the following
result.

Theorem 7 (time-varying rate region). For all α >
0, the stability region of the α-fair allocation for time-varying
rate region is Rα.

Proof. To investigate the stability of the fluid limit (11),
we introduce a sequence of systems with discrete time-varying
rate region which converges to the original system, and then
apply similar techniques as in Theorem 4.

Denote by ∂Ri the smallest Pareto-type set Y such that
the smallest coordinate-convex containing Y is Ri. Note
that this definition makes sense since Ri is convex. We
consider a sequence of systems where the k-th system has

time-varying, finite and discrete rate regions such that R(k)
i

is a subset of ∂Ri, for all i ∈ I. In particular, each discrete

R(k)
i = {A(i,1), . . . , A(i,k)} is a Pareto-type set. The consid-

ered sequence is such that R(k)
i ↑ ∂Ri as k → ∞. By (11),

the set of allocated rate vectors in the fluid limit for the k-

th system is ∂R(k)
α = {∑i∈I πiA

(i,li) : ∃n ∈ RS
+, φ(i)(n) =

A(i,li), ∀i ∈ I}. If we define R(k)
α as the smallest coordinate

convex set containing ∂R(k)
α , then R(k)

α ↑ Rα as k →∞. We
now show the sufficient and necessary stability regions for
the k-th system in a similar way as we proved Theorems 4
and 5, and observe that the gap between the sufficient and
necessary conditions goes to zero when k →∞.

In the k-th system, when the rate region is R(k)
i , the α-

allocation is a cone policy, allocating the rate vector A(i,li) if
the state n(t) belongs to the cone C(i,li). We introduce the

cones C(l1,··· ,lI ), which correspond to the states where the
rate vector in the fluid limit is

∑
i∈I πiA

(i,li). These cones
are defined by intersections of cones:

C(l1,··· ,lI ) =
⋂
i∈I

C(i,li)

=
{

n : V
(i)

li,l(t) ≥ 0,∀1 ≤ l ≤ K, ∀i ∈ I
}

.

For each possible rate region R(k)
i , we define

V
(i)

j,j′(n) =
∑
s∈S

ns(t)
α

(
(A(i,j))1−α − (A(i,j′))1−α

)
/(1− α).

Now as in the proof of Theorem 4, to prove stability when

there exists ν ∈ R(k)
α such that ρ < ν, we can use the

following function:

L(n(t)) =
∑
i∈I

∑

l′i

V
(i)

l′i,li
(n)1{n(t)∈C(l′

i
)}. (15)

On the other hand, if ρ /∈ Rα, there exists a sufficiently
large k′ such that for all k > k′ either one of the following

conditions holds: there exists A ∈ ∂R(k)
α such that ρ −

A > 0; ρs > max
A∈∂R(k)

α

As for some class s. These two

conditions correspond to cases (i) and (ii) in Theorem 5
respectively. Then the fluid limit is unstable with such ρ for

any discrete rate region R(k)
i where k > k′. By continuity,

for all ρ /∈ Rα the system is unstable.

5. FAIRNESS-STABILITY TRADEOFF
In this section, we discuss the tradeoff between fairness

and flow-level stability. Namely, we study the sensitivity
of the stability region of α-fair allocations to the fairness
parameter α. When the rate region is fixed convex and
coordinate-convex, we know from Theorem 1 that the sta-
bility region is insensitive to α. This property is lost for
networks with non-convex or time-varying rate region. In
this case, quantifying the sensitivity of the stability region
w.r.t. α proves quite challenging, and we restrict the analy-
sis to the case of networks with two classes only.

5.1 Sensitivity in case of non-convex rate
region

A preliminary sensitivity analysis in case of non-convex
rate region has been performed in [7]. It has been proved
that there exist two fairness parameters γ and β with γ < β
such that for all α > β and α < γ, the stability region of α-
fair allocation is minimum and maximum, respectively. This
result indicates that the stability region tends to be larger for
smaller values of α. In particular Max-min fairness always
leads to the smallest stability region, whereas the allocation
maximizing the network throughput leads to the greatest
region.

5.2 Sensitivity in case of time-varying rate
region

We now investigate the sensitivity of the stability region
to the choice of the resource allocation for time-varying rate
regions. We provide two results indicating that for time-
varying rate region, the stability region of α-fair allocations
is reduced when α grows.

We consider time-varying rate regions satisfying the scal-
ing rule, i.e., Ri = ai,j × Rj for all i, j ∈ I and some
ai,j ∈ RS

+, where the product is defined as the component-
wise scaling by factor ai,j

s for class-s coordinate. The scaling
rule indicates that the shape of rate regions does not change.
This assumption is valid in many practical systems since the
type of network and resource allocation scheme (e.g., time
or power sharing in wireless networks) determines the shape
of the rate region. We present the following two corollaries
to show the fairness-stability tradeoff in two-class networks,
and refer the readers to [23] for detailed proofs.

Corollary 2. For α ≥ 1, the stability region Rα is de-
creasing as α increases, i.e., Rα1 ⊆ Rα2 if α1 > α2. In
particular, if ∂R1, ∂R2 are hyperplanes, the monotonicity
of Rα holds for all α > 0.



class 1

class 2
d(2,j−1)

d(1,i−1)

d(2,j)

d(1,i)

class 1

class 2

d(2,j−1)

d(1,i−1)

d(2,j)

d(1,i)

class 1

class 2
d(2,j−1)

d(1,i−1)

d(2,j)

d(1,i)

class 1

class 2

d(2,j−1)

d(1,i−1)

d(2,j)

d(1,i)

(a) Case I (b) Case II

(c) Case III (d) Case IV

Figure 3: Cones and boundaries as A(1,i) + A(2,j) is
allocated.
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Z(i,j−1)

Z(i−1,j) Z(i,j)
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(a) a1 > 1 (b) a1 ≤ 1

Figure 4: The transitions of allocated rate vectors
when α increases.

Proof. Here we sketch the main idea and key steps of the
proof. Let φ(i,α)(n) denote the α-fair allocated rate vector
at state n when R(t) = Ri. First we consider R(t) = R1 or
R2 with R2 = a×R1, a = (a1, a2) and a2 > a1, where the
result can be extended to finitely many possible rate regions
by induction. Here without loss of generality we assume that
π1 = π2 (just scaling the two rate regions). Then we proceed
with discrete approximation of rate regions as in the proof

of Theorem 7, where R(k)
1 = {A(1,1), . . . , A(1,k)}. Let us fix

the allocation, i.e., fix α. If C(1,i) denotes the set of states n

when A(1,i) ∈ R(k)
1 is allocated, then by [7] C(1,i) ⋂ C(1,i+1)

is a line containing (0, 0), and denote by d(1,i) the tangent
of the angle between this line and the class 2 axis. When
the rate vector Z(i,j) = A(1,i) + A(2,j) is allocated, i.e.,
C(1,i) ⋂ C(2,j) 6= ∅, there are four possible cases for C(1,i) and

C(2,i) as shown in Figure 3. Now we will slightly increase
α and concentrate on the analysis of the four consecutive
vectors in the contour of the set of allocated vectors, i.e.,
Z(i−1,j−1), Z(i,j−1), Z(i−1,j), Z(i,j). If α increases, the rel-
ative positions of C(1,i) and C(2,j) will change, which leads
to transitions of allocated vectors as illustrated in Figure
4. By analyzing all the possible transitions with α ≥ 1, we
can conclude that the new allocated rate vector Z(i−1,j) is
always below contour of the set of allocated vectors before
α increases. In particular, if ∂R1, ∂R2 are hyperplanes in
R2

+, the above arguments hold for all α > 0.

The following corollary analyzes the stability of allocations
close to the maximum throughput allocation, where the sta-
bility region converges to the maximum stability region R

d(1,1)

d(1,k)

d(2,1)

d(2,k)

class 1

class 2

class 1 class 1

class 2class 2

(a) (b) (c)

A(2,1)

A(1,k)

Figure 5: When α → 0 (a) the cones and boundaries;

(b) and (c) the allocated rate vectors in R(k)
1 and

R(k)
2 , respectively.

defined in (12) for sufficiently small α.

Corollary 3. The maximum stability region R is achieved
as α → 0, i.e., Rα → R.

Proof. Following the proof of Corollary 2, we assume
a2 > a1. When α → 0, d(1,i) tends to the tangent of the
angle between the line segment connecting A(1,i), A(1,i+1)

and class 1 axis, and d(2,i) → ∞. Figure 5.(a) shows the

relative positions of C(1,i) and C(2,i) in this case. Then the
allocated rate vectors are A(1,k)+A(2,i) and A(1,i)+A(2,1) for
all 1 ≤ i ≤ k, as shown in Figure 5.(b), (c). When a2 > a1,
by convexity of R1, R2, this also implies that when hk → 0,
the allocated vectors when α → 0 are on the boundary of
R = R1+R2. This finally shows that the maximum stability
region R can be achieved as α → 0.

In fact, we will see in Section 6 that in some cases, there
exists 0 < α0 < 1 such that when α < α0, the maximum
stability is achieved, i.e., Rα = R.

We conclude this subsection by presenting possible cases
where with time-varying rate region, the stability region of
α-fair allocations can still be insensitive to α. This can
be the case when all flow classes experience the same ca-
pacity variations. This special case for insensitivity is true
for a system with arbitrary number of classes, if for all
i ∈ I, there exists a constant ci such that Ri = ciR1,
Rα =

∑
i∈I πiciRi. This is because when solving (1) with

different rate regions Ri where Ri = ciR1, by scaling the
decision variable φ(j,α) with the same constant ci, we have
φ(i,α) = ciφ

(1,α). An example of such systems is the down-
link of a cell in a wireless network where the power of the
base station allocated to data traffic may vary because of
the presence of high-priority traffic such as voice.

As discussed in this section, when the rate region is non-
convex or time-varying, the stability region of a resource
allocation scheme depends on the chosen fairness parameter
α. In the cases we studied, fairness can be imposed only
at the expense of reducing the stability region. Then in a
number of practical networks where this fairness stability
trade-off exists, it becomes crucial to choose a fairness ob-
jective that achieve the right balance between fairness and
performance.

6. EXAMPLES
In this section, we present some numerical experiments to

illustrate the analytical results derived in the previous sec-
tions on various types of data networks: wired networks and
wireless networks with centralized or distributed resource



allocation. The sensitivity of the stability region of α-fair
allocations to the fairness parameter α strongly depends on
the considered network. We also observe that the sensitivity
is usually much higher for wireless networks than for wired
networks due to the sharp variation of rate regions.

6.1 Wired networks with link failures
In this subsection, we investigate time-varying rate re-

gions in wired networks due to link failures. The different
set of time-varying broken links generate various link fail-
ure states, which in turn defines time-varying rate regions.
We study two different cases depending on the underlying
routing and flow management mechanism: (i) multi-path
routing without flow splitting, and (ii) multi-path routing
with flow splitting.

A wired network is represented as a set of L links and K
routes where each route k is defined as a subset rk of the set
of links {1, . . . , L}. Let C = {C1, . . . , CL} be the capacity
vector with Cl > 0. We refer to the routing matrix as the
K × L-dimensional matrix R whose k, l-entry is equal to 1
if l ∈ rk, and 0 otherwise. The routing matrix varies with
link failure states, and we denote by Ri the routing matrix
in link failure state i.

6.1.1 Multi-path routing without flow splitting
We now assume that each class is assigned a set of routes

for each link failure state i, but at any instant of time, each
class s can choose only a single route in the subset of routes
ms(i). We let Mi be the set of S ×K stochastic matrices
such that on each row s, the s, k-entries are equal to 0 for all
k except in the set ms(i). Each matrix M ∈M corresponds
to a particular route choice. We let φ denote a row vector,
then the rate region in the link failure state i is the convex
hull of the capacity sets associated with the routing matrices
M ∈Mi, given by:

Ri = convex hull of {φ : ∃M ∈Mi, φMRi ≤ C}.

2
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2
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class 2

2

3

class 1

class 2 1

φ1
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Figure 6: A wired network with link failures: multi-
path routing without flow-splitting.

Consider the example of Figure 6, where C = (2, 3, 2),
and

R1 =




1 0 0
0 1 0
0 0 1


 , R2 =

(
1 0 0
0 1 0

)
,

M1 =

{(
1 0 0
0 1 0

)
,

(
0 1 0
0 1 0

)
,

(
0 1 0
0 0 1

)}
,

M2 =

{(
1 0
0 1

)
,

(
0 1
0 1

)}
.

Figure 8.(a) shows the stability regions for different values of
α when π1 = π2 = 1/2. We observe that the stability region
decreases as α increases. However the sensitivity to α is
rather limited, and when α < 0.5, the maximum stability
region is achieved.

6.1.2 Multi-path routing with flow splitting
Suppose now that for link failure state i, each class s can

use all routes in the set ms(i) at the same time. Abusing
the notation, we again let M be the set of S×K stochastic
matrices such that on each row s, the s, k-entries are equal
to 0 for all k except those in the set ms(i). Each matrix
M ∈Mi corresponds to a particular traffic splitting scheme
at the failure state i. Then, the rate region is given by:

Ri = {φ : ∃M ∈Mi, φMRi ≤ C}.
Consider the example in Figure 7 with three links, where

C = (3, 2, 3), and

R1 =




1 0 0
0 1 0
0 0 1


 , R2 = R3 =

(
1 0 0
0 1 0

)
,

M1 =

{(
2/3 1/3 0
0 1/3 2/3

)}
,M2 =

{(
2/3 1/3 0
0 1 0

)}
,

M3 =

{(
0 1 0
0 1/3 2/3

)}
.

3

2

3

class 1

class 2

2/3

1/3

1/3

2/3

3

2

class 1

class 2

2/3

1/3

1

2

3

class 1

class 2

1

1/3

2/3

φ1

φ2

(a) R1 (b) R2 (c) R3

φ1

φ2

φ1

φ2
1

3
(φ1 + φ2) ≤ 2

2

3
φ1 ≤ 3, 2

3
φ2 ≤ 3

2

3
φ1 ≤ 3

1

3
φ1 + φ2 ≤ 2

2

3
φ2 ≤ 3

φ1 + 1

3
φ2 ≤ 12

Figure 7: A wired network with link failures: multi-
path routing with flow-splitting.

Figure 8.(b) shows the change of stability regions for dif-
ferent values of α, where we assume that π1 = π2 = π3 =
1/3. As illustrated, the sensitivity to α is more substantial
compared to the case without flow splitting. When α < 0.2,
the maximum stability region is achieved.

6.2 Wireless cellular networks with random
interference

We consider the downlink of a cell covered by base station
(BS) 1. BS 1 serves two classes of flows generated by some
users with fixed positions, as shown in Figure 9. The rate
regions of the system are time-varying due to variations of
the interference generated by BS 2 and 3. To simplify the
analysis, we assume that BS 2 and 3 cannot be active at the
same time, and when active they transmit at full and fixed
power. The system is symmetric, and when BS 2 (resp. 3)
is on and BS 3 (resp. 2) is off, the noise plus interference
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Figure 8: Stability regions: multi-path routing.

at the position of class-1 (resp. class-2) users is 12 dB and
that for class-2 (resp. class-1) users is 0 dB. The down-
link resources are shared at the BS 1 either according to a
successive decoding scheme for the broadcast channel (Code
Division, denoted by CD) or to a time division multiple ac-
cess scheme (denoted by TD). For CD channels, the rate
region is given as,

φ1 ≤ log2 (1 + P1/η1) ,
φ2 ≤ log2 (1 + P2/η2) .

where Pi and ηi are the downlink transmission and noise
power for each class i = 1, 2, respectively, and P = P1 + P2

is the maximum transmission power of the base station. The
corresponding rate regions are presented in Figure 9.

class 2class 1

R1

φ1

φ2

R2

φ1

φ2

(a) CD (b) TD

BS 1BS 2 BS 3

Figure 9: Wireless cellular network with random
interference.

When BS 1 allocates its full power to users of class 1 (or 2),
the corresponding flows are served at rate 4 or 1 depending
on the activities of BS 2 and 3. Now the stability region for
different α is shown in Figure 10. The maximum stability
region is achieved when α < 0.1 or α < 0.2 for CD or TD
systems, respectively. We also observe that the sensitivity
of α is very significant in this case due to the sharp variation
of rate regions in wireless network.

6.3 Random access in wireless networks
We conclude this section by an example of a network with

non-convex but fixed rate region. For this example, the re-
sults of Section 3 allow us to exactly characterize the stabil-
ity region of some α-fair allocation.

The model is similar to that considered in [17, 31], and
may represent typical WLANs or multi-hop wireless net-
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Figure 10: Stability regions for wireless cellular net-
works with random interference.

works with random access Aloha-type algorithm. The net-
work is a collection L of L wireless links. We consider L
flow classes, flows of class l use link l only. The links in-
teract through interference. We assume that a transmission
on link l can be successful only if none of the neighboring
links is transmitting, otherwise there is a collision. Denote
by Ll the set of links interfering link l. Time is slotted and
packet transmissions exactly last one slot. At the beginning
of each slot, links try to access the channel in a distributed
manner, each link l transmits with probability pl. The rate
of link l, and then of class-l flows, is given by:

φl = pl

∏

k∈Ll

(1− pk). (16)

The rate region of this system is in general non-convex and
given by:

R = {φ : ∀l, φl ≤ pl

∏

k∈Ll

(1− pk), pk ∈ (0, 1)}. (17)

It is shown that for Proportional fair allocation with non-
convex rate region (17), the transmission probabilities at
state N are:

pl =
Nl

Nl +
∑

k:l∈Lk
Nk

, (18)

and by varying the network state N that the conditions
of Subsection 3.3 are satisfied, namely that the set of the
allocated rate vectors is continuous and actually equal to the
entire rate region in this case. Therefore we can conclude
that the stability region of the Proportional fair allocation
is exactly equal to the largest open subset of R.

7. CONCLUSION AND FUTURE WORK
In practical networks, the rate region that constrains the

resource allocation may not follow the standard assumptions
of convexity and time-invariance. The characterization of
stability region becomes more challenging for either non-
convex or time-varying rate regions, and its size and shape
become dependent on the chosen resource allocation policy.
In this paper, we have studied this dependence for a large
class of utility-based allocations, the α-fair allocations.

For networks with an arbitrary number of classes and with
fixed and non-convex rate region, we have given sufficient
and necessary conditions for flow-level stability of α-fair al-
locations, for all α > 0. We then extended the analysis
to networks with time-varying and convex rate region, for
which we have characterized the stability condition of α-fair
allocations, for all α > 0. We have also studied the sensitiv-
ity of the stability region of α-fair allocations to the fairness



parameter α, and demonstrated an intriguing tradeoff be-
tween fairness and flow-level stability. This tradeoff raises
further questions on how to choose a resource allocation pol-
icy.
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